帳號:guest(18.191.86.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳念旂
作者(外文):Wu, Nien-Chi.
論文名稱(中文):共軛高分子發光生命週期受分子應力與高熵環境之影響研究
論文名稱(外文):Influence of Molecular Stress and High Entropy Environment on the Lifetime of Conjugated Polymer Luminescence
指導教授(中文):楊長謀
指導教授(外文):Yang, Arnold C. M.
口試委員(中文):戴子安
鄭智嘉
口試委員(外文):Dai, Chi-An
Cheng, Chih-Chia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031601
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:132
中文關鍵詞:共軛高分子發光生命週期機械拉伸高熵高分子光電量子效率
外文關鍵詞:conjugated polymerradiative lifetimemechanical stretchinghigh entropy polymerquantum efficiency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
最近的研究發現,共軛高分子(conjugated polymer, CP)經過機械拉伸後,光致發光(Photoluminescence, PL)強度會明顯上升,此可歸因於拉伸後使分子鏈變得堅硬,使鏈段受到拘束,降低聲子對電荷激態的耦合作用,因此光電效率有所提升。本論文探討共軛高分子polyfluorene (PFO)、poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)、poly(3-hexylthiophene-2,5-diyl) (P3HT)的機械拉伸與發光生命週期之間的關聯性。這些CP分子皆以惰性的聚苯乙烯(PS)進行拉伸實驗並以時間相關單光子計數系統儀器(TCSPC)量測其發光生命週期,我們發現當拉伸薄膜產生纖化區時,纖化區內的生命週期會比未受到應變影響的區域之生命週期來得長,而這歸因於高分子因受拉伸使分子鏈變為堅硬的同時,電子較不受柔軟分子鏈所束縛(trapping),讓長時間電子得以跳躍出來進行放光。並且於雙層結構之拉伸實驗中,進一步地發現當雙層結構所產生之巨大的應變集中區(約300%~500%)時,我們發現纖化區內的生命週期變化幅度更大,可以得到變化更長的生命週期,而這也因為應變集中區所產生的應變量更大,使高分子內電子更不易受到束縛所得到的結果,本實驗也將過往實驗室研究所得到的拉伸高分子薄膜之光電量子效率(quantum efficiency, QE)與實驗中所得到的發光生命週期進行比較分析,我們發現當拉伸後的薄膜其輻射生命週期(radiative lifetime)得到上升的同時,薄膜的QE也是上升的結果,這可以更進一步的佐證拉伸使更多電子不受束縛並進行放光的結果,我們也對非輻射生命週期(non-radiative lifetime)與QE進行比較,而非輻射生命週期又視為是一個臨界時間,當電子超過此時間後,將會受到束縛而無法放光,拉伸行為可以使非輻射生命週期延長的效果,其中雙層PFO的QE在拉伸後可以高達將近100%,其非輻射生命週期為無窮大,這代表雙層PFO將沒有電子受到束縛,且均可以自由地進行放光。同時,我們也探討高熵環境(high entropy environment)下之高分子其發光行為及QE與一元環境下的高分子有何不同,我們發現在高熵環境中,高分子擁有比一元成分下更長的生命週期,且擁有更高的QE值,而這是因為高分子於高熵環境中擁有更佳的分散性及均勻性,因此高熵薄膜的團聚焠熄(aggregation quenching)效應減少,使電子不易受團聚所帶來的缺陷所影響,也因此高熵薄膜擁有更少的trapping sites,電子可以不受到焠熄並自由地進行放光,而此發現對於未來的高分子光電應用上應有所貢獻。
From recent studies, we have found that after conjugated polymer (CP) is mechanically stretched, the photoluminescence (PL) intensity will increase significantly. This can be attributed to the fact that the molecular chain becomes hard after stretching. The polymer chain is restricted, reducing the coupling effect of phonons on the charge excited state, so the photoelectric efficiency is improved. Here we discusses the conjugated polymers polyfluorene (PFO), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), poly(3-hexylthiophene-2,5-diyl) (P3HT) their correlation between the mechanical stretching and the light-emitting lifetime.
These CP molecules are stretched with inert polystyrene (PS) and their lifetime is measured with the TCSPC instrument. We found that when the stretched film produces the craze, the lifetime inside the craze will be lower than outside the craze. The strain-affected region has a longer lifetime, and this is due to the fact that the polymer is stretched so that electrons are less susceptible to be trapping, allowing long-time electrons to jump out and emit light.
And the polymer under the double-layer structure with stretching, it is further found that when the double-layer structure produces a larger strain concentration area (about 300% to 400%), we find that the lifetime change range inside the craze is even longer, and this is also the result of greater strain imposed by the strain concentration zone, which makes the electrons in the polymer less likely to be trapping.
This experiment also compares the quantum efficiency (QE) of the stretched polymer film obtained in the past laboratory research with the luminescence lifetime obtained in the experiment. We found that the radiative lifetime of the stretched film has been increased, the QE of the film is also increase. This can further prove that the stretching allows more electrons to jump out and emit light. We also have a non-radiative lifetime compared with QE, and the non-radiation lifetime is regarded as a critical time. When the electron exceeds this time, it will be trapping and unable to emit light, and the stretching behavior can have the effect of extending the non-radiation lifetime. The QE of the double-layer PFO can be as high as nearly 100% after stretching, and its non-radiation lifetime is infinite, which means that the double-layer PFO will not be trapped by electrons and can emit light freely.
At the same time, we also explored the light-emitting behavior of polymers in high entropy environment and how QE differs from polymers in a unitary environment. We found that in a high entropy environment, polymers have longer lifetime than those in a unitary environment and also have higher QE value. This is because the polymer in the high-entropy environment has better dispersion and uniformity. Therefore, the aggregation quenching effect of the high-entropy film is reduced, which makes the electrons not be susceptible to defects caused by agglomeration. Therefore, high-entropy films have fewer trapping sites, and electrons can be freely emitted without being quenched. This discovery should be useful for future polymer optoelectronic applications.
摘要 I
Abstract III
致謝 VI
目錄 VIII
圖目錄 XII
第一章 簡介 1
第二章 文獻回顧 3
2-1 高分子薄膜應變機制及機械性質 3
2-1-1 纖化區(craze)介紹 3
2-1-2 彈性形變區的介紹 7
2-1-3 微頸縮機制 9
2-2 聚芴(Polyfluorene) 11
2-2-1共軛高分子--Poly(9,9'-dioctylfluorene) (PFO) 12
2-3 共軛高分子MEH-PPV 15
2-3-1 MEH-PPV的發光性質介紹 15
2-3-2 MEH-PPV混摻之稀釋效應 19
2-4 MEH-PPV薄膜之拉伸與放光行為 21
2-5共軛高分子P3HT之介紹 23
2-6高分子生命週期(Lifetime)之簡介 25
2-7高分子薄膜與溶液態Lifetime之差異 25
2-7-1影響高分子電子生命週期之可能因素 27
2-8高分子薄膜態擁有多個生命週期之解釋 27
2-9共軛高分子藉機械拉伸使量子效率提高 33
2-10高熵高分子 35
第三章 實驗方法 37
3-1 實驗材料 37
3-1-1高分子材料 37
3-1-2有機溶劑 40
3-1-3實驗基材 40
3-2 樣品製備 41
3-2-1單層PFO/PS、MEH-PPV/PS、P3HT/PS薄膜拉伸 41
3-2-2雙層PFO/PS、MEH-PPV/PS、P3HT/PS薄膜拉伸 43
3-2-3五元高熵混摻1%共軛高分子之薄膜 45
3-3 量測方法 46
3-3-1 拉伸實驗 46
3-3-2 封裝製程 46
3-3-3 量子效率 47
3-4 實驗儀器介紹 49
3-4-1 光學顯微鏡 (Optical microscopy, OM) 49
3-4-2 原子力顯微鏡 (Atomic force microscopy, AFM) 50
3-4-3 螢光光譜儀(Photoluminescence Spectrometer, PL) 52
3-4-4時間相關單光子計數系統(Time-Correlated-Single-Photon- Counting,TCSPC ; PicoHarp 300,PicoQuant) 53
第四章 結果與討論 57
4-1純高分子單層薄膜 57
4-1-1高分子PFO薄膜 58
4-1-2高分子MEH-PPV薄膜 61
4-1-3高分子P3HT-rr薄膜 64
4-2高分子混摻單層薄膜 66
4-2-1高分子PFO薄膜 67
4-2-2高分子MEH-PPV薄膜 71
4-2-3高分子P3HT-rr薄膜 74
4-3純高分子雙層薄膜 78
4-3-1高分子PFO薄膜 79
4-3-2高分子MEH-PPV薄膜 82
4-3-3高分子P3HT-rr薄膜 86
4-4 TCSPC之生命週期error bar考量 89
4-5拉伸高分子之生命週期時間增益比較 90
4-6高分子輻射生命週期(τr)與QE量測之比較 95
4-7高分子非輻射生命週期(τnr)與QE量測之比較 97
4-8高熵(多元)混摻實驗 99
4-8-1 混摻1% PFO之高熵薄膜 99
4-8-2混摻1% MEH-PPV之高熵薄膜 101
4-8-3混摻1%P3HT-rr之高熵薄膜 103
4-9 混摻高熵與各單成份之比較 106
4-9-1高熵混摻1%MEH-PPV與各單成份之比較 106
4-9-2高熵混摻1%PFO與各單成份之比較 110
4-9-3高熵混摻1%P3HTrr與各單成份之比較 114
4-10 高熵與一元厚膜之τr、QE比較 121
第五章 結論 123
第六章 參考文獻 125

1. I. M. Ward, Mechanical Properties of Solid polymers, 2nd ed. john Wiley&Sons Press: New York (1983)
2. E. J. Kramer, L. L. Berger, Adv. Polym. Sci. 91/92, 1 (1990)
3. J.–H. Lin, A. C.–M. Yang, Macromol. 34, 3698 (2001)
4. E. J. Kramer, Adv. Polym. Sci. 52/53, 1 (1983)
5. A. N. Gent, In The Mechanics of fracture, AMD; F. Erdogon, ed., ASME: New York 19, 55 (1976)
6. A. C.-M. Yang, R. C. Wang, M. S. Kunz, J. Polym. Sci., Polym. Phys. Ed, 34, 1141 (1996)
7. H. H. Kaush, Polymer Fracture, Spring-Verlag: Heidel-berg, Germany (1978)
8. A. C.-M. Yang, E. J. Kramer, J. Polym. Sci., Polym. Phys. Ed. 23, 1353 (1985)
9. A. C.-M. Yang, E. J. Kramer, C. C. Kuo, S. L. Phoenix, Macromol. 19, 2010 (1986)
10. A. C.-M. Yang, M. S. Kunz, J. A. Logan, Macro. 26, 1767 (1993)
11. M. Kawagoe, M. Kitagawa, J. Polym. Sci. Polym. Phys. 19, 1423 (1981)
12. Fields R. J., Ashby, M. F. Philos. Mag. 33, 33 (1976)
13. 蕭志郡, 清華材料系碩士論文, 奈米碳管表面接枝苯乙烯聚合體在聚苯乙烯薄膜內之奈米微觀機械行為研究 (2004)
14. C. H. Lin, A. C.-M. Yang, J. Mater. Sci. 35, 4231 (2000)
15. Q. Hou, Q. Zhou, Y. Zhang, W. Yang, R. Yang, and Y. Cao, Macromolecules 37, 6299 (2004)
16. H. C. Lin, H. H. Sung, C. M. Tsai, and K. C. Li, Polym. 46, 9810 (2005)
17. J. Liu, G. Tu, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing, and F. Wang, J Mater Chem. 16, 1431 (2006)
18. C. H. Cheon, S. H. Joo, K. Kim, J. Jin, H. W. Shin, and Y. R. Kim, Macro. 38, 6336 (2005)
19. E. J. W. List, R. Guentner, P. S. Freitas, and U. Scherf, Adv Mater. 14, 374 (2002)
20. C. Chi, C. Im, V. Enkelmann, A. Ziegler, G. Lieser, and G. Wegner, Chem. Eur. J 11, 6833 (2005)
21. P. V. Lawson, J. L. Bredas, E. Zojer, R. Ganther, P. S. Freitas, M. Forster, and U. Scherf, Adv. Funct. Mater. 14, 1097 (2004)
22. H. H. Sung, and H. C. Lin, Macro., 37, 7945 (2004)
23. B. Liu, W. L. Yu, Y. H. Lai, and W. Huang, Macromol. 33, 8945 (2000)
24. N. G. Pschirer, U. H. F. Bunz, Macro.,33, 3961 (2000)
25. M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Scott, and R. D. Miller, Macro. 31, 1099 (1998)
26. H. H. Sung, and H. C. Lin, J Polym. Sci., Part A: Polym. Chem. 43, 2700 (2005)
27. C. W. Wu, C. M. Tsai, and H. C. Lin, Macromol. 39, 4298 (2006)
28. H. J. Cho, B. J. Jung, N. S. Cho, J. Lee, and H. K. Shim, Macromol. 36, 6704 (2003)
29. J. P. Chen, G. Klaerner, J. I. Lee, D. Mrkiewicz, V. Y. Lee, R. D. Miller, and J. C. Scott, Synth. Met. 107, 129 (1999)
30. E. R. Silcoff, A. S. I. Asadi, and T. Sheradsky, J Polym. Sci., Part A: Polym. Chem. 39, 872 (2001)
31. Fukuda, Masahiko, Keiji Sawada, and Katsumi Yoshino, Jpn. J. Appl. 28, 1433 (1989)
32. M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, K. S. Whitehead, and E. P. Woo, Synth. Met. 111, 579 (2000)
33. A. Perevedentsev, N, Chander, J. S. Kim, and D. D. C. Bradley, J. Polym. Sci. B Polym. Phys. 54, 1995, (2016)
34. Q. Zhang, L. Chi, G. Hai, Y. Fang, X. Li, R. Xia, W. Huang and E. Gu, Molecules, 22, 315 (2017)
35. A. J. Cadby, P. A. Lane, H. Mellor, S. J. Martin, M. Grell, C. Giebeler, D. D. C. Bradley, M. Wohlgenannt, C. An, and Z. V. Vardeny, Phys. Rev. B, 62, 15604 (2000)
36. M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo and M. Soliman, Acta. Polym. 49, 439 (1998)
37. A. L. T. Khan, P. Sreearunothai, L. M. Herz, M. J. Banach, and A. Ko¨hler, Phys. Rev. B. 69, 085201 (2004)
38. J. Peet, E. Brocker, Y. Xu, and G. C. Bazan, Adv. Mater. 20,1882–188 (2008)
39. M. R. Sirtonski, S. L. McFarlane and J. G. C. Veinot, J. Mater. Chem. 20, 8147–8152 (2010)
40. D. Nassyrov, C. Muller, A. Roige, I. Burgues-Ceballos, J. Oriol Osso, David B. Amabilino, M. Garriga, M. Isabel Alonso, A. R. Goniac and M. Campoy-Quiles, J. Mater. Chem. 22, 4519–4526 (2012)
41. M. E. Caruso, M. Anni, Phys. Rev. B Condens. Matter. 76, 054207 (2007)
42. M. Ariu, D. G. Lidzey,M. Sims, A. J. Cadby, P. A. Lane and D. D. C. Bradley, J. Phys. Condens. Matter. 14, 9975–9986 (2002)
43. P. F. Barbara, A. J. Gesquire, S.-J. Park, Y. J. Lee, Acc. Chem. Res. 38, 602 (2005).
44. T. Q. Nguyen, J. Wu, V. Doan, B. J. Schwartz, S. H. Tolbert, Science 288, 652-656 (2000)
45. B. J. Schwartz, Nature Mater. 7, 427-428 (2008)
46. G. He, Y. Li, J. Liu, Y. Yang, App. Phys. Lett. 80 4247 (2002)
47. H.-L. Chou, S.-Y. Hsu and P.-K. Wei, Polymer 46, 4967 (2008)
48. M. Yan, L. J. Rotherberg, E. W. Kwock, and T. M. Miller, Phys. Rev. Lett. 75, 1992 (1995)
49. G. F. He, Y. F. Li, J. Liu and Y. Yang, Appl. Phys. Lett. 80, 22 (2002)
50. K.-P. Tung, C.-C. Chen, P. Lee, Y.-W. Liu, T.-M. Hong, K. C. Hwang, J. H. Hsu, J. D. White, and A. C.−M. Yang, ACS Nano 5 (9), 7296 (2011)
51. Jenekhe, S. A.; Osaheni, J. A., Excimers and exciplexes of conjugated polymers. Science 1994, 265 (5173), 765-768.
52. Lemmer, U.; Heun, S.; Mahrt, R.; Scherf, U.; Hopmeier, M.; Siegner, U.; Go, E.; Mu, K.; Ba, H., Chemical physics letters 1995, 240 (4), 373-378.
53. Hayes, G.; Samuel, I.; Phillips, R., Physical Review B 1996, 54 (12), R8301.
54. Watanabe, A.; Kodaira, T.; Ito, O., Chemical physics letters 1997, 273 (3-4), 227-231.
55. Dogariu, A.; Vacar, D.; Heeger, A. J., Physical Review B 1998, 58 (16), 10218.
56. Nguyen, T.-Q.; Doan, V.; Schwartz, B. J., The Journal of chemical physics 1999, 110 (8), 4068-4078.
57. Nguyen, T.-Q.; Martini, I. B.; Liu, J.; Schwartz, B. J., Controlling The Journal of Physical Chemistry B 2000, 104 (2), 237-255.
58. Bjorklund, T. G.; Lim, S.-H.; Bardeen, C. J., The Journal of Physical Chemistry B 2001, 105 (48), 11970-11977.
59. Cornil, J.; Beljonne, D.; Calbert, J. P.; Brédas, J. L., Advanced materials 2001, 13 (14), 1053-1067.
60. Ruseckas, A.; Namdas, E. B.; Theander, M.; Svensson, M.; Yartsev, A.; Zigmantas, D.; Andersson, M. R.; Inganäs, O.; Sundström, V., Journal of Photochemistry and Photobiology A: Chemistry 2001, 144 (1), 3-12.
61. Dias, F. B.; Maçanita, A. L. Seixas de Melo, J.; Burrows, H. D.; Güntner, R.; Scherf, U.; Monkman, A. P., The Journal of chemical physics 2003, 118 (15), 7119-7126.
62. Schwartz, B. J., Annual Review of Physical Chemistry 2003, 54 (1), 141-172.
63. Vallée, R.; Tomczak, N.; Kuipers, L.; Vancso, G. J.; Van Hulst, N., Physical review letters 2003, 91 (3), 038301.
64. Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J., Chemical reviews 2004, 104 (11), 4971-5004.
65. Dykstra, T. E.; Kovalevskij, V.; Yang, X.; Scholes, G. D., Chemical Physics 2005, 318 (1-2), 21-32.
66. Kim, Y.; Bouffard, J.; Kooi, S. E.; Swager, T. M., Journal of the American Chemical Society 2005, 127 (39), 13726-13731.
67. Westenhoff, S.; Beenken, W. J. D.; Friend, R. H.; Greenham, N. C.; Yartsev, A.; Sundström, V., Physical Review Letters 2006, 97 (16).
68. Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou, S.-Y.; Liau, K.-L.; Gavin Tsai, H.-H.; Lee, G.-H.; Peng, S.-M., Journal of the American Chemical Society 2006, 128 (43), 14109-14119.
69. Chasteen, S. V.; Sholin, V.; Carter, S. A.; Rumbles, G., Solar Energy Materials and Solar Cells 2008, 92 (6), 651-659.
70. Di Paolo, R. E.; Burrows, H. D.; Morgado, J.; Maçanita, A. L., ChemPhysChem 2009, 10 (2), 448-454.
71. Dykstra, T. E.; Hennebicq, E.; Beljonne, D.; Gierschner, J.; Claudio, G.; Bittner, E. R.; Knoester, J.; Scholes, G. D., The Journal of Physical Chemistry B 2009, 113 (3), 656-667.
72. Guo, J.; Ohkita, H.; Benten, H.; Ito, S., Journal of the American Chemical Society 2009, 131 (46), 16869-16880.
73. Sherwood, G. A.; Cheng, R.; Smith, T. M.; Werner, J. H.; Shreve, A. P.; Peteanu, L. A.; Wildeman, J., The Journal of Physical Chemistry C 2009, 113 (43), 18851-18862.
74. Hao, X.-T.; McKimmie, L. J.; Smith, T. A., The Journal of Physical Chemistry Letters 2011, 2 (13), 1520-1525.
75. Huang, J.; Sun, N.; Dong, Y.; Tang, R.; Lu, P.; Cai, P.; Li, Q.; Ma, D.; Qin, J.; Li, Z., Advanced Functional Materials 2013, 23 (18), 2329-2337.
76. Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A., Nature materials 2013, 12 (11), 1038-1044.
77. Becker, W., Advanced time-correlated single photon counting applications. Springer: 2015; Vol. 111.
78. Jackson, N. E.; Kohlstedt, K. L.; Savoie, B. M.; Olvera de la Cruz, M.; Schatz, G. C.; Chen, L. X.; Ratner, M. A., Journal of the American Chemical Society 2015, 137 (19), 6254-6262.
79. Prasad, S.; Aljaafreh, M. J.; AlSalhi, M. S., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 232, 118151.
80. Collison, C. J.; Rothberg, L. J.; Treemaneekarn, V.; Li, Y., Macromolecules 2001, 34 (7), 2346-2352.
81. Yan, M.; Rothberg, L.; Papadimitrakopoulos, F.; Galvin, M.; Miller, T., Physical review letters 1994, 73 (5), 744.
82. H. Lu, C. H. Chang, B. R. Wu, N. C. Wu, J. Z. Liang, C. A. Dai, Arnold C.-M. Yang., ACS Nano.(under review)
83. Mark Fox., Optical Properties of Solids, OXFORD
84. Huang, Y.-J., Yeh, J.-W.; Yang, A. C.-M., Materialia 2021, 15, 100978.
85. Tung, K.-P.; Chen, C.-C.; Lee, P.; Liu, Y.-W.; Hong, T.-M.; Hwang, K. C.; Hsu, J. H.; White, J. D.; Yang, A. C. M. ACS Nano 2011, 5, 7296-7302.
86. Chen, P.-T.; Yang, Y.-W.; Reiter, G.; Yang, A. C. M. Polymer 2020, 204, 122753.
87. Shih, K. S.; Chen, C. C.; Chen, P.-T.; Yang, Y.-W.; White, J. D.; Chang, Y.-M.; Yang, A. C.-M. ACS Photonics 2015, 2, 33-42.
88. Lee, P.; Li, W.-C.; Chen, B.-J.; Yang, C.-W.; Chang, C.-C.; Botiz, I.; Reiter, G.; Lin, T.-L.; Tang, J.; Yang, A. C.-M. ACS Nano 2013, 7, 6658-6666.
89. Greenham, N. C.; Samuel, I. D. W.; Hayes, G. R.; Phillips, R. T.; Kessener, Y. A. R. R.; Moratti, S. C.; Holmes, A. B.; Friend, R. H. Chem. Phys. Lett. 1995, 241, 89-96.
90. H.-Lu., Z.-M. Weng; C.-C. Chen; Y.-T. Liao; Y.-M. Chang; A. C.-M. Yang, ACS Nano. (under review)
91. A. C.-M. Yang, M. S. Kunz, J. A. Logan, Micronecking Operative during Crazing in Polymer Glasses. Macromol. 1993, 26, 1767-1773.
92. J. H. Lin, A. C.-M. Yang. Macromol. 2001, 34, 3698-3705.
93. C. H. Lin, A. C.-M. Yang. Macromol. 2001, 34, 4865-4873.
94. J. H. Lin, A. C.-M. Yang. J. Mat. Sci. 2000, 35, 4231-4242.
95. A. C.-M. Yang, R. C. Wang, M. S. Kunz, I. C. Yang. J. Polym. Sci. Part B: Polym. Phys. 1996, 34, 1141-1145.
96. H. Lu, C. H. Chang, B. R. Wu, N. C. Wu, J. Z. Liang, C. A. Dai, Arnold C.-M. Yang, Macromol. (under review)
97. Wikipedia contributors. (2021, September 30). In Wikipedia, The Free Encyclopedia. Retrieved 12:00, October 9, 2021
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *