帳號:guest(3.148.115.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃子恩
作者(外文):Huang, Tzu-En
論文名稱(中文):回收之氧化鎢純度對OLED元件效率之影響
論文名稱(外文):Effects of Reclaimed Tungsten Oxide Purity on OLEDs Efficiency
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):呂芳賢
岑尚仁
蔡永誠
溫世文
口試委員(外文):Lu, Fang-Xian
Chen, Sun-Zen
Tsai, Yung-Cheng
Wen, Shih-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031604
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:70
中文關鍵詞:回收氧化鎢效率純度粗糙度OLED
外文關鍵詞:reclaimedtungsten oxideefficiencypurityroughnessOLED
相關次數:
  • 推薦推薦:0
  • 點閱點閱:339
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
台灣身為面板廠大國,每年產生的廢棄面板不計其數,近幾年來不斷提倡面板的回收再生,不僅節省成本與資源,更減少對環保的破壞。其技術也日漸成熟,然而除了面板之外,製程中其餘資源的浪費也不容小覷,例如目前OLED與LED業者皆使用大量鎢舟進行陰極金屬層的蒸鍍,蒸鍍結束後鎢舟表面殘留金屬及其氧化物,而所使用之鎢舟為一次性產品,使用完畢後即無法使用;長期下來,累積相當可觀之金屬廢棄物,然而,鎢為一種不易回收且具汙染性之金屬,因此鎢的回收便更加重要,本研究目的為減少此種製程之鎢的浪費與金屬廢棄物對環境之污染,並透過此回收技術,提煉鎢金屬氧化物,循環利用,減少稀有金屬之浪費。
本研究首先將實驗室之廢棄鎢舟進行回收,得到了純度45、62、85、99.9 %之氧化鎢,後將不同純度的氧化鎢摻雜於OLED元件的電洞注入層(PEDOT:PSS)進行元件效率的比較。研究結果顯示,在100 cd/m2下,純度99.9 %氧化鎢元件之能量效率為48.8 lm/W;純度85 %之元件能量效率為44.3 lm/W;純度62 %之元件效率為40.1 lm/W;純度45 %之元件效率為25.9 lm/W。可以發現元件效率隨純度下降大幅度下降,也說明氧化鎢粉末之純度對於元件效率的影響是顯著的,當純度下降至45 %時,因為雜質的影響,需在較大電壓驅動下,也就是較高亮度時才能進行有效激子再結合。

本研究亦使用有無摻雜市售之氧化鎢粉末之元件為對照組,對其進行效率比較,無摻雜氧化鎢之元件能量效率在100 cd/m2下為45.3 lm/W;摻雜市售純度99.99 %氧化鎢之元件能量效率為50.4 lm/W;市售與回收之氧化鎢所製作之元件表現相近,證明優異的回收精煉技術可從廢棄鎢舟得到高純度之氧化鎢粉末,也證明回收精煉之粉末在元件再製上是可行的,其中結果能看出高純度之氧化鎢粉末摻雜可以有效提升元件效率,原因為氧化鎢比起PEDOT:PSS擁有較高的功函數值,摻雜後能有效提高電洞注入層之功函數,降低電洞注入發光層的能障,有利於電洞的注入,需特別注意的是5 V%以上的摻雜會造成薄膜表面顆粒聚合,導致粗糙度上升,元件表現衰退。
Taiwan is an important location in panel manufacturers and countless discarded panels are produced every year. Therefore, the recycle of panels has been continuously advocated in recent years, which not only lower costs and resources, but also alleviate the environmental damage. In addition to panels, the other waste during process can not be underestimated. For example, OLED and LED manufacturers currently use a large number of tungsten boats for depositing the cathode metal layer. After the vapor deposition, the metal and oxides remain on the tungsten boat. The used tungsten boat is a disposable product. That is, it cannot be reused. Over the long term, a tremendous amount of metal waste has been accumulated. However, tungsten is a metal that is a pollutants and very difficult to be recycled. Therefore, the goal for this research is reducing the waste of tungsten in panel process and the pollution of metal waste to the environment. Through this recycle technology of the research, tungsten metal oxides can be refined and recycled to reduce the waste of rare metals.
In this study, waste tungsten boats in the laboratory were first reclaimed to obtain tungsten oxide with purity of 45, 62, 85and 99.9 %. Then, tungsten oxide of different purity was doped in the hole injection layer of the OLED device (PEDOT:PSS) to compare the effects of purity on device performance. At 100 cd/m2, the results show that the power efficacy of the device doped with 99.99 % commercial tungsten oxide is 50.4 lm/W. The power efficacy of the devices doping with 85 %, 62 % and 45 % are 44.3, 40.1and 25.9 lm/W, respectively.
In addition, the devices were compared with the control devices which were with and without doping commercial tungsten oxide. At 100 cd/m2, the results show that the power efficacy of the PEDOT:PSS only device is 45.3 lm/W and that of device doped with 99.99% commercial tungsten oxide is 50.4 lm/W. The performance of devices doped with commercial and reclaimed tungsten oxide is similar, which proves that excellent recycle and refine technology can obtain high-purity tungsten oxide powder from discarded tungsten boats. It also proves that reclaimed tungsten oxide is also feasible in device remanufacturing. Meanwhile, the results showed that high-purity tungsten oxide powder doping can successfully improve the efficacy of the device. The reason is that tungsten oxide has a higher work function value than PEDOT:PSS, and it can effectively enlarge the work function of the hole injection layer after doping. Lowering the energy barrier between hole injection layer (HIL) and the emission layer (EML) can boost the hole injection, which make device performance better. It is noteworthy that over 5 V% doping ratio would make the particle aggregate at the surface, which lead device roughness to increase significantly and lower down the device performance.  
目錄
摘要 I
Abstract V
致謝 XIV
表目錄 XIII
圖目錄 XIV
壹、 緒論 1
貳、文獻回顧 3
2-1、稀有貴重金屬之回收發展 3
2-1-1、回收鎢之各國發展歷史 3
2-1-2、我國鎢產業概況分析與發展方向 5
2-1-3、鎢之回收技術與再利用 6
2-2、電洞注入與傳輸層材料之發展 8
2-2-1、電洞注入材料 8
2-2-2、電洞傳輸材料 8
2-2-3、過渡金屬氧化物對電洞注入材料之應用 9
2-2-4、氧化鎢對電洞注入材料之應用 11
參、實驗方法 14
3-1、使用材料 14
3-1-1、材料之功能、全名及簡稱 15
3-1-2、本研究所使用材料之結構式 16
3-2、廢棄鎢舟之回收處理方法 18
3-3、材料特性與量測方法 21
3-3-1、純度量測 21
3-3-2、元素分析 21
3-3-3、晶體結構分析 21
3-3-4、吸收光譜分析 22
3-3-5、放射光譜分析 22
3-3-6、電性分析 22
3-3-7、功函數分析 23
3-3-8、粗糙度分析 24
3-4、元件設計與製備 25
3-4-1、元件電路設計 25
3-4-2、ITO試片清潔與前處理 26
3-4-3、旋轉塗佈電洞注入層 26
3-4-4、旋轉塗佈發光層 27
3-4-5、真空蒸鍍製程 27
3-4-6、蒸鍍鍍率測定 28
3-4-7、有機層之製作 29
3-4-8、無機層之製作 29
3-5、元件光電特性表現之量測 29
肆、結果與討論 32
4-1、回收精煉氧化鎢之純度與特性分析 32
4-1-1、氧化鎢粉末ICP-OES之純度分析 32
4-1-2、氧化鎢粉末EDS元素分析 34
4-1-3、氧化鎢粉末XRD結構分析 36
4-1-4、氧化鎢粉末UV-absorption分析 39
4-2、回收氧化鎢純度對基本綠光元件之比較 40
4-2-1、基本綠光元件之結構 40
4-2-2、氧化鎢純度對元件表現之影響 42
4-3、摻雜市售與回收氧化鎢對基本綠光元件之比較 44
4-3-1、元件表現之分析 44
4-3-2、電洞注入層之導電度分析 46
4-3-3、電洞注入層之功函數分析 48
4-3-4、電洞注入層之表面粗糙度分析 51
4-4、摻雜氧化鎢比例對基本綠光元件之比較 53
4-4-1、對元件表現之影響 53
4-4-2、對導電度之影響 55
4-4-3、對功函數之影響 56
4-4-4、對粗糙度之影響 59
伍、結論 62
陸、參考文獻 64
附錄一、專利 69
附錄二、個人著作目錄 69
附錄三、獲獎紀錄 70

1. Prache, O. (2001). "Active matrix molecular OLED microdisplays." Displays 22(2): 49-56.
2. Lee, J. Y., et al. (2003). "High efficiency and low power consumption in active matrix organic light emitting diodes." Organic Electronics 4(2-3): 143-148.
3. So, F., et al. (2008). "Organic light-emitting devices for solid-state lighting." MRS bulletin 33(7): 663-669.
4. Kalyani, N. T. and S. Dhoble (2012). "Organic light emitting diodes: Energy saving lighting technology—A review." Renewable and Sustainable Energy Reviews 16(5): 2696-2723.
5. Lim, H., et al. (2002). "Flexible organic electroluminescent devices based on fluorine‐containing colorless polyimide substrates." Advanced Materials 14(18): 1275-1279.
6. Lewis, J., et al. (2004). "Highly flexible transparent electrodes for organic light-emitting diode-based displays." applied physics letters 85(16): 3450-3452.
7. Widmer, R., et al. (2005). "Global perspectives on e-waste." Environmental impact assessment review 25(5): 436-458.
8. Kahhat, R., et al. (2008). "Exploring e-waste management systems in the United States." Resources, Conservation and Recycling 52(7): 955-964.
9. Terazono, A., et al. (2006). "Current status and research on E-waste issues in Asia." Journal of Material Cycles and Waste Management 8(1): 1-12.
10. Ylä-Mella, J. and E. Pongrácz (2016). "Drivers and constraints of critical materials recycling: The case of indium." Resources 5(4): 34.
11. Buchert, M., et al. (2012). "Recycling critical raw materials from waste electronic equipment." Freiburg: Öko-Institut eV 49(0): 30-40.
12. Choi, D., et al. (2014). "Characteristics of indium tin oxide (ITO) nanoparticles recovered by lift-off method from TFT-LCD panel scraps." Materials 7(12): 7662-7669.
13. Zaien, M., et al. (2013). "Effects of annealing on the optical and electrical properties of CdO thin films prepared by thermal evaporation." Materials Letters 105: 84-86.
14. Baek, Y. and K. Yong (2007). "Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder." The Journal of Physical Chemistry C 111(3): 1213-1218.
15. Al-Kuhaili, M. (2008). "Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O)." Vacuum 82(6): 623-629.
16. Strigul, N., et al. (2010). "Tungsten speciation and toxicity: acute toxicity of mono-and poly-tungstates to fish." Ecotoxicology and environmental safety 73(2): 164-171.
17. Koutsospyros, A. D., et al. (2019). Tungsten: Environmental pollution and health effects. Encyclopedia of environmental health, Elsevier: 161-169.
18. Song, Z., et al. (2011). "Current situation and prospects of China tungsten mineral processing technology." Mining & Metallurgy 20(1): 1-7.
19. Werner, A. B., et al. (1998). International Strategic Mineral Issues Summary Report--tungsten, US Government Printing Office.
20. Shedd, K. B. (2011). Tungsten recycling in the United States in 2000, US Department of the Interior, US Geological Survey.
21. Shen, L., et al. (2019). "Tungsten extractive metallurgy: A review of processes and their challenges for sustainability." Minerals Engineering 142: 105934.
22. Zeiler, B., et al. (2021). "Recycling of tungsten: Current share, economic limitations, technologies and future potential." International Journal of Refractory Metals and Hard Materials 98: 105546.
23. Tang, L., et al. (2020). "Refining the understanding of China's tungsten dominance with dynamic material cycle analysis." Resources, Conservation and Recycling 158: 104829.
24. Cotton, S. (1997). Chemistry of precious metals, Springer Science & Business Media.
25. Baltzer, N. and T. Copponnex (2014). Precious metals for biomedical applications, Elsevier.
26. Morris, D. and M. A. Khan (1968). "Application of solvent extraction to the refining of precious metals—III: Purification of gold." Talanta 15(11): 1301-1305.
27. Waldichuk, M. (1974). "Some biological concerns in heavy metals pollution." Pollution and physiology of marine organisms 1: 1-59.
28. Meeyoo, V., et al. (1998). "The effect of sulphur containing pollutants on the oxidation activity of precious metals used in vehicle exhaust catalysts." Applied Catalysis B: Environmental 16(2): L101-L104.
29. Nriagu, J. O. (1994). "Mercury pollution from the past mining of gold and silver in the Americas." Science of the Total Environment 149(3): 167-181.
30. Sibley, S. F. and W. C. Butterman (1995). "Metals recycling in the United States." Resources, Conservation and Recycling 15(3-4): 259-267.
31. Tsai, W.-T. (2019). "Promoting the circular economy via waste-to-power (WTP) in Taiwan." Resources 8(2): 95.
32. Tse, P.-K. (2006). "The Mineral Industry of Taiwan." Minerals Yearbook 3: 23.
33. Horng, C.-S. and C. Kuo-Hang (2006). "Complicated magnetic mineral assemblages in marine sediments offshore of southwestern Taiwan: possible influence of methane flux on the early diagenetic process." TAO: Terrestrial, Atmospheric and Oceanic Sciences 17(4): 1009.
34. Kulekci, M. K. (2008). "Magnesium and its alloys applications in automotive industry." The International Journal of Advanced Manufacturing Technology 39(9-10): 851-865.
35. Rose, A. R., et al. (2012). "Prediction and optimization of pulsed current tungsten inert gas welding parameters to attain maximum tensile strength in AZ61A magnesium alloy." Materials & Design 37: 334-348.
36. Amado, J., et al. (2009). "Laser cladding of tungsten carbides (Spherotene®) hardfacing alloys for the mining and mineral industry." Applied Surface Science 255(10): 5553-5556.
37. Kuo, N.-W., et al. (2007). "An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan." Waste Management 27(11): 1673-1679.
38. Dvořáček, J., et al. (2017). "Global tungsten demand and supply forecast."
39.Hayashi, T., et al. (2016). "Industrialization of tungsten recovering from used cemented carbide tools." SEI Tech. Rev 82: 33-38.
40. Tang, L., et al. (2020). "Refining the understanding of China's tungsten dominance with dynamic material cycle analysis." Resources, Conservation and Recycling 158: 104829.
41. Srivastava, R. R., et al. (2019). "Reclamation of tungsten from carbide scraps and spent materials." Journal of Materials Science 54(1): 83-107.
42. Katiyar, P., et al. (2014). "An overview on different processes for recovery of valuable metals from tungsten carbide scrap."
43. Masoudi, A. and H. Abbaszadeh (2013). "Tungsten direct recovery from W–Cu alloy scrap by selective digestion via FeCl3 aqueous solution." Am. J. Mater. Sci. Eng 1: 1-5.
44. Ogi, T., et al. (2017). "Facile and efficient removal of tungsten anions using lysine-promoted precipitation for recycling high-purity tungsten." ACS Sustainable Chemistry & Engineering 5(4): 3141-3147.
45. Shemi, A., et al. (2018). Scrap Recycling of Tungsten-Based Secondary Material for the Recovery of Tungsten Monocarbide (WC) and Other Valuable Constituents Using an Acid Leach Process: A Preliminary Study. Extraction 2018, Springer: 2471-2480.
46. Makino, T., et al. (2018). "Recovery and recycling of tungsten by alkaline leaching of scrap and charged amino group assisted precipitation." ACS Sustainable Chemistry & Engineering 6(3): 4246-4252.
47. Elschner, A., et al. (2000). "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes." Synthetic Metals 111: 139-143.
48. Van Slyke, S. A., et al. (1996). "Organic electroluminescent devices with improved stability." applied physics letters 69(15): 2160-2162.
49. Sakamoto, G., et al. (1999). "Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules." applied physics letters 75(6): 766-768.
50. Giebeler, C., et al. (1999). "Influence of the hole transport layer on the performance of organic light-emitting diodes." Journal of applied physics 85(1): 608-615.
51. Lee, J., et al. (2008). "Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices." applied physics letters 93(12): 348.
52. Muraoka, Y., et al. (2002). "Efficient photocarrier injection in a transition metal oxide heterostructure." Journal of Physics: Condensed Matter 14(49): L757.
53. Kim, S. Y., et al. (2005). "Highly efficient organic light-emitting diodes with hole injection layer of transition metal oxides." Journal of applied physics 98(9): 093707.
54. Kröger, M., et al. (2009). "P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide." Organic Electronics 10(5): 932-938.
55. Cheung, C., et al. (2010). "Role of air exposure in the improvement of injection efficiency of transition metal oxide/organic contact." Organic Electronics 11(1): 89-94.
56. Hou, L.-T., et al. (2010). "Improved hole-injection contact by employing an ultra-thin MoO (3) carrier injection layer." Chinese Journal of Luminescence 31(3): 326-330.
57. Gao, J., et al. (2011). "n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells." Nano letters 11(8): 3263-3266.
58. Kim, J., et al. (2014). "Soluble transition metal oxide/polymeric acid composites for efficient hole-transport layers in polymer solar cells." ACS applied materials & interfaces 6(2): 951-957.
59. Li, Y.-H., et al. (2017). "Cu-Doped nickel oxide prepared using a low-temperature combustion method as a hole-injection layer for high-performance OLEDs." Journal of Materials Chemistry C 5(45): 11751-11757.
60. Tsai, C.-T., et al. (2018). "Effects of novel transition metal oxide doped bilayer structure on hole injection and transport characteristics for organic light-emitting diodes." Synthetic Metals 243: 121-126.
61. Nagar, M. R., et al. (2019). "Solution process feasible highly efficient organic light emitting diode with hybrid metal oxide based hole injection/transport layer." MRS advances 4(31-32): 1801-1809.
62. Li, J., et al. (2005). "Enhanced performance of organic light emitting device by insertion of conducting/insulating WO3 anodic buffer layer." Synthetic Metals 151(2): 141-146.
63. Meyer, J., et al. (2008). "Transparent inverted organic light‐emitting diodes with a tungsten oxide buffer layer." Advanced Materials 20(20): 3839-3843.
64. Hsieh, M.-T., et al. (2009). "Study of electrical characterization of 2-methyl-9, 10-di (2-naphthyl) anthracene doped with tungsten oxide as hole-transport layer." applied physics letters 95(3): 033501.
65. Höfle, S., et al. (2013). "Tungsten Oxide Buffer Layers Fabricated in an Inert Sol‐Gel Process at Room‐Temperature for Blue Organic Light‐Emitting Diodes." Advanced Materials 25(30): 4113-4116.
66. Yang, X., et al. (2014). "Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole‐Injection in Quantum Dot Light‐Emitting Diodes." Small 10(2): 247-252.
67. Youn, J. H., et al. (2013). "Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide." Journal of Materials Chemistry C 1(19): 3250-3254.
68. Lee, S. J., et al. (2014). "Photovoltaic devices with a PEDOT: PSS: WO x hole transport layer." RSC advances 4(39): 20242-20246.
69. Lee, J., et al. (2015). "Work function modification of solution-processed tungsten oxide for a hole-injection layer of polymer light-emitting diodes." Organic Electronics 22: 81-85.
70Li, W., et al. (2018). "Solution-processed WOx hole injection layer for efficient fluorescent blue organic light-emitting diode." Current Applied Physics 18(5): 583-589.
71. Kim, G. W., et al. (2018). "Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells." Advanced Energy Materials 8(26): 1801386.
72. Yi, H., et al. (2019). "Solution-processed WO3 and water-free PEDOT: PSS composite for hole transport layer in conventional perovskite solar cell." Electrochimica Acta 319: 349-358.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *