帳號:guest(3.139.103.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施曉權
作者(外文):Si, Hio-Kun
論文名稱(中文):混合有機鹵化鉛鈣鈦礦薄膜化學計量組成之探討
論文名稱(外文):A Study on the Stoichiometric Composition of Mixed Organo-lead Halide Perovskite Thin Film
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):蔡德豪
周鶴修
葉鎮宇
口試委員(外文):TSAI, De-Hao
Chou, Ho-Hsiu
Yeh, Chen-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032401
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:95
中文關鍵詞:鈣鈦礦化學計量殘留物定量
外文關鍵詞:PerovskiteStoichiometricResiduesQuantitative
相關次數:
  • 推薦推薦:0
  • 點閱點閱:348
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
以有機鹵化鉛為基礎的鈣鈦礦太陽能電池的效率在近幾年來節節攀升,與鈣鈦礦組成工程息息相關。通過調控鈣鈦礦ABX3晶體結構中陰陽離子的佔比,除了能夠改變能帶隙大小,更是對結構穩定性也有顯著的幫助,使其製成的光伏元件成功在短時間內實現與矽晶型太陽能電池互相比擬的轉換效率(25.5 %)。然而目前普遍用以製作有機鹵化鉛鈣鈦薄膜的製程技術依舊無法將所有前驅物反應完畢,導致薄膜中未反應前驅物會以殘留物的形式存在於元件內部進而干涉電池的運作。此現象對於混合鈣鈦礦中陰陽離子比例調控造成一定程度的困擾,像是前驅液中陰陽離子配比與最終薄膜中陰陽離子配比發生偏離,且其偏離的程度無從得知。正因如此,發展鈣鈦礦薄膜中組成物的定量技術可視為鈣鈦礦光伏技術進一步提升效率的重要一環,因為其不僅可以獲取薄膜中的真實組成資訊,同時也可以藉由了解鈣鈦礦薄膜的組成進行製程的優化調整。
本研究中發展了一個簡便的流程將鈣鈦礦薄膜的組成進行還原工程。藉由不同的溶劑分離,可將鈣鈦礦薄膜中存在的各項組成諸如有機殘留物、鈣鈦礦以及無機殘留物完全分離。接著使用普及率高以及檢測時間短的紫外光-可見光光譜儀進行定量的分析,成功地解析出鈣鈦礦薄膜實際的化學計量以及殘留物。運用此技術,對一步法製程與兩步法製備的鈣鈦礦薄膜組成進行比較,結果顯示薄膜中鈣鈦礦的陰陽離子組成與前驅溶液的比例確有偏差,且對其元件性能造成直接影響。另一方面,對於相同批次的薄膜中利用一步法所製備的鈣鈦礦含量存在發散的情形,該情形在兩步法中則是以無機殘留物含量為主,並且兩種製程幾乎都取決於多孔支架層塗佈基板的表面性質,此問題終將會影響到太陽能電池的效率差異,未來必須對薄膜元件進行適當的控制以利於提升相同批次元件之間的效率一致性,有望幫助未來商業應用的發展。
Compositional engineering of organo-lead halide perovskite determines the reproducibility and versatility of device performance, which is a crucial threshold toward commercialization. A tuneable band-gap and material stability can be easily achieved by manipulating ion composition in perovskite ABX3 crystal structure within a reasonable tolerance factor range. Although perovskite solar cells have been approved showing comparable performance as silicon crystalline solar cells, the stoichiometry on final perovskite film attracts little attention from worldwide research groups.
This study provides a simple method that can identify the actual composition of the perovskite material. By the analysis of UV-Vis spectra, all the components consisting of the final perovskite file can be quantified, including organic/inorganic residue. The result of the analysis shows a composition mismatch between precursor solution and solid-state perovskite film. We also find that the devices containing mesoporous TiO2 layer display a higher variation on perovskite chemical composition. Further investigation indicates that the surface property of the mesoporous TiO2 layer determines the different composition signatures on the device prepared by the one-step or two-step method. By using this composition analysis, we can control to improve the efficiency consistency of the same batch, which is expected to help develop future commercial applications.
摘要 I
ABSTRACT II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池的原理 2
1-3 太陽能的發展 3
第二章 文獻回顧 7
2-1 鈣鈦礦太陽能電池 7
2-1.1鈣鈦礦的發現與特性 7
2-1.2鈣鈦礦太陽能電池的發展 9
2-1.3鈣鈦礦太陽能電池的原理 16
2-1.4肖克利-奎伊瑟極限 19
2-1.5鈣鈦礦太陽能電池結構 20
2-1.5.1多孔型電池結構 20
2-1.5.2多孔超結構型電池結構 21
2-1.5.3平面異質型電池結構 22
2-1.5.4反式電池結構 23
2-2 有機鹵化鉛鈣鈦礦之材料化學 24
2-2.1 MAPbI3 24
2-2.2 FAPbI3 24
2-2.3 CsPbI3 24
2-2.4組成工程 25
2-2.4.1 A位陽離子組成 25
2-2.4.2 X位陰離子組成 26
2-3 鈣鈦礦薄膜的製備方式 28
2-3.1一步沉積法 28
2-3.2兩步沉積法 30
2-3.2.1兩步浸泡沉積法 30
2-3.2.2兩步旋塗沉積法 31
2-3.3熱蒸鍍沉積法 33
2-3.4蒸氣輔助溶液加工法 33
2-4 鈣鈦礦薄膜製備過程的化學計量 34
2-4.1一步沉積法 34
2-4.2兩步旋塗沉積法 37
2-5 鈣鈦礦薄膜之殘留物 38
2-5.1無機殘留物 38
2-5.2有機殘留物 39
2-6 鈣鈦礦薄膜的組成標示 41
2-7 鈣鈦礦薄膜組成的定量研究 42
2-7.1鈣鈦礦薄膜化學計量組成 42
2-7.2鈣鈦礦薄膜A位離子組成 43
2-7.3定量技術之探討 45
2-8 研究動機 46
第三章 實驗方法與儀器分析 47
3-1 實驗藥品與材料 47
3-2 實驗儀器與分析設備 48
3-3 分析儀器介紹 49
3-3.1紫外光-可見光光譜儀 49
3-3.2場發射掃描式顯微鏡 49
3-3.3太陽光模擬器 50
3-4 鈣鈦礦薄膜元件流程 54
3-4.1 FTO導電玻璃基板前處理 54
3-4.2電子傳輸層製備流程 54
3-4.3多孔支架層製備流程 54
3-4.4一步法鈣鈦礦薄膜製備 55
3-4.4.1前驅液配備 55
3-4.4.2鈣鈦礦薄膜製備流程 55
3-4.5兩步法鈣鈦礦薄膜製備 55
3-4.5.1前驅液配備 55
3-4.5.2鈣鈦礦薄膜製備流程 55
3-4.6電洞傳輸層與背電極製備流程 56
3-5 定量模型設計理論 56
3-5.1分析儀器的選擇 56
3-5.2比爾定律的原理 57
3-5.3比爾定律之限制與假設 58
3-5.4比爾定律的加成性質 59
3-6 定量實驗流程 59
3-6.1鈣鈦礦薄膜組成分離 59
3-6.2檢測溶液轉換 59
第四章 結果與討論 60
4-1 量化模型設計 60
4-1.1標準前驅物檢定 60
4-1.1.1標準前驅物之吸收曲線 60
4-1.1.2標準前驅物之線性迴歸 61
4-1.1.3標準混合前驅物 62
4-1.2實驗設計 65
4-1.2.1有機殘留物分離 65
4-1.2.3有機前驅物分離 67
4-1.2.4無機殘留物與無機前驅物分離 70
4-1.3檢測溶劑限制 70
4-1.4溶劑轉換 72
4-1.5薄膜組成計算方式 72
4-2 量化結果分析 73
4-2.1鈣鈦礦薄膜品質與元件性能 73
4-2.2鈣鈦礦薄膜定量結果 75
4-2.3陰陽離子組成與元件性能之探討 77
4-2.4陰陽離子組成比例偏差之原因 78
4-2.5製程可重複性探討 80
第五章 結論 85
第六章 未來工作 86
第七章 參考文獻 87

[1] "https://www.nrel.gov/pv/cell-efficiency.html."
[2] "https://www.irena.org/."
[3] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power", Journal of applied physics, vol. 25, no. 5, pp. 676-677, 1954.
[4] H. D. Megaw, "Crystal structure of double oxides of the perovskite type", Proceedings of the Physical Society, vol. 58, no. 2, p. 133, 1946.
[5] A. K. Jena, A. Kulkarni and T. Miyasaka, "Halide perovskite photovoltaics: background, status, and future prospects", Chemical reviews, vol. 119, no. 5, pp. 3036-3103, 2019.
[6] A. Kojima, K. Teshima, Y. Shirai et al., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[7] J. H. Im, C. b. Lee, J. W. Lee et al., "6.5% efficient perovskite quantum-dot-sensitized solar cell", Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[8] H. S. Kim, C. R. Lee, J. H. Im et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%", Scientific reports, vol. 2, no. 1, pp. 1-7, 2012.
[9] J. M. Ball, M. M. Lee, A. Hey et al., "Low-temperature processed meso-superstructured to thin-film perovskite solar cells", Energy & Environmental Science, vol. 6, no. 6, pp. 1739-1743, 2013.
[10] J. Burschka, N. Pellet, S. J. Moon et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells", Nature, vol. 499, no. 7458, pp. 316-319, 2013.
[11] M. Liu, M. B. Johnston and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition", Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[12] J. H. Noh, S. H. Im, J. H. Heo et al., "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells", Nano letters, vol. 13, no. 4, pp. 1764-1769, 2013.
[13] Q. Chen, H. Zhou, Z. Hong et al., "Planar heterojunction perovskite solar cells via vapor-assisted solution process", Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014.
[14] N. J. Jeon, J. H. Noh, W. S. Yang et al., "Compositional engineering of perovskite materials for high-performance solar cells", Nature, vol. 517, no. 7535, pp. 476-480, 2015.
[15] M. Saliba, T. Matsui, J. Y. Seo et al., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency", Energy & environmental science, vol. 9, no. 6, pp. 1989-1997, 2016.
[16] W. S. Yang, B. W. Park, E. H. Jung et al., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells", Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
[17] E. H. Jung, N. J. Jeon, E. Y. Park et al., "Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene)", Nature, vsol. 567, no. 7749, pp. 511-515, 2019.
[18] "https://www.pv-magazine.com/2021/02/25/mit-scientists-develop-perovskite-solar-cell-with-25-2-efficiency/."
[19] J. W. Lee, S. H. Bae, N. De Marco et al., "The role of grain boundaries in perovskite solar cells", Materials Today Energy, vol. 7, pp. 149-160, 2018.
[20] S. Rühle, "Tabulated values of the Shockley–Queisser limit for single junction solar cells", Solar Energy, vol. 130, pp. 139-147, 2016.
[21] M. A. Green, Y. Hishikawa, E. D. Dunlop et al., "Solar cell efficiency tables (version 51)", Progress in photovoltaics: research and applications, vol. 26, no. 1, pp. 3-12, 2018.
[22] D. Y. Son, J. W. Lee, Y. J. Choi et al., "Self-formed grain boundary healing layer for highly efficient CH3NH3Pbl3 perovskite solar cells", Nature Energy, vol. 1, no. 7, pp. 1-8, 2016.
[23] A. Priyadarshi, L. J. Haur, P. Murray et al., "A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability", Energy & Environmental Science, vol. 9, no. 12, pp. 3687-3692, 2016.
[24] Y. Li, L. Zhao, S. Wei et al., "Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells", Applied Surface Science, vol. 439, pp. 506-515, 2018.
[25] K. Wojciechowski, M. Saliba, T. Leijtens et al., "Sub-150℃ processed meso-superstructured perovskite solar cells with enhanced efficiency", Energy & Environmental Science, vol. 7, no. 3, pp. 1142-1147, 2014.
[26] M. M. Lee, J. Teuscher, T. Miyasaka et al., "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science, vol. 338, no. 6107, pp. 643-647, 2012.
[27] H. Zhou, Q. Chen, G. Li et al., "Interface engineering of highly efficient perovskite solar cells", Science, vol. 345, no. 6196, pp. 542-546, 2014.
[28] D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques", Nature photonics, vol. 8, no. 2, pp. 133-138, 2014.
[29] J. Liu, C. Gao, L. Luo et al., "Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells", Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11750-11755, 2015.
[30] J. Y. Jeng, Y. F. Chiang, M. H. Lee et al., "CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells", Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
[31] X. Zheng, Y. Hou, C. Bao et al., "Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells", Nature Energy, vol. 5, no. 2, pp. 131-140, 2020.
[32] R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta crystallographica section A, vol. 32, no. 5, pp. 751-767, 1976.
[33] G. Kieslich, S. Sun and A. K. Cheetham, "Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog", Chemical Science, vol. 5, no. 12, pp. 4712-4715, 2014.
[34] G. E. Eperon, G. M. Paternò, R. J. Sutton et al., "Inorganic caesium lead iodide perovskite solar cells", Journal of Materials Chemistry A, vol. 3, no. 39, pp. 19688-19695, 2015.
[35] C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, "Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties", Inorganic chemistry, vol. 52, no. 15, pp. 9019-9038, 2013.
[36] A. Swarnkar, A. R. Marshall, E. M. Sanehira et al., "Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics", Science, vol. 354, no. 6308, pp. 92-95, 2016.
[37] A. Amat, E. Mosconi, E. Ronca et al., "Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting", Nano letters, vol. 14, no. 6, pp. 3608-3616, 2014.
[38] X. Dong, X. Fang, M. Lv et al., "Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition", Journal of Materials Chemistry A, vol. 3, no. 10, pp. 5360-5367, 2015.
[39] A. Binek, F. C. Hanusch, P. Docampo et al., "Stabilization of the trigonal high-temperature phase of formamidinium lead iodide", The journal of physical chemistry letters, vol. 6, no. 7, pp. 1249-1253, 2015.
[40] J. W. Lee, D. H. Kim, H. S. Kim et al., "Formamidinium and cesium hybridization for photo‐and moisture‐stable perovskite solar cell", Advanced Energy Materials, vol. 5, no. 20, p. 1501310, 2015.
[41] Z. Li, M. Yang, J. S. Park et al., "Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys", Chemistry of Materials, vol. 28, no. 1, pp. 284-292, 2016.
[42] C. Yi, J. Luo, S. Meloni et al., "Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells", Energy & Environmental Science, vol. 9, no. 2, pp. 656-662, 2016.
[43] Y. Zhao, H. Tan, H. Yuan et al., "Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells", Nature communications, vol. 9, no. 1, pp. 1-10, 2018.
[44] F. Brivio, A. B. Walker and A. Walsh, "Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles", Apl Materials, vol. 1, no. 4, p. 042111, 2013.
[45] A. Buin, R. Comin, J. Xu et al., "Halide-dependent electronic structure of organolead perovskite materials", Chemistry of Materials, vol. 27, no. 12, pp. 4405-4412, 2015.
[46] G. Maculan, A. D. Sheikh, A. L. Abdelhady et al., "CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector", The journal of physical chemistry letters, vol. 6, no. 19, pp. 3781-3786, 2015.
[47] C. J. Bartel, C. Sutton, B. R. Goldsmith et al., "New tolerance factor to predict the stability of perovskite oxides and halides", Science advances, vol. 5, no. 2, p. eaav0693, 2019.
[48] L. Pauling, "The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms", Journal of the American Chemical Society, vol. 54, no. 9, pp. 3570-3582, 1932.
[49] G. Nagabhushana, R. Shivaramaiah and A. Navrotsky, "Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites", Proceedings of the National Academy of Sciences, vol. 113, no. 28, pp. 7717-7721, 2016.
[50] Z. Wang, Y. Zhou, S. Pang et al., "Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells", Chemistry of Materials, vol. 27, no. 20, pp. 7149-7155, 2015.
[51] D. W. de Quilettes, S. M. Vorpahl, S. D. Stranks et al., "Impact of microstructure on local carrier lifetime in perovskite solar cells", Science, vol. 348, no. 6235, pp. 683-686, 2015.
[52] M. Xiao, F. Huang, W. Huang et al., "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells", Angewandte Chemie International Edition, vol. 53, no. 37, pp. 9898-9903, 2014.
[53] N. J. Jeon, J. H. Noh, Y. C. Kim et al., "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells", Nature materials, vol. 13, no. 9, pp. 897-903, 2014.
[54] Y. Yu, S. Yang, L. Lei et al., "Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency", ACS applied materials & interfaces, vol. 9, no. 4, pp. 3667-3676, 2017.
[55] M. Yin, F. Xie, H. Chen et al., "Annealing-free perovskite films by instant crystallization for efficient solar cells", Journal of Materials Chemistry A, vol. 4, no. 22, pp. 8548-8553, 2016.
[56] N. Ahn, D. Y. Son, I. H. Jang et al., "Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide", Journal of the American Chemical Society, vol. 137, no. 27, pp. 8696-8699, 2015.
[57] F. Huang, Y. Dkhissi, W. Huang et al., "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells", Nano energy, vol. 10, pp. 10-18, 2014.
[58] K. Liang, D. B. Mitzi and M. T. Prikas, "Synthesis and characterization of organic−inorganic perovskite thin films prepared using a versatile two-step dipping technique", Chemistry of materials, vol. 10, no. 1, pp. 403-411, 1998.
[59] B. Li, J. Tian, L. Guo et al., "Dynamic growth of pinhole-free conformal CH3NH3PbI3 film for perovskite solar cells", ACS applied materials & interfaces, vol. 8, no. 7, pp. 4684-4690, 2016.
[60] J. H. Im, I. H. Jang, N. Pellet et al., "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells", Nature nanotechnology, vol. 9, no. 11, pp. 927-932, 2014.
[61] Z. Xiao, C. Bi, Y. Shao et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers", Energy & Environmental Science, vol. 7, no. 8, pp. 2619-2623, 2014.
[62] Y. Wu, A. Islam, X. Yang et al., "Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition", Energy & Environmental Science, vol. 7, no. 9, pp. 2934-2938, 2014.
[63] W. S. Yang, J. H. Noh, N. J. Jeon et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange", Science, vol. 348, no. 6240, pp. 1234-1237, 2015.
[64] G. Zhou, J. Wu, Y. Zhao et al., "Application of cesium on the restriction of precursor crystallization for highly reproducible perovskite solar cells exceeding 20% efficiency", ACS applied materials & interfaces, vol. 10, no. 11, pp. 9503-9513, 2018.
[65] M. R. Leyden, L. K. Ono, S. R. Raga et al., "High performance perovskite solar cells by hybrid chemical vapor deposition", Journal of Materials Chemistry A, vol. 2, no. 44, pp. 18742-18745, 2014.
[66] J. H. Im, H. S. Kim and N. G. Park, "Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3", Apl Materials, vol. 2, no. 8, p. 081510, 2014.
[67] M. Saliba, T. Matsui, K. Domanski et al., "Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance", Science, vol. 354, no. 6309, pp. 206-209, 2016.
[68] D. Bi, W. Tress, M. I. Dar et al., "Efficient luminescent solar cells based on tailored mixed-cation perovskites", Science advances, vol. 2, no. 1, p. e1501170, 2016.
[69] S. S. Shin, E. J. Yeom, W. S. Yang et al., "Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells", Science, vol. 356, no. 6334, pp. 167-171, 2017.
[70] T. Ye, M. Petrović, S. Peng et al., "Enhanced charge carrier transport and device performance through dual-cesium doping in mixed-cation perovskite solar cells with near unity free carrier ratios", ACS applied materials & interfaces, vol. 9, no. 3, pp. 2358-2368, 2017.
[71] S. Paek, P. Schouwink, E. N. Athanasopoulou et al., "From nano-to micrometer scale: the role of antisolvent treatment on high performance perovskite solar cells", Chemistry of Materials, vol. 29, no. 8, pp. 3490-3498, 2017.
[72] P. Zhao, B. J. Kim, X. Ren et al., "Antisolvent with an ultrawide processing window for the one‐step fabrication of efficient and large‐area perovskite solar cells", Advanced Materials, vol. 30, no. 49, p. 1802763, 2018.
[73] L. Xie, A. N. Cho, N. G. Park et al., "Efficient and reproducible CH3NH3PbI3 perovskite layer prepared using a binary solvent containing a cyclic urea additive", ACS applied materials & interfaces, vol. 10, no. 11, pp. 9390-9397, 2018.
[74] N. J. Jeon, H. Na, E. H. Jung et al., "A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells", Nature Energy, vol. 3, no. 8, pp. 682-689, 2018.
[75] G. S. Han, J. Kim, S. Bae et al., "Spin-coating process for 10 cm×10 cm perovskite solar modules enabled by self-assembly of SnO2 nanocolloids", ACS Energy Letters, vol. 4, no. 8, pp. 1845-1851, 2019.
[76] J. Chen, S. G. Kim, X. Ren et al., "Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells", Journal of Materials Chemistry A, vol. 7, no. 9, pp. 4977-4987, 2019.
[77] T. H. Han, J. W. Lee, C. Choi et al., "Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells", Nature communications, vol. 10, no. 1, pp. 1-10, 2019.
[78] Q. Chen, H. Zhou, T. B. Song et al., "Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells", Nano letters, vol. 14, no. 7, pp. 4158-4163, 2014.
[79] Y. Zhao, X. Xu, H. Zhang et al., "Sequential multi-drop coating method for large crystallized α-(NH2)2CHPbI3 and mixed-organic-cation perovskite films for highly efficient mesoscopic perovskite solar cells", Journal of Power Sources, vol. 359, pp. 147-156, 2017.
[80] T. S. Su, T. E. Fan, H. K. Si et al., "Characterization on Highly Efficient Perovskite Solar Cells Made from One‐step and Two‐step Solution Process", Solar RRL, 2021.
[81] T. Salim, S. Sun, Y. Abe et al., "Perovskite-based solar cells: impact of morphology and device architecture on device performance", Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8943-8969, 2015.
[82] Y. H. Lee, J. Luo, R. Humphry‐Baker et al., "Unraveling the reasons for efficiency loss in perovskite solar cells", Advanced Functional Materials, vol. 25, no. 25, pp. 3925-3933, 2015.
[83] C. Xin, J. Zhang, X. Zhou et al., "Defects healing in two-step deposited perovskite solar cells via formamidinium iodide compensation", ACS Applied Energy Materials, vol. 3, no. 4, pp. 3318-3327, 2020.
[84] W. Nie, H. Tsai, R. Asadpour et al., "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains", Science, vol. 347, no. 6221, pp. 522-525, 2015.
[85] X. Li, D. Bi, C. Yi et al., "A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells", Science, vol. 353, no. 6294, pp. 58-62, 2016.
[86] B. Ding, Y. Li, S. Y. Huang et al., "Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%", Journal of Materials Chemistry A, vol. 5, no. 15, pp. 6840-6848, 2017.
[87] A. Ng, Z. Ren, H. Hu et al., "A Cryogenic process for antisolvent‐free high‐performance perovskite solar cells", Advanced Materials, vol. 30, no. 44, p. 1804402, 2018.
[88] H. Hu, Z. Ren, P. W. Fong et al., "Room‐temperature meniscus coating of>20% perovskite solar cells: a film formation mechanism investigation", Advanced Functional Materials, vol. 29, no. 25, p. 1900092, 2019.
[89] N. Pellet, P. Gao, G. Gregori et al., "Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting", Angewandte chemie, vol. 126, no. 12, pp. 3215-3221, 2014.
[90] W. Li, J. Fan, J. Li et al., "High performance of perovskite solar cells via catalytic treatment in two-step process: the case of solvent engineering", ACS applied materials & interfaces, vol. 8, no. 44, pp. 30107-30115, 2016.
[91] J. Wu, X. Xu, Y. Zhao et al., "DMF as an additive in a two-step spin-coating method for 20% conversion efficiency in perovskite solar cells", ACS applied materials & interfaces, vol. 9, no. 32, pp. 26937-26947, 2017.
[92] S. Li, H. Ren and Y. Yan, "Boosting efficiency of planar heterojunction perovskite solar cells to 21.2% by a facile two-step deposition strategy", Applied Surface Science, vol. 484, pp. 1191-1197, 2019.
[93] J. Bing, J. Kim, M. Zhang et al., "The impact of a dynamic two‐step solution process on film formation of Cs0.15(MA0.7FA0.3)0.85PbI3 perovskite and solar cell performance", Small, vol. 15, no. 9, p. 1804858, 2019.
[94] Y. Cui, C. Chen, C. Li et al., "Correlating hysteresis and stability with rrganic cation composition in the two-step solution-processed perovskite solar cells", ACS applied materials & interfaces, vol. 12, no. 9, pp. 10588-10596, 2020.
[95] P. J. Holliman, E. W. Jones, R. J. Hobbs et al., "Quantitative chemical analysis of perovskite deposition using spin coating", Materials Letters: X, vol. 2, p. 100011, 2019.
[96] L. T. Schelhas, Z. Li, J. A. Christians et al., "Insights into operational stability and processing of halide perovskite active layers", Energy & Environmental Science, vol. 12, no. 4, pp. 1341-1348, 2019.
[97] H. Yu, F. Wang, F. Xie et al., "The role of chlorine in the formation process of “CH3NH3PbI3‐xClx” perovskite", Advanced Functional Materials, vol. 24, no. 45, pp. 7102-7108, 2014.
[98] Y. Zhou, H. Zhou, J. Deng et al., "Decisive structural and functional characterization of halide perovskites with synchrotron", Matter, vol. 2, no. 2, pp. 360-377, 2020.
[99] J. P. Correa-Baena, Y. Luo, T. M. Brenner et al., "Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites", Science, vol. 363, no. 6427, pp. 627-631, 2019.
[100] K. Brinkmann, J. Zhao, N. Pourdavoud et al., "Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells", Nature communications, vol. 8, no. 1, pp. 1-9, 2017.
[101] M. Kodur, R. E. Kumar, Y. Luo et al., "X‐Ray Microscopy of Halide Perovskites: Techniques, Applications, and Prospects", Advanced Energy Materials, vol. 10, no. 26, p. 1903170, 2020.
[102] W. T. Van Gompel, R. Herckens, G. Reekmans et al., "Degradation of the formamidinium cation and the quantification of the formamidinium–methylammonium ratio in lead iodide hybrid perovskites by nuclear magnetic resonance spectroscopy", The Journal of Physical Chemistry C, vol. 122, no. 8, pp. 4117-4124, 2018.
[103] C. Pareja-Rivera, A. L. Solís-Cambero, M. Sánchez-Torres et al., "On the True Composition of Mixed-Cation Perovskite Films", ACS Energy Letters, vol. 3, no. 10, pp. 2366-2367, 2018.
[104] B. A. Rosales, M. P. Hanrahan, B. W. Boote et al., "Lead halide perovskites: Challenges and opportunities in advanced synthesis and spectroscopy", ACS Energy Letters, vol. 2, no. 4, pp. 906-914, 2017.
[105] D. J. Kubicki, D. Prochowicz, A. Hofstetter et al., "Phase segregation in Cs-, Rb-and K- doped mixed-cation (MA)x(FA)1–xPbI3 hybrid perovskites from solid-state NMR", Journal of the American Chemical Society, vol. 139, no. 40, pp. 14173-14180, 2017.
[106] S. J. Yoon, K. G. Stamplecoskie and P. V. Kamat, "How lead halide complex chemistry dictates the composition of mixed halide perovskites", The journal of physical chemistry letters, vol. 7, no. 7, pp. 1368-1373, 2016.
[107] Y. J. Wei, C. G. Liu and L. P. Mo, "Ultraviolet absorption spectra of iodine, iodide ion and triiodide ion", Guang pu Xue Yu Guang Pu Fen Xi, vol. 25, no. 1, pp. 86-88, 2005.
[108] X. Dong, X. Fang, M. Lv et al., "Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition", Journal of Materials Chemistry A, vol. 3, no. 10, pp. 5360-5367, 2015.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *