帳號:guest(18.224.59.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅聖堯
作者(外文):Lo, Sheng-Yau.
論文名稱(中文):羥基氧化鋁塗佈隔離膜對鋰硫電池性能的分析
論文名稱(外文):Analysis boehmite-coated separator electrochemistry performance for lithium-sulfur batteries
指導教授(中文):林皓武
朱治偉
指導教授(外文):Lin, Hao-Wu
Chu, Chih-Wei
口試委員(中文):吳恆良
顏宏儒
口試委員(外文):Wu, Heng-Liang
Yen, Hung-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031609
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:73
中文關鍵詞:鋰硫電池噴塗法羥基氧化鋁
外文關鍵詞:Li-S BatterySpray coatedAlOOH
相關次數:
  • 推薦推薦:0
  • 點閱點閱:388
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
對鋰硫電池而言,鋰枝晶的生長以及多硫化物的穿梭效應是造成電池循環
壽命短以及電容量快速下降的主要原因,穿梭效應是指在鋰硫電池充放電過程中
會產生可溶於電解液的多硫化物,然後透過電解液來回穿梭電極兩側並沉積在電
極表面上的現象,因此本論文以羥基氧化鋁(AlOOH)粉末經噴塗法在商用聚烯烴
隔離膜上形成塗層,並應用於鋰硫電池中,此隔膜能穩定鋰枝晶的生長,並減少
穿梭效應的發生。
利用掃描式電子顯微鏡(SEM)和能量色散X 射線譜(EDX)觀察羥基氧化鋁
隔離膜表面及分析充放電後隔膜的表面元素,並以X 射線光電子能譜(XPS)量測
隔離膜及鋰金屬電極在電池循環後的硫元素訊號。
塗佈羥基氧化鋁(AlOOH)粉末後,能改善隔膜的親水性,隔膜的親水性增
加能使電解液更容易進入到隔離膜中,能減少電池的電荷轉移阻抗,對稱鋰金屬
充放電測試在1mA cm-2 電流下,經過500 小時的充放電測試後,可觀察到羥基
氧化鋁(AlOOH)隔離膜電壓變化比聚丙烯隔離膜穩定許多,顯示羥基氧化鋁
(AlOOH)塗層能使鋰電極鈍化層(SEI)穩定生長,降低鋰枝晶的形成以減少鋰金屬
電極的阻抗,組裝成鈕扣鋰硫電池進行效能測試,在室溫下0.5C 的放電速率下
經過200 次充放電循環,仍可維持70.52%的電容量,以上結果顯示羥基氧化鋁
(AlOOH)塗層隔離膜具有穩定鋰枝晶生長和捕捉多硫化鋰的能力,能增加鋰硫電
池商業化的機會。 I
For lithium-sulfur batteries (LSBs), Lithium dendrite and shuttling effect are
mainly responsible for the short battery life and capacity decay. Shuttling effect was
happened when lithium polysulfide (LiPs) dissolute into the electrolyte during
discharging, and then shuttle from cathode to lithium metal. Herein, we designed a
separator, which was spray-coated aluminum oxyhydroxide (AlOOH) ceramic powder
on a commercial polypropylene separator. This separator can stabilize the lithium
dendrite growth and can block LiPs physically and chemically.
SEM and EDX use to analysis the elements on the after-cycled separator, and use
X-ray photoelectron spectroscopy (XPS) to measure the sulfur signal of the separator
and lithium metal electrode.
The AlOOH ceramic powder change separator from hydrophobic to hydrophilic,
that means it can absorb more electrolyte into the separator, which can decrease the
charge transfer impedance. Lithium symmetric cell testing shows that under 1mA cm-2
current density, after 500 hours, we observe the voltages change of the AlOOH-coated
separator is much more stable than polypropylene separator. This shows that the
aluminum oxyhydroxide can make the SEI layer stable. After 200 cycles
charge/discharge testing under 0.5C at room temperature, we observed the capacity still
have 70.52% to the initial capacity, which was far superior to the pristine separator. The
simple fabrication method and extraordinary cycle life observed when using the
AlOOH-coated separator suggest a good solution for future commercialization of LSBs. II
摘要I
Abstract II
目錄III
圖目錄VI
表目錄X
第一章 緒論 1
1.1前言 1
1.2鋰電池 2
1.3鋰硫電池 3
1.4鋰硫電池的工作原理與穿梭效應 4
1.5研究動機 7
第二章 文獻探討 8
2.1硫正極簡介 8
2.1.1多孔碳 -硫正極 8
2.1.2石墨烯 -硫正極 11
2.1.3導電聚合物 -硫正極 12
2.1.4金屬氧化物 -硫正極 14
2.2隔離膜簡介 16
2.2.1碳材料改性隔離膜 16
2.2.2聚合物改性隔離膜 20
2.2.3無機材料塗佈聚合物功能性隔離膜 23
2.3電解液的簡介 25
第三章 實驗 26
3.1實驗藥品與材料實驗藥品與材料 26
3.2儀器設備儀器設備 27
3.3樣品製備樣品製備 28
3.3.1合成膨脹石墨合成膨脹石墨-硫硫(S-EG)正極正極 28
3.3.2鋰硫電池電解液之製備鋰硫電池電解液之製備 29
3.3.3羥基氧化鋁隔離膜之製備羥基氧化鋁隔離膜之製備 29
3.3.4鈕扣型電池組裝鈕扣型電池組裝 30
3.4實驗鑑定與分析實驗鑑定與分析 30
3.4.1 X射線光電子能譜學射線光電子能譜學(X-ray photoelectron spectroscopy, XPS or ESCA)30
3.4.2掃描式電子顯微鏡掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 31
3.4.3能量色散能量色散X射線譜射線譜(Energy-dispersive X-ray spectroscopy, EDX) 32
3.4.4接觸角量測接觸角量測(Contact angle Measurement) 32
3.4.5電化學阻抗頻譜法電化學阻抗頻譜法(Electrochemical Impedance Spectroscope, EIS) 33
3.4.6熱穩定性測試熱穩定性測試(Thermostability Test) 35
3.4.7循環伏安法測試循環伏安法測試(Cyclic Voltammetry, CV) 35
3.4.8簡易電化學簡易電化學H型電池擴散測試型電池擴散測試(Simple H-type glass cell diffusion test) 36
3.4.9電池效能與循環壽命測試電池效能與循環壽命測試(Rate Performance & Cycle Life) 36
第四章 結果與討論 37
4.1羥基氧化鋁熱穩定性及親疏水性分析羥基氧化鋁熱穩定性及親疏水性分析 37
4.1.1熱穩定性測試熱穩定性測試 37
4.1.2親疏水性測試親疏水性測試 39
4.2羥基氧化鋁隔離膜對鋰枝晶生長的影響羥基氧化鋁隔離膜對鋰枝晶生長的影響 40
4.2.1掃描式電子顯微鏡分析掃描式電子顯微鏡分析 40
4.2.2鋰金屬對稱電池之電化學阻抗分析鋰金屬對稱電池之電化學阻抗分析 42
V
4.2.3鋰金屬對稱電池充放電效能測試鋰金屬對稱電池充放電效能測試 45
4.3羥基氧化鋁隔離膜對鋰硫電池性能的影響羥基氧化鋁隔離膜對鋰硫電池性能的影響 48
4.3.1羥基氧化鋁隔離膜厚度對鋰硫電池性能影響羥基氧化鋁隔離膜厚度對鋰硫電池性能影響 48
4.3.2掃描式電子顯微鏡分析掃描式電子顯微鏡分析 49
4.3.3能量色散能量色散X射線譜元素分析射線譜元素分析 54
4.3.4 H型電池擴散測試型電池擴散測試 56
4.3.5 X射線光電子能譜分析射線光電子能譜分析(XPS) 57
4.3.6鋰硫電池之循環伏安法分析鋰硫電池之循環伏安法分析 59
4.3.7鋰硫電池之電化學阻抗分析鋰硫電池之電化學阻抗分析 61
4.3.8鋰硫電池之充放電效能分析鋰硫電池之充放電效能分析 62
第五章 結論結論 68
第六章 參考文獻參考文獻 69
1. 陳金銘 . (2018).啟動全球電動車革命之鑰 高能量固態電池 .工業材料雜誌
375期
2. Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359.
3. Gilbert, N. L., & Frederick, G. K. (1913). The potential of the lithium electrode. Journal of the American Chemical Society, 35, 340.
4. Reddy, M. V., Mauger, A., Julien, C. M., Paolella, A., & Zaghib, K. (2020). Brief History of Early Lithium-Battery Development. Materials, 13, 1884.
5. Nagaura, T., & Tozawa, K. (1990). Lithium ion rechargeable battery. Prog. Batteries Solar Cells, 9, 209.
6. MARKET RESEARCH FUTURE®. (2021) .Multilayer Transparent Conductors Market, By Type, By Material and By Application – Global Forecast 2027. https://www.marketresearchfuture.com/reports/multilayer-transparent-conductors-market-4259
7. Song, M. K., Cairns, E. J., & Zhang, Y. (2013). Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale, 5, 2186.
8. Manthiram, A., Fu, Y., & Su, Y. S. (2013). Challenges and prospects of lithium-sulfur batteries. Accounts of chemical research, 46, 1125.
9. Liu, M., Ye, F., Li, W., Li, H., & Zhang, Y. (2016). Chemical routes toward long-lasting lithium/sulfur cells. Nano Research, 9, 94.
10. Ji, X., Lee, K. T., & Nazar, L. F. (2009). A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature materials, 8, 500.
11. Zhang, B., Qin, X., Li, G. R., & Gao, X. P. (2010). Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 3, 1531.
12. Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A., & Archer, L. A. (2011). Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angewandte Chemie (International ed. in English), 50, 5904.
13. Cao, Y., Li, X., Aksay, I. A., Lemmon, J., Nie, Z., Yang, Z., & Liu, J. (2011). Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Physical Chemistry Chemical Physics, 13, 7660.
14. Wang, J., Yang, J., Xie, J., & Xu, N. (2002). A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries. Advanced Materials, 14, 963.
15. Yin, L., Wang, J., Lin, F., Yang, J., & Nuli, Y. (2012). Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy & Environmental Science, 5, 6966.
16. Zhou, W., Yu, Y., Chen, H., DiSalvo, F. J., & Abruña, H. D. (2013). Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. Journal of the American Chemical Society, 135, 16736.
17. Ji, X., Evers, S., Black, R., & Nazar, L. F. (2011). Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nature communications, 2, 325.
18. Ponraj, R., Kannan, A. G., Ahn, J. H., & Kim, D. W. (2016). Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide. ACS applied materials & interfaces, 8, 4000.
19. Zhang, Z., Lai, Y., Zhang, Z., & Li, J. (2015). A functional carbon layer-coated separator for high performance lithium sulfur batteries. Solid State Ionics, 278, 166.
20. Zhou, X., Liao, Q., Tang, J., Bai, T., Chen, F., & Yang, J. (2016). A high-level N-doped porous carbon nanowire modified separator for long-life lithium–sulfur batteries. Journal of Electroanalytical Chemistry, 768, 55.
21. Abbas, S.A., Kaisar, N., Chen, Y., Wu, S., Fang, C., Anupriya, S., Wang, P., & Chu, C. (2019). Modified Separators with Ultrathin Graphite Coating Simultaneously Mitigate the Issues of Metal Dendrites and Lithium Polysulfides to Provide Stable Lithium–Sulfur Batteries. ACS Sustainable Chemistry & Engineering, 7, 16604.
22. Lin, W., Chen, Y., Li, P., He, J., Zhao, Y., Wang, Z., Liu, J., Qi, F., Zheng, B., Zhou, J., Xu, C., & Fu, F. (2015). Enhanced Performance of Lithium Sulfur Battery with a Reduced Graphene Oxide Coating Separator. Journal of The Electrochemical Society, 162, 1624.
23. Abbas, S.A., Ding, J., Wu, S., Fang, J., Boopathi, K., Mohapatra, A., Lee, L.W., Wang, P., Chang, C., & Chu, C. (2017). Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li-S Batteries. ACS nano, 11, 12436.
24. Li, M., Zhang, Z., Yin, Y., Guo, W., Bai, Y., Zhang, F., Zhao, B., Shen, F., & Han, X. (2020). Novel Polyimide Separator Prepared with Two Porogens for Safe Lithium-Ion Batteries. ACS applied materials & interfaces, 12, 3610.
25. L'abee, R., DaRosa, F., Armstrong, M.J., Hantel, M.M., & Mourzagh, D. (2017). High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility. Journal of Power Sources, 345, 202.
26. Xie, K., Yu, S., Wang, P., & Chen, P. (2021). Polyethylene Terephthalate-Based Materials for Lithium-Ion Battery Separator Applications: A Review Based on Knowledge Domain Analysis. International Journal of Polymer Science, 2021, 12
27. Ding, J., Kong, Y., Li, P., & Yang, J. (2012). Polyimide/Poly(ethylene terephthalate) Composite Membrane by Electrospinning for Nonwoven Separator for Lithium-Ion Battery. Journal of The Electrochemical Society, 159, 1474.
28. Cai, H., Tong, X., Chen, K., Shen, Y., Wu, J., Xiang, Y., Wang, Z., & Li, J. (2018). Electrospun Polyethylene Terephthalate Nonwoven Reinforced Polypropylene Separator: Scalable Synthesis and Its Lithium Ion Battery Performance. Polymers, 10, 574.
29. Abbas, S. A., Ibrahem, M. A., Hu, L., Lin, C., Fang, J., Boopathi, K. M., & Chu, C. (2016). Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries. Journal of Materials Chemistry A, 4, 9661.
30. Hao, Z., Yuan, L., Li, Z., Liu, J., Xiang, J., Wu, C., Zeng, R., & Huang, Y. (2016). High performance lithium-sulfur batteries with a facile and effective dual functional separator. Electrochimica Acta, 200, 197.
31. Zhang, Z., Lai, Y., Zhang, Z., Zhang, K., & Li, J. (2014). Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochimica Acta, 129, 55.
32. Kaisar, N., Abbas, S. A., Ding, J., Chen, H., Pao, C., Boopathi, K. M., & Chu, C. (2019). Lithium passivated MoO3 nanobelts decorated polypropylene separator for fast-charging long-life Li-S battery. Nanoscale, 11, 2892.
33. Lin, C., Zhang, W., Wang, L., Wang, Z., Zhao, W., Duan, W., & Jin, J. (2016). A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 4, 5993.
34. Zhang, S. S., & Read, J. A. (2012). A new direction for the performance improvement of rechargeable lithium/sulfur batteries. Journal of Power Sources, 200, 77.
35. Zhang, S. S. (2012). Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta, 70, 344.
36. Ryu, H., Ahn, H., Kim, K., Ahn, J., Cho, K., Nam, T., & Cho, G. (2006). Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. Journal of Power Sources, 163, 201.
37. Yuan, L. X., Feng, J. K., Ai, X. P., Cao, Y. L., Chen, S. L., & Yang, H. X. (2006). Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochemistry Communications, 8, 610.
38. Bard, A. J., & Faulkner, L. R. (2001), Electrochemical Methods: Fundamentals
and Applications , 2nd Edition. John Wiley & Sons: New York.
39. Islam, M. M., David & Johnson, Bruce & Angove, Michael (2021). Crystal chemistry and environmental application of boehmite ((γ-AlOOH) nanoparticles. 6th Conference of Bangladesh Crystallographic Association (BCA). University of Dhaka.
40. Shutthanandan, V., Nandasiri, M., Zheng, J., Engelhard, M. H., Xu, W., Thevuthasan, S., & Murugesan, V. (2018). Applications of XPS in the characterization of Battery materials. Journal of Electron Spectroscopy and Related Phenomena, 231, 2.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *