|
1. Prache, O. (2001). "Active matrix molecular OLED microdisplays." Displays 22(2): 49-56. 2. Lee, J. Y., et al. (2003). "High efficiency and low power consumption in active matrix organic light emitting diodes." Organic Electronics 4(2-3): 143-148. 3. So, F., et al. (2008). "Organic light-emitting devices for solid-state lighting." MRS bulletin 33(7): 663-669. 4. Kalyani, N. T. and S. Dhoble (2012). "Organic light emitting diodes: Energy saving lighting technology—A review." Renewable and Sustainable Energy Reviews 16(5): 2696-2723. 5. Lim, H., et al. (2002). "Flexible organic electroluminescent devices based on fluorine‐containing colorless polyimide substrates." Advanced Materials 14(18): 1275-1279. 6. Lewis, J., et al. (2004). "Highly flexible transparent electrodes for organic light-emitting diode-based displays." applied physics letters 85(16): 3450-3452. 7. Widmer, R., et al. (2005). "Global perspectives on e-waste." Environmental impact assessment review 25(5): 436-458. 8. Kahhat, R., et al. (2008). "Exploring e-waste management systems in the United States." Resources, Conservation and Recycling 52(7): 955-964. 9. Terazono, A., et al. (2006). "Current status and research on E-waste issues in Asia." Journal of Material Cycles and Waste Management 8(1): 1-12. 10. Ylä-Mella, J. and E. Pongrácz (2016). "Drivers and constraints of critical materials recycling: The case of indium." Resources 5(4): 34. 11. Buchert, M., et al. (2012). "Recycling critical raw materials from waste electronic equipment." Freiburg: Öko-Institut eV 49(0): 30-40. 12. Choi, D., et al. (2014). "Characteristics of indium tin oxide (ITO) nanoparticles recovered by lift-off method from TFT-LCD panel scraps." Materials 7(12): 7662-7669. 13. Zaien, M., et al. (2013). "Effects of annealing on the optical and electrical properties of CdO thin films prepared by thermal evaporation." Materials Letters 105: 84-86. 14. Baek, Y. and K. Yong (2007). "Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder." The Journal of Physical Chemistry C 111(3): 1213-1218. 15. Al-Kuhaili, M. (2008). "Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O)." Vacuum 82(6): 623-629. 16. Strigul, N., et al. (2010). "Tungsten speciation and toxicity: acute toxicity of mono-and poly-tungstates to fish." Ecotoxicology and environmental safety 73(2): 164-171. 17. Koutsospyros, A. D., et al. (2019). Tungsten: Environmental pollution and health effects. Encyclopedia of environmental health, Elsevier: 161-169. 18. Song, Z., et al. (2011). "Current situation and prospects of China tungsten mineral processing technology." Mining & Metallurgy 20(1): 1-7. 19. Werner, A. B., et al. (1998). International Strategic Mineral Issues Summary Report--tungsten, US Government Printing Office. 20. Shedd, K. B. (2011). Tungsten recycling in the United States in 2000, US Department of the Interior, US Geological Survey. 21. Shen, L., et al. (2019). "Tungsten extractive metallurgy: A review of processes and their challenges for sustainability." Minerals Engineering 142: 105934. 22. Zeiler, B., et al. (2021). "Recycling of tungsten: Current share, economic limitations, technologies and future potential." International Journal of Refractory Metals and Hard Materials 98: 105546. 23. Tang, L., et al. (2020). "Refining the understanding of China's tungsten dominance with dynamic material cycle analysis." Resources, Conservation and Recycling 158: 104829. 24. Cotton, S. (1997). Chemistry of precious metals, Springer Science & Business Media. 25. Baltzer, N. and T. Copponnex (2014). Precious metals for biomedical applications, Elsevier. 26. Morris, D. and M. A. Khan (1968). "Application of solvent extraction to the refining of precious metals—III: Purification of gold." Talanta 15(11): 1301-1305. 27. Waldichuk, M. (1974). "Some biological concerns in heavy metals pollution." Pollution and physiology of marine organisms 1: 1-59. 28. Meeyoo, V., et al. (1998). "The effect of sulphur containing pollutants on the oxidation activity of precious metals used in vehicle exhaust catalysts." Applied Catalysis B: Environmental 16(2): L101-L104. 29. Nriagu, J. O. (1994). "Mercury pollution from the past mining of gold and silver in the Americas." Science of the Total Environment 149(3): 167-181. 30. Sibley, S. F. and W. C. Butterman (1995). "Metals recycling in the United States." Resources, Conservation and Recycling 15(3-4): 259-267. 31. Tsai, W.-T. (2019). "Promoting the circular economy via waste-to-power (WTP) in Taiwan." Resources 8(2): 95. 32. Tse, P.-K. (2006). "The Mineral Industry of Taiwan." Minerals Yearbook 3: 23. 33. Horng, C.-S. and C. Kuo-Hang (2006). "Complicated magnetic mineral assemblages in marine sediments offshore of southwestern Taiwan: possible influence of methane flux on the early diagenetic process." TAO: Terrestrial, Atmospheric and Oceanic Sciences 17(4): 1009. 34. Kulekci, M. K. (2008). "Magnesium and its alloys applications in automotive industry." The International Journal of Advanced Manufacturing Technology 39(9-10): 851-865. 35. Rose, A. R., et al. (2012). "Prediction and optimization of pulsed current tungsten inert gas welding parameters to attain maximum tensile strength in AZ61A magnesium alloy." Materials & Design 37: 334-348. 36. Amado, J., et al. (2009). "Laser cladding of tungsten carbides (Spherotene®) hardfacing alloys for the mining and mineral industry." Applied Surface Science 255(10): 5553-5556. 37. Kuo, N.-W., et al. (2007). "An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan." Waste Management 27(11): 1673-1679. 38. Dvořáček, J., et al. (2017). "Global tungsten demand and supply forecast." 39.Hayashi, T., et al. (2016). "Industrialization of tungsten recovering from used cemented carbide tools." SEI Tech. Rev 82: 33-38. 40. Tang, L., et al. (2020). "Refining the understanding of China's tungsten dominance with dynamic material cycle analysis." Resources, Conservation and Recycling 158: 104829. 41. Srivastava, R. R., et al. (2019). "Reclamation of tungsten from carbide scraps and spent materials." Journal of Materials Science 54(1): 83-107. 42. Katiyar, P., et al. (2014). "An overview on different processes for recovery of valuable metals from tungsten carbide scrap." 43. Masoudi, A. and H. Abbaszadeh (2013). "Tungsten direct recovery from W–Cu alloy scrap by selective digestion via FeCl3 aqueous solution." Am. J. Mater. Sci. Eng 1: 1-5. 44. Ogi, T., et al. (2017). "Facile and efficient removal of tungsten anions using lysine-promoted precipitation for recycling high-purity tungsten." ACS Sustainable Chemistry & Engineering 5(4): 3141-3147. 45. Shemi, A., et al. (2018). Scrap Recycling of Tungsten-Based Secondary Material for the Recovery of Tungsten Monocarbide (WC) and Other Valuable Constituents Using an Acid Leach Process: A Preliminary Study. Extraction 2018, Springer: 2471-2480. 46. Makino, T., et al. (2018). "Recovery and recycling of tungsten by alkaline leaching of scrap and charged amino group assisted precipitation." ACS Sustainable Chemistry & Engineering 6(3): 4246-4252. 47. Elschner, A., et al. (2000). "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes." Synthetic Metals 111: 139-143. 48. Van Slyke, S. A., et al. (1996). "Organic electroluminescent devices with improved stability." applied physics letters 69(15): 2160-2162. 49. Sakamoto, G., et al. (1999). "Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules." applied physics letters 75(6): 766-768. 50. Giebeler, C., et al. (1999). "Influence of the hole transport layer on the performance of organic light-emitting diodes." Journal of applied physics 85(1): 608-615. 51. Lee, J., et al. (2008). "Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices." applied physics letters 93(12): 348. 52. Muraoka, Y., et al. (2002). "Efficient photocarrier injection in a transition metal oxide heterostructure." Journal of Physics: Condensed Matter 14(49): L757. 53. Kim, S. Y., et al. (2005). "Highly efficient organic light-emitting diodes with hole injection layer of transition metal oxides." Journal of applied physics 98(9): 093707. 54. Kröger, M., et al. (2009). "P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide." Organic Electronics 10(5): 932-938. 55. Cheung, C., et al. (2010). "Role of air exposure in the improvement of injection efficiency of transition metal oxide/organic contact." Organic Electronics 11(1): 89-94. 56. Hou, L.-T., et al. (2010). "Improved hole-injection contact by employing an ultra-thin MoO (3) carrier injection layer." Chinese Journal of Luminescence 31(3): 326-330. 57. Gao, J., et al. (2011). "n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells." Nano letters 11(8): 3263-3266. 58. Kim, J., et al. (2014). "Soluble transition metal oxide/polymeric acid composites for efficient hole-transport layers in polymer solar cells." ACS applied materials & interfaces 6(2): 951-957. 59. Li, Y.-H., et al. (2017). "Cu-Doped nickel oxide prepared using a low-temperature combustion method as a hole-injection layer for high-performance OLEDs." Journal of Materials Chemistry C 5(45): 11751-11757. 60. Tsai, C.-T., et al. (2018). "Effects of novel transition metal oxide doped bilayer structure on hole injection and transport characteristics for organic light-emitting diodes." Synthetic Metals 243: 121-126. 61. Nagar, M. R., et al. (2019). "Solution process feasible highly efficient organic light emitting diode with hybrid metal oxide based hole injection/transport layer." MRS advances 4(31-32): 1801-1809. 62. Li, J., et al. (2005). "Enhanced performance of organic light emitting device by insertion of conducting/insulating WO3 anodic buffer layer." Synthetic Metals 151(2): 141-146. 63. Meyer, J., et al. (2008). "Transparent inverted organic light‐emitting diodes with a tungsten oxide buffer layer." Advanced Materials 20(20): 3839-3843. 64. Hsieh, M.-T., et al. (2009). "Study of electrical characterization of 2-methyl-9, 10-di (2-naphthyl) anthracene doped with tungsten oxide as hole-transport layer." applied physics letters 95(3): 033501. 65. Höfle, S., et al. (2013). "Tungsten Oxide Buffer Layers Fabricated in an Inert Sol‐Gel Process at Room‐Temperature for Blue Organic Light‐Emitting Diodes." Advanced Materials 25(30): 4113-4116. 66. Yang, X., et al. (2014). "Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole‐Injection in Quantum Dot Light‐Emitting Diodes." Small 10(2): 247-252. 67. Youn, J. H., et al. (2013). "Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide." Journal of Materials Chemistry C 1(19): 3250-3254. 68. Lee, S. J., et al. (2014). "Photovoltaic devices with a PEDOT: PSS: WO x hole transport layer." RSC advances 4(39): 20242-20246. 69. Lee, J., et al. (2015). "Work function modification of solution-processed tungsten oxide for a hole-injection layer of polymer light-emitting diodes." Organic Electronics 22: 81-85. 70Li, W., et al. (2018). "Solution-processed WOx hole injection layer for efficient fluorescent blue organic light-emitting diode." Current Applied Physics 18(5): 583-589. 71. Kim, G. W., et al. (2018). "Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells." Advanced Energy Materials 8(26): 1801386. 72. Yi, H., et al. (2019). "Solution-processed WO3 and water-free PEDOT: PSS composite for hole transport layer in conventional perovskite solar cell." Electrochimica Acta 319: 349-358.
|