帳號:guest(13.59.143.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘範英淑
作者(外文):Thu, Phan Pham Anh
論文名稱(中文):電化學沉積介孔二氧化鈦及其於鈣鈦礦太陽能電池之電子傳輸層之應用
論文名稱(外文):Application of electrodeposition on the preparation of mesoporous titanium dioxide as an electron-transporting material in perovskite solar cells
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):蔡德豪
周鶴修
葉鎮宇
口試委員(外文):TSAI, DE-HAO
Chou, Ho-Hsiu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032422
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:81
中文關鍵詞:電化學沉積介孔二氧化鈦及其於鈣鈦礦太陽能電池之電子傳輸層之應用
外文關鍵詞:titanium dioxideelectron-transporting layerelectrodepositionperovskite solar cellsSn-doped TiO2
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
二氧化鈦 (TiO2) 由於其合適的能階、高耐熱性、低成本和無毒,通常用作鈣鈦礦太陽能電池 (PSC) 中的電子傳輸層 (ETL)。 TiO2薄膜的沉積方法有旋塗(SC)、噴塗、原子層沉積和電沉積(ED)等多種方法;其中,ED 因其易於控制、可擴展性和成本效益而被認為是一種可行的生產方法。我們的實驗室先前研究了來由TiCl3 水溶液的 TiO2 薄膜的 ED,並將其用作 PSC 的緻密層。之後,我們實驗室還嘗試了多孔 TiO2 薄膜的 ED,並探索了將其用作 PSC 支架的可能性。
在這項研究中,我們進一步改進了用於 PSC 的 電沉積TiO2 技術。在第一部分中,研究了 ED 參數,如外加電位、電解液溫度、循環次數對對薄膜的形貌和性能的影響。可以觀察到,當在-0.50 V 下電沉積並在 ED 期間施加更多熱量時,尤其是在 70 oC 時,TiO2 薄膜的形態被完全覆蓋且多孔。此外,循環次數的增加導致成核和生長速率的變化,從而改善了薄膜的多孔形貌。最後,我們獲得了一個最佳方案,即 ED 在 -0.50 V、70 oC、180 秒、6 個循環。所得薄膜完全覆蓋,多孔,結晶度高,電子提取能力好。相對於在-0.50 V、常溫、單循環的條件,可以觀察到效率由12.6 % 上升至16.8 %。
在本論文的第二部分,我們的目標是將上述的參數應用於共電沉積 Sn摻雜的 TiO2。我們首先進行了實驗,分別了解 Ti3+ 和 Sn2+ 離子的電化學行為,以推測兩種離子共電沉積過程的可能性和機制。之後,製備了Sn摻雜的ED TiO2薄膜,從形貌、光學和電學性能方面研究了不同Sn2+濃度對ED電解質中的影響。結果表明Sn元素成功摻雜到TiO2晶格中。所得的摻雜 Sn 的氧化物層比純 TiO2 的導電性更好。此外,通過摻雜 Sn 的 ETL 製造的 PSC 顯示出 JSC、VOC 和 FF 的改善。最佳元件由 Sn-5 ETL(ED 電解液中 Sn2+ 的摩爾比為 5%)製備而成,PCE 為 19.3%,與由純 ED TiO2 ETL 製造的電池的16.8%相比,PCE 高出許多。
Titanium dioxide (TiO2) is commonly used as the electron transport layer (ETL) in perovskite solar cells (PSC) due to its suitable energy level, low cost and low toxicity. There are many methods used to deposit TiO2 thin film such as spin-coating (SC), spray-coating, atomic layer deposition and electrodeposition (ED); in which, ED is considered a feasible method for production in large scale because of its controllability, scalability and cost effectiveness. Our laboratory previously studied ED of TiO2 film from an aqueous TiCl3 bath and applied it to deposit the compact layer for PSC. After that, our laboratory also tried ED of porous TiO2 film and explored the possibility to use it as the scaffold in a PSC.
In this study, we further improve ED of mesoporous TiO2 film for PSC. In the first part, the effects of ED parameters such as applied potential, electrolyte temperature, number of cycles on the morphology and properties of the resultant films are studied. It is observed that the morphology of TiO2 films is fully-covered and more porous when electrodeposited at -0.50 V and applied more heat during ED, especially ED at 70 oC. Moreover, the increase in number of cycles leads to the change of nucleation and growth rates, thus improving the porous morphology of the films. Finally, we obtain an optimal condition which is ED at -0.50 V, 70 oC in 180 s with 6 cycles. The resultant film is fully-covered, porous with highly crystallinity and good electron extraction ability. Compared with ED TiO2 film at -0.50 V, room temperature and single cycle, the conversion efficiency of PSC improved from 12.6 % to 16.8 %.
In the second part of this thesis, we aim to apply the above protocol to co-electrodeposit Sn-doped TiO2 film. We first conducted the experiments to understand the electrochemical behavior of Ti3+ and Sn2+ ions individually to figure the possibility and the mechanism of co-electrodeposition process of both ions. After that, the Sn-doped ED TiO2 films were prepared, in which the effect of various Sn2+ concentrations in the ED electrolyte is studied in terms of morphology, optical and electrical properties. The results show that Sn element is successfully doped into TiO2 lattice. The resultant Sn-doped oxide layers are more conductive than that of the pure TiO2. Furthermore, PSCs fabricated by Sn-doped ETL show an improvement in JSC, VOC, and FF. The champion device was produced by Sn-5 ETL (5% molar ratio of Sn2+ in ED electrolyte) with the PCE of 19.3% which is higher than that of 16.8 % recorded from PSC using pure ED TiO2 ETL.
Abstract i
摘要 iii
Acknowledgement iv
Table of Contents v
Content of Figures viii
Content of Tables xii
Chapter 1: General introduction 1
1-1 Energy situation 1
1-2 Perovskite solar cells 3
1-2.1 Different device architectures of n-i-p-type PSCs 7
1-2.2 Working principle of a PSC 8
1-3 TiO2 as an electron-transporting layers in PSCs 9
1-1.1 TiO2 compact layer (CL) 11
1-1.2 TiO2 mesoporous scaffold layer (MS) 15
1-4 The mechanism of TiO2 anodic electrodeposition 22
1-5 Motivation of this study 24
Chapter 2: Experiment 26
2-1 Materials and chemicals 26
2-2 Equipment and methodology 28
2-2.1 Equipment 28
2-2.2 Characterization Methods 28
2-3 Experimental section 40
2-3.1 Preparation of cleaned FTO substrates 40
2-3.2 Preparation of TiO2 CL and MS by SC method 41
2-3.3 Preparation of TiO2 CL and MS by ED method 41
2-3.4 Perovskite solar cell fabrication 43
Chapter 3: Electrodeposition of mesoporous TiO2 film for PSC application 44
3-1 Electrochemical study of ED TiO2 44
3-2 Effect of deposition potential on the morphology of the electrodeposited TiO2 47
3-3 Effect of deposition temperature during ED TiO2 49
3-3.1 Morphology of ED TiO2 49
3-3.2 Characterization of TiO2 films 52
3-4 Effect of cycle number during ED TiO2 57
3-4.1 Morphology 57
3-4.2 Characterization of ED TiO2 films 58
Chapter 4: Co-electrodeposition of Sn-doped mesoporous TiO2 film for PSC application 63
4-1 The mechanism of co-electrodeposition of Sn-doped TiO2 63
4-2 The morphology of electrodeposited Sn-TiO2 films 65
4-3 Characterization of electrodeposited Sn-TiO2 films 67
4-3.1 XPS study 67
4-3.2 XRD pattern 71
4-3.3 Conductivity, optical band gap study 72
4-4 J-V characteristics of devices using Sn-doped TiO2 as the ETLs 74
Chapter 5: Conclusion & Future work 77
5-1 Conclusion 77
5-2 Future work 77
References 78
Kojima, A., et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-1.
2. Lee, M.M., et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 338(6107): p. 643-7.
3. Stranks, S.D., et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 342(6156): p. 341-4.
4. Wehrenfennig, C., et al., High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater. 26(10): p. 1584-9.
5. Dong, Q., et al., Solar cells. Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science. 347(6225): p. 967-70.
6. Kitazawa, N., Y. Watanabe, and Y. Nakamura, Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. Journal of Materials Science, 2002. 37(17): p. 3585-3587.
7. Park, M., et al., Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy. 26: p. 208-215.
8. Mahmud, M.A., et al., Solution-Processed Lithium-Doped ZnO Electron Transport Layer for Efficient Triple Cation (Rb, MA, FA) Perovskite Solar Cells. ACS Applied Materials & Interfaces. 9(39): p. 33841-33854.
9. Wang, K., et al., Low-Temperature and Solution-Processed Amorphous WOX as Electron-Selective Layer for Perovskite Solar Cells. The Journal of Physical Chemistry Letters. 6(5): p. 755-759.
10. Jena, A.K., A. Kulkarni, and T. Miyasaka, Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews. 119(5): p. 3036-3103.
11. Wojciechowski, K., et al., Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy & Environmental Science. 7(3): p. 1142-1147.
12. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 501(7467): p. 395-398.
13. Zhou, H., et al., Interface engineering of highly efficient perovskite solar cells. Science. 345(6196): p. 542.
14. Marinova, N., S. Valero, and J.L. Delgado, Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science. 488: p. 373-389.
15. Chen, B., et al., Origin of J-V Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters. 7(5): p. 905-917.
16. De Wolf, S., et al., Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters. 5(6): p. 1035-1039.
17. Arami, H., et al., Sonochemical preparation of TiO2 nanoparticles. Materials Letters, 2007. 61(23): p. 4559-4561.
18. Bourikas, K., C. Kordulis, and A. Lycourghiotis, Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid-Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts. Chemical Reviews. 114(19): p. 9754-9823.
19. Moellmann, J., et al., A DFT-D study of structural and energetic properties of TiO2 modifications. Journal of Physics: Condensed Matter, 2012. 24(42): p. 424206.
20. Lee, J.-W., et al., Rutile TiO2-based perovskite solar cells. Journal of Materials Chemistry A. 2(24): p. 9251-9259.
21. Kim, H.-S., et al., Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Communications. 4(1): p. 2242.
22. Snaith, H.J., et al., Anomalous Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters. 5(9): p. 1511-1515.
23. Leijtens, T., et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature Communications. 4(1): p. 2885.
24. Cojocaru, L., et al., Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry Letters. 44(5): p. 674-676.
25. Shasti, M. and A. Mortezaali, The effect of nitrogen doping of TiO2 compact blocking layers on perovskite solar cell performance. Solid State Sciences. 92: p. 68-75.
26. Wu, Y., et al., Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Applied Physics Express. 7(5): p. 052301.
27. Shahiduzzaman, M., et al., Oblique Electrostatic Inkjet-Deposited TiO2 Electron Transport Layers for Efficient Planar Perovskite Solar Cells. Scientific Reports. 9(1): p. 19494.
28. Su, T.-S., et al., Electrodeposited Ultrathin TiO2 Blocking Layers for Efficient Perovskite Solar Cells. Scientific Reports. 5(1): p. 16098.
29. Sung, S.D., et al., 50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells. Nanoscale. 7(19): p. 8898-8906.
30. Salado, M., et al., Understanding the Influence of Interface Morphology on the Performance of Perovskite Solar Cells. Materials (Basel, Switzerland). 11(7): p. 1073.
31. Sun, X., et al., Influence of the Porosity of the TiO2 Film on the Performance of the Perovskite Solar Cell. International Journal of Photoenergy. 2017: p. 4935265.
32. Heo, J.H., et al., Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy. 15: p. 530-539.
33. Singh, T., et al., Sulfate-Assisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkali-Doped TiO2 Electron-Transporting Layers. Advanced Functional Materials. 28(14): p. 1706287.
34. Kim, D.H., et al., Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells. ChemSusChem. 8(14): p. 2392-8.
35. Roose, B., et al., Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd-Doping of Mesostructured TiO2. Advanced Energy Materials. 6(2): p. 1501868.
36. Huang, A., et al., Controllable deposition of TiO2 nanopillars at room temperature for high performance perovskite solar cells with suppressed hysteresis. Solar Energy Materials and Solar Cells. 168: p. 172-182.
37. Su, T.-S., et al., One-Pot Electrodeposition of Compact Layer and Mesoporous Scaffold for Perovskite Solar Cells. ACS Applied Energy Materials. 1.
38. Anuratha, K.S., et al., Electrodeposition of nanostructured TiO2 thin film as an efficient bifunctional layer for perovskite solar cells. Electrochimica Acta. 295: p. 662-667.
39. Chen, W., et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science. 350(6263): p. 944-8.
40. Ranjan, R., et al., Effect of tantalum doping in a TiO2 compact layer on the performance of planar spiro-OMeTAD free perovskite solar cells. Journal of Materials Chemistry A. 6(3): p. 1037-1047.
41. Correa Baena, J.P., et al., Highly efficient planar perovskite solar cells through band alignment engineering. Energy & Environmental Science. 8(10): p. 2928-2934.
42. Chavan, R.D., et al., Ruthenium doped mesoporous titanium dioxide for highly efficient, hysteresis-free and stable perovskite solar cells. Solar Energy. 186: p. 156-165.
43. Chen, S.-H., et al., Enhanced power conversion efficiency of perovskite solar cells based on mesoscopic Ag-doped TiO2 electron transport layer. Applied Surface Science. 469: p. 18-26.
44. Su, T.-S. and T.-C. Wei, Co-Electrodeposition of Sn-Doped TiO2 Electron-Transporting Layer for Perovskite Solar Cells. physica status solidi (a). 217(1): p. 1900491.
45. Kavan, L., et al., Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. Journal of Electroanalytical Chemistry, 1993. 346(1): p. 291-307.
46. S. Ali, A., Application of Nanomaterials in Environmental Improvement. 2020.
47. Embong, Z., XPS, AES and laser Raman spectroscopy: a fingerprint for a materials surface characterisation_2nd_edition. 2017.
48. Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed. Russian Journal of Electrochemistry, 2002. 38(12): p. 1364-1365.
49. Kavan, L., et al., Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 118(30): p. 16408-16418.
50. Marrazza, G., Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review. Biosensors, 2014. 4(3): p. 301-317.
51. Gelderman, K., et. al., Flat-Band Potential of a Semiconductor: Using the Mott-Schottky Equation. Journal of Chemical Education, 2007. 84(4): p. 685.
52. Mahalingam, V., Synthesis, growth and characterization of piperazinium p-aminobenzoate and piperazinium p-chlorobenzoate nonlinear optical single crystals. 2018.
53. Su, T.-S., Electrodeposition of electron-transporting layer for perovskite solar cells, in Department of Chemical Engineering. 2019, National Tsing-hua University.
54. Rotzinger, F.P., et. al., Characterization of the perhydroxytitanyl(2+) ion in acidic aqueous solution. Products and kinetics of its decomposition. Inorganic Chemistry, 1987. 26(22): p. 3704-3708.
55. Bijani, S., et al., Study of the Nucleation and Growth Mechanisms in the Electrodeposition of Micro- and Nanostructured Cu2O Thin Films. The Journal of Physical Chemistry C. 115(43): p. 21373-21382.
56. Thirsk, H.R. and J.A. Harrison, A guide to the study of electrode kinetics. 1972: London : Academic press.
57. Wiese, H., R. Greef, R. Peat, L. M. Peter, D. Pletcher und J. Robinson (Southampton Electrochemistry Group): Instrumental Methods in Electrochemistry, Ellis Horwood Ltd., Chichester 1985. 443 Seiten, Preis: £ 49.50 (gebunden), £ 19.75 (paper back). Berichte der Bunsengesellschaft für physikalische Chemie, 1986. 90(6): p. 559-559.
58. Hanzu, I., et al., Mechanistic Study of Sn Electrodeposition on TiO2 Nanotube Layers: Thermodynamics, Kinetics, Nucleation, and Growth Modes. The Journal of Physical Chemistry C, 2009. 113(48): p. 20568-20575.
59. Endrodi, B.z., et al., One-Step Electrodeposition of Nanocrystalline TiO2 Films with Enhanced Photoelectrochemical Performance and Charge Storage. ACS Applied Energy Materials. 1(2): p. 851-858.
60. Mi, Y. and Y. Weng, Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2. Scientific Reports. 5(1): p. 11482.
61. Marotti, R.E., et al., Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energy Materials and Solar Cells, 2006. 90(15): p. 2356-2361.
62. Das, N.S., et al., Effect of film thickness on the energy band gap of nanocrystalline CdS thin films analyzed by spectroscopic ellipsometry. Physica E: Low-dimensional Systems and Nanostructures, 2010. 42(8): p. 2097-2102.
63. Duan, Y., et al., Sn-Doped TiO2 Photoanode for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2012. 116(16): p. 8888-8893.
64. Hosseini Yeganeh, S.E., et al., Electrophoretic deposition of Sn-doped TiO2 nanoparticles and its optical and photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2018. 29(13): p. 10841-10852.
65. Kim, S.H., et al., Photophysical and photocatalytic water splitting performance of stibiotantalite type-structure compounds, SbMO4 (M = Nb, Ta). International Journal of Hydrogen Energy, 2012. 37(22): p. 16895-16902.
66. Shin, S.S., et al., Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 2016. 7(10): p. 1845-1851.
67. Ni, S., et al., Modification of TiO2 Nanowire Arrays with Sn Doping as Photoanode for Highly Efficient Dye-Sensitized Solar Cells. Crystals, 2019. 9(2): p. 113.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *