|
[1] "https://www.nrel.gov/pv/cell-efficiency.html." [2] "https://www.irena.org/." [3] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power", Journal of applied physics, vol. 25, no. 5, pp. 676-677, 1954. [4] H. D. Megaw, "Crystal structure of double oxides of the perovskite type", Proceedings of the Physical Society, vol. 58, no. 2, p. 133, 1946. [5] A. K. Jena, A. Kulkarni and T. Miyasaka, "Halide perovskite photovoltaics: background, status, and future prospects", Chemical reviews, vol. 119, no. 5, pp. 3036-3103, 2019. [6] A. Kojima, K. Teshima, Y. Shirai et al., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009. [7] J. H. Im, C. b. Lee, J. W. Lee et al., "6.5% efficient perovskite quantum-dot-sensitized solar cell", Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011. [8] H. S. Kim, C. R. Lee, J. H. Im et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%", Scientific reports, vol. 2, no. 1, pp. 1-7, 2012. [9] J. M. Ball, M. M. Lee, A. Hey et al., "Low-temperature processed meso-superstructured to thin-film perovskite solar cells", Energy & Environmental Science, vol. 6, no. 6, pp. 1739-1743, 2013. [10] J. Burschka, N. Pellet, S. J. Moon et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells", Nature, vol. 499, no. 7458, pp. 316-319, 2013. [11] M. Liu, M. B. Johnston and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition", Nature, vol. 501, no. 7467, pp. 395-398, 2013. [12] J. H. Noh, S. H. Im, J. H. Heo et al., "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells", Nano letters, vol. 13, no. 4, pp. 1764-1769, 2013. [13] Q. Chen, H. Zhou, Z. Hong et al., "Planar heterojunction perovskite solar cells via vapor-assisted solution process", Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014. [14] N. J. Jeon, J. H. Noh, W. S. Yang et al., "Compositional engineering of perovskite materials for high-performance solar cells", Nature, vol. 517, no. 7535, pp. 476-480, 2015. [15] M. Saliba, T. Matsui, J. Y. Seo et al., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency", Energy & environmental science, vol. 9, no. 6, pp. 1989-1997, 2016. [16] W. S. Yang, B. W. Park, E. H. Jung et al., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells", Science, vol. 356, no. 6345, pp. 1376-1379, 2017. [17] E. H. Jung, N. J. Jeon, E. Y. Park et al., "Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene)", Nature, vsol. 567, no. 7749, pp. 511-515, 2019. [18] "https://www.pv-magazine.com/2021/02/25/mit-scientists-develop-perovskite-solar-cell-with-25-2-efficiency/." [19] J. W. Lee, S. H. Bae, N. De Marco et al., "The role of grain boundaries in perovskite solar cells", Materials Today Energy, vol. 7, pp. 149-160, 2018. [20] S. Rühle, "Tabulated values of the Shockley–Queisser limit for single junction solar cells", Solar Energy, vol. 130, pp. 139-147, 2016. [21] M. A. Green, Y. Hishikawa, E. D. Dunlop et al., "Solar cell efficiency tables (version 51)", Progress in photovoltaics: research and applications, vol. 26, no. 1, pp. 3-12, 2018. [22] D. Y. Son, J. W. Lee, Y. J. Choi et al., "Self-formed grain boundary healing layer for highly efficient CH3NH3Pbl3 perovskite solar cells", Nature Energy, vol. 1, no. 7, pp. 1-8, 2016. [23] A. Priyadarshi, L. J. Haur, P. Murray et al., "A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability", Energy & Environmental Science, vol. 9, no. 12, pp. 3687-3692, 2016. [24] Y. Li, L. Zhao, S. Wei et al., "Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells", Applied Surface Science, vol. 439, pp. 506-515, 2018. [25] K. Wojciechowski, M. Saliba, T. Leijtens et al., "Sub-150℃ processed meso-superstructured perovskite solar cells with enhanced efficiency", Energy & Environmental Science, vol. 7, no. 3, pp. 1142-1147, 2014. [26] M. M. Lee, J. Teuscher, T. Miyasaka et al., "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science, vol. 338, no. 6107, pp. 643-647, 2012. [27] H. Zhou, Q. Chen, G. Li et al., "Interface engineering of highly efficient perovskite solar cells", Science, vol. 345, no. 6196, pp. 542-546, 2014. [28] D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques", Nature photonics, vol. 8, no. 2, pp. 133-138, 2014. [29] J. Liu, C. Gao, L. Luo et al., "Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells", Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11750-11755, 2015. [30] J. Y. Jeng, Y. F. Chiang, M. H. Lee et al., "CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells", Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013. [31] X. Zheng, Y. Hou, C. Bao et al., "Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells", Nature Energy, vol. 5, no. 2, pp. 131-140, 2020. [32] R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta crystallographica section A, vol. 32, no. 5, pp. 751-767, 1976. [33] G. Kieslich, S. Sun and A. K. Cheetham, "Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog", Chemical Science, vol. 5, no. 12, pp. 4712-4715, 2014. [34] G. E. Eperon, G. M. Paternò, R. J. Sutton et al., "Inorganic caesium lead iodide perovskite solar cells", Journal of Materials Chemistry A, vol. 3, no. 39, pp. 19688-19695, 2015. [35] C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, "Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties", Inorganic chemistry, vol. 52, no. 15, pp. 9019-9038, 2013. [36] A. Swarnkar, A. R. Marshall, E. M. Sanehira et al., "Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics", Science, vol. 354, no. 6308, pp. 92-95, 2016. [37] A. Amat, E. Mosconi, E. Ronca et al., "Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting", Nano letters, vol. 14, no. 6, pp. 3608-3616, 2014. [38] X. Dong, X. Fang, M. Lv et al., "Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition", Journal of Materials Chemistry A, vol. 3, no. 10, pp. 5360-5367, 2015. [39] A. Binek, F. C. Hanusch, P. Docampo et al., "Stabilization of the trigonal high-temperature phase of formamidinium lead iodide", The journal of physical chemistry letters, vol. 6, no. 7, pp. 1249-1253, 2015. [40] J. W. Lee, D. H. Kim, H. S. Kim et al., "Formamidinium and cesium hybridization for photo‐and moisture‐stable perovskite solar cell", Advanced Energy Materials, vol. 5, no. 20, p. 1501310, 2015. [41] Z. Li, M. Yang, J. S. Park et al., "Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys", Chemistry of Materials, vol. 28, no. 1, pp. 284-292, 2016. [42] C. Yi, J. Luo, S. Meloni et al., "Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells", Energy & Environmental Science, vol. 9, no. 2, pp. 656-662, 2016. [43] Y. Zhao, H. Tan, H. Yuan et al., "Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells", Nature communications, vol. 9, no. 1, pp. 1-10, 2018. [44] F. Brivio, A. B. Walker and A. Walsh, "Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles", Apl Materials, vol. 1, no. 4, p. 042111, 2013. [45] A. Buin, R. Comin, J. Xu et al., "Halide-dependent electronic structure of organolead perovskite materials", Chemistry of Materials, vol. 27, no. 12, pp. 4405-4412, 2015. [46] G. Maculan, A. D. Sheikh, A. L. Abdelhady et al., "CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector", The journal of physical chemistry letters, vol. 6, no. 19, pp. 3781-3786, 2015. [47] C. J. Bartel, C. Sutton, B. R. Goldsmith et al., "New tolerance factor to predict the stability of perovskite oxides and halides", Science advances, vol. 5, no. 2, p. eaav0693, 2019. [48] L. Pauling, "The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms", Journal of the American Chemical Society, vol. 54, no. 9, pp. 3570-3582, 1932. [49] G. Nagabhushana, R. Shivaramaiah and A. Navrotsky, "Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites", Proceedings of the National Academy of Sciences, vol. 113, no. 28, pp. 7717-7721, 2016. [50] Z. Wang, Y. Zhou, S. Pang et al., "Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells", Chemistry of Materials, vol. 27, no. 20, pp. 7149-7155, 2015. [51] D. W. de Quilettes, S. M. Vorpahl, S. D. Stranks et al., "Impact of microstructure on local carrier lifetime in perovskite solar cells", Science, vol. 348, no. 6235, pp. 683-686, 2015. [52] M. Xiao, F. Huang, W. Huang et al., "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells", Angewandte Chemie International Edition, vol. 53, no. 37, pp. 9898-9903, 2014. [53] N. J. Jeon, J. H. Noh, Y. C. Kim et al., "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells", Nature materials, vol. 13, no. 9, pp. 897-903, 2014. [54] Y. Yu, S. Yang, L. Lei et al., "Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency", ACS applied materials & interfaces, vol. 9, no. 4, pp. 3667-3676, 2017. [55] M. Yin, F. Xie, H. Chen et al., "Annealing-free perovskite films by instant crystallization for efficient solar cells", Journal of Materials Chemistry A, vol. 4, no. 22, pp. 8548-8553, 2016. [56] N. Ahn, D. Y. Son, I. H. Jang et al., "Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide", Journal of the American Chemical Society, vol. 137, no. 27, pp. 8696-8699, 2015. [57] F. Huang, Y. Dkhissi, W. Huang et al., "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells", Nano energy, vol. 10, pp. 10-18, 2014. [58] K. Liang, D. B. Mitzi and M. T. Prikas, "Synthesis and characterization of organic−inorganic perovskite thin films prepared using a versatile two-step dipping technique", Chemistry of materials, vol. 10, no. 1, pp. 403-411, 1998. [59] B. Li, J. Tian, L. Guo et al., "Dynamic growth of pinhole-free conformal CH3NH3PbI3 film for perovskite solar cells", ACS applied materials & interfaces, vol. 8, no. 7, pp. 4684-4690, 2016. [60] J. H. Im, I. H. Jang, N. Pellet et al., "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells", Nature nanotechnology, vol. 9, no. 11, pp. 927-932, 2014. [61] Z. Xiao, C. Bi, Y. Shao et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers", Energy & Environmental Science, vol. 7, no. 8, pp. 2619-2623, 2014. [62] Y. Wu, A. Islam, X. Yang et al., "Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition", Energy & Environmental Science, vol. 7, no. 9, pp. 2934-2938, 2014. [63] W. S. Yang, J. H. Noh, N. J. Jeon et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange", Science, vol. 348, no. 6240, pp. 1234-1237, 2015. [64] G. Zhou, J. Wu, Y. Zhao et al., "Application of cesium on the restriction of precursor crystallization for highly reproducible perovskite solar cells exceeding 20% efficiency", ACS applied materials & interfaces, vol. 10, no. 11, pp. 9503-9513, 2018. [65] M. R. Leyden, L. K. Ono, S. R. Raga et al., "High performance perovskite solar cells by hybrid chemical vapor deposition", Journal of Materials Chemistry A, vol. 2, no. 44, pp. 18742-18745, 2014. [66] J. H. Im, H. S. Kim and N. G. Park, "Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3", Apl Materials, vol. 2, no. 8, p. 081510, 2014. [67] M. Saliba, T. Matsui, K. Domanski et al., "Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance", Science, vol. 354, no. 6309, pp. 206-209, 2016. [68] D. Bi, W. Tress, M. I. Dar et al., "Efficient luminescent solar cells based on tailored mixed-cation perovskites", Science advances, vol. 2, no. 1, p. e1501170, 2016. [69] S. S. Shin, E. J. Yeom, W. S. Yang et al., "Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells", Science, vol. 356, no. 6334, pp. 167-171, 2017. [70] T. Ye, M. Petrović, S. Peng et al., "Enhanced charge carrier transport and device performance through dual-cesium doping in mixed-cation perovskite solar cells with near unity free carrier ratios", ACS applied materials & interfaces, vol. 9, no. 3, pp. 2358-2368, 2017. [71] S. Paek, P. Schouwink, E. N. Athanasopoulou et al., "From nano-to micrometer scale: the role of antisolvent treatment on high performance perovskite solar cells", Chemistry of Materials, vol. 29, no. 8, pp. 3490-3498, 2017. [72] P. Zhao, B. J. Kim, X. Ren et al., "Antisolvent with an ultrawide processing window for the one‐step fabrication of efficient and large‐area perovskite solar cells", Advanced Materials, vol. 30, no. 49, p. 1802763, 2018. [73] L. Xie, A. N. Cho, N. G. Park et al., "Efficient and reproducible CH3NH3PbI3 perovskite layer prepared using a binary solvent containing a cyclic urea additive", ACS applied materials & interfaces, vol. 10, no. 11, pp. 9390-9397, 2018. [74] N. J. Jeon, H. Na, E. H. Jung et al., "A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells", Nature Energy, vol. 3, no. 8, pp. 682-689, 2018. [75] G. S. Han, J. Kim, S. Bae et al., "Spin-coating process for 10 cm×10 cm perovskite solar modules enabled by self-assembly of SnO2 nanocolloids", ACS Energy Letters, vol. 4, no. 8, pp. 1845-1851, 2019. [76] J. Chen, S. G. Kim, X. Ren et al., "Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells", Journal of Materials Chemistry A, vol. 7, no. 9, pp. 4977-4987, 2019. [77] T. H. Han, J. W. Lee, C. Choi et al., "Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells", Nature communications, vol. 10, no. 1, pp. 1-10, 2019. [78] Q. Chen, H. Zhou, T. B. Song et al., "Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells", Nano letters, vol. 14, no. 7, pp. 4158-4163, 2014. [79] Y. Zhao, X. Xu, H. Zhang et al., "Sequential multi-drop coating method for large crystallized α-(NH2)2CHPbI3 and mixed-organic-cation perovskite films for highly efficient mesoscopic perovskite solar cells", Journal of Power Sources, vol. 359, pp. 147-156, 2017. [80] T. S. Su, T. E. Fan, H. K. Si et al., "Characterization on Highly Efficient Perovskite Solar Cells Made from One‐step and Two‐step Solution Process", Solar RRL, 2021. [81] T. Salim, S. Sun, Y. Abe et al., "Perovskite-based solar cells: impact of morphology and device architecture on device performance", Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8943-8969, 2015. [82] Y. H. Lee, J. Luo, R. Humphry‐Baker et al., "Unraveling the reasons for efficiency loss in perovskite solar cells", Advanced Functional Materials, vol. 25, no. 25, pp. 3925-3933, 2015. [83] C. Xin, J. Zhang, X. Zhou et al., "Defects healing in two-step deposited perovskite solar cells via formamidinium iodide compensation", ACS Applied Energy Materials, vol. 3, no. 4, pp. 3318-3327, 2020. [84] W. Nie, H. Tsai, R. Asadpour et al., "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains", Science, vol. 347, no. 6221, pp. 522-525, 2015. [85] X. Li, D. Bi, C. Yi et al., "A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells", Science, vol. 353, no. 6294, pp. 58-62, 2016. [86] B. Ding, Y. Li, S. Y. Huang et al., "Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%", Journal of Materials Chemistry A, vol. 5, no. 15, pp. 6840-6848, 2017. [87] A. Ng, Z. Ren, H. Hu et al., "A Cryogenic process for antisolvent‐free high‐performance perovskite solar cells", Advanced Materials, vol. 30, no. 44, p. 1804402, 2018. [88] H. Hu, Z. Ren, P. W. Fong et al., "Room‐temperature meniscus coating of>20% perovskite solar cells: a film formation mechanism investigation", Advanced Functional Materials, vol. 29, no. 25, p. 1900092, 2019. [89] N. Pellet, P. Gao, G. Gregori et al., "Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting", Angewandte chemie, vol. 126, no. 12, pp. 3215-3221, 2014. [90] W. Li, J. Fan, J. Li et al., "High performance of perovskite solar cells via catalytic treatment in two-step process: the case of solvent engineering", ACS applied materials & interfaces, vol. 8, no. 44, pp. 30107-30115, 2016. [91] J. Wu, X. Xu, Y. Zhao et al., "DMF as an additive in a two-step spin-coating method for 20% conversion efficiency in perovskite solar cells", ACS applied materials & interfaces, vol. 9, no. 32, pp. 26937-26947, 2017. [92] S. Li, H. Ren and Y. Yan, "Boosting efficiency of planar heterojunction perovskite solar cells to 21.2% by a facile two-step deposition strategy", Applied Surface Science, vol. 484, pp. 1191-1197, 2019. [93] J. Bing, J. Kim, M. Zhang et al., "The impact of a dynamic two‐step solution process on film formation of Cs0.15(MA0.7FA0.3)0.85PbI3 perovskite and solar cell performance", Small, vol. 15, no. 9, p. 1804858, 2019. [94] Y. Cui, C. Chen, C. Li et al., "Correlating hysteresis and stability with rrganic cation composition in the two-step solution-processed perovskite solar cells", ACS applied materials & interfaces, vol. 12, no. 9, pp. 10588-10596, 2020. [95] P. J. Holliman, E. W. Jones, R. J. Hobbs et al., "Quantitative chemical analysis of perovskite deposition using spin coating", Materials Letters: X, vol. 2, p. 100011, 2019. [96] L. T. Schelhas, Z. Li, J. A. Christians et al., "Insights into operational stability and processing of halide perovskite active layers", Energy & Environmental Science, vol. 12, no. 4, pp. 1341-1348, 2019. [97] H. Yu, F. Wang, F. Xie et al., "The role of chlorine in the formation process of “CH3NH3PbI3‐xClx” perovskite", Advanced Functional Materials, vol. 24, no. 45, pp. 7102-7108, 2014. [98] Y. Zhou, H. Zhou, J. Deng et al., "Decisive structural and functional characterization of halide perovskites with synchrotron", Matter, vol. 2, no. 2, pp. 360-377, 2020. [99] J. P. Correa-Baena, Y. Luo, T. M. Brenner et al., "Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites", Science, vol. 363, no. 6427, pp. 627-631, 2019. [100] K. Brinkmann, J. Zhao, N. Pourdavoud et al., "Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells", Nature communications, vol. 8, no. 1, pp. 1-9, 2017. [101] M. Kodur, R. E. Kumar, Y. Luo et al., "X‐Ray Microscopy of Halide Perovskites: Techniques, Applications, and Prospects", Advanced Energy Materials, vol. 10, no. 26, p. 1903170, 2020. [102] W. T. Van Gompel, R. Herckens, G. Reekmans et al., "Degradation of the formamidinium cation and the quantification of the formamidinium–methylammonium ratio in lead iodide hybrid perovskites by nuclear magnetic resonance spectroscopy", The Journal of Physical Chemistry C, vol. 122, no. 8, pp. 4117-4124, 2018. [103] C. Pareja-Rivera, A. L. Solís-Cambero, M. Sánchez-Torres et al., "On the True Composition of Mixed-Cation Perovskite Films", ACS Energy Letters, vol. 3, no. 10, pp. 2366-2367, 2018. [104] B. A. Rosales, M. P. Hanrahan, B. W. Boote et al., "Lead halide perovskites: Challenges and opportunities in advanced synthesis and spectroscopy", ACS Energy Letters, vol. 2, no. 4, pp. 906-914, 2017. [105] D. J. Kubicki, D. Prochowicz, A. Hofstetter et al., "Phase segregation in Cs-, Rb-and K- doped mixed-cation (MA)x(FA)1–xPbI3 hybrid perovskites from solid-state NMR", Journal of the American Chemical Society, vol. 139, no. 40, pp. 14173-14180, 2017. [106] S. J. Yoon, K. G. Stamplecoskie and P. V. Kamat, "How lead halide complex chemistry dictates the composition of mixed halide perovskites", The journal of physical chemistry letters, vol. 7, no. 7, pp. 1368-1373, 2016. [107] Y. J. Wei, C. G. Liu and L. P. Mo, "Ultraviolet absorption spectra of iodine, iodide ion and triiodide ion", Guang pu Xue Yu Guang Pu Fen Xi, vol. 25, no. 1, pp. 86-88, 2005. [108] X. Dong, X. Fang, M. Lv et al., "Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition", Journal of Materials Chemistry A, vol. 3, no. 10, pp. 5360-5367, 2015.
|