帳號:guest(3.142.42.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):翁怡甄
作者(外文):Weng, Yi-Chen
論文名稱(中文):聚乙二醇 Li1.3Al0.3Ti1.7(PO4)3複合材料作為半固態鋰離子電池的固態電解質之電化學性能研究
論文名稱(外文):PEO/Li1.3Al0.3Ti1.7(PO4)3 Composite Solid Electrolyte for Hybrid Solid-state Lithium-ion Batteries
指導教授(中文):蔡哲正
指導教授(外文):Tsai, Cho-Jen
口試委員(中文):陳翰儀
林居南
口試委員(外文):Chen, Han-Yi
Lin, Ju-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031598
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:57
中文關鍵詞:半固態鋰電池固態電解質複合性固態電解質
外文關鍵詞:Hybrid solid-state lithium-ion batterySolid state electrolyteComposite solid electrolytet
相關次數:
  • 推薦推薦:0
  • 點閱點閱:424
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在過去幾十年當中,鋰離子電池除了是許多研究團隊的研究對象,更已廣泛地被使用在許多可攜式裝置或電動車當中。然而,目前商用化鋰電池中含有由鋰鹽以及有機溶劑組成的電解液,這些液體有可能因包裝不良造成洩漏,且分解出會對人體造成危害的產物,另外,這些可燃性的有機溶劑有可能引起燃燒或爆炸,以上這些問題皆讓鋰電池的使用存在著安全上的疑慮,因此許多研究團隊致力於發展固態電解質,其中複合型固態電解質結合了無機材料和有機分子的優勢,使其成為具有發展潛力的固態電解質材料。
本實驗的第一部分以溶膠凝膠法製備NASICON型固態電解質LATP粉體,粉體的結晶結構、形貌分別以X光繞射儀及場發射型掃描式電子顯微鏡進行量測與研究。進一步燒結成緻密的陶瓷碇後,測得在30 ℃和60 ℃下的鋰離子傳導率分別是2.378 × 10-4及7.596 × 10-4 S/cm。
第二部分的實驗則是將不同比例的LATP粉體(0、10、50 wt%)加入聚乙二醇(PEO)及過氯酸鋰(LiClO4)中形成複合型固態電解質,在加入LATP後能大幅的將整體的電化學穩定窗口提升至5 V。對以鋰金屬作為對稱電極組成的對稱電池進行電流循環測試,發現以添加50 wt% LATP的複合型固態電解質組成的對稱電池的整體阻抗值為最小值。
實驗的第三部分將複合型固態電解質與磷酸鋰鐵(LiFePO4)、鋰片、10 μL EC/DMC組成半固態電池,並對其進行多樣的電化學測試。其中以添加50 wt% LATP的複合型固態電解質組成的電池在變速率充放電測試中有最優的表現。
Over the past decades, the safety hazard results from the use of flammable liquid electrolytes and the demand for higher energy density batteries have motivated the research in the area of solid-state electrolytes. Among a variety of solid-state electrolytes, composite solid electrolytes (CSEs) have attracted great attention and been viewed as a promising candidate for the next-generation energy storage system.
In the first part of this work, the NASICON-type ionic conductor, Li1.3Al0.3Ti1.7(PO4)3 (LATP), was synthesized by sol-gel process. It’ s structure and morphology were further examined by X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy measurement. In addition, the ionic conductivity of LATP at 30 ℃ and 60 ℃ were 2.378 × 10-4 and 7.596 × 10-4 S/cm, respectively.
In the second part, the CSEs composed of PEO, LiClO4, and LATP particles were prepared via slurry casting method. The electrochemical stability window can be enlarged to 5 V by the incorporation of LATP. In the measurements of the compatibility with lithium metal of the CSEs, it was found that the addition of LATP could lead to electrochemical instability.
In the final part, the LiFePO4/CSE/Li hybrid solid-state cells were assembled and investigated. The results show that the incorporation of 50 wt% of LATP would greatly improve the rate capability.
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Inorganic solid electrolyte 5
2.1.1 Introduction of inorganic solid electrolyte 5
2.1.2 NASICON-type 7
2.2 Poly(ethylene oxide) 9
2.2.1 Mechanism of ionic transport in PEO 10
2.2.2 Limitations of PEO 10
2.3 Strategies of improving properties of PEO 11
2.3.1 Polymer blend 12
2.3.2 Plasticizer 13
2.3.3 Composite solid electrolyte: Inert filler 14
2.3.4 Composite solid electrolyte: Active filler 16
Chapter 3 Experimental Procedure 21
3.1 Materials preparation 21
3.1.1 Synthesis procedure 21
3.1.2 Sintering procedure 23
3.1.3 Preparation of composite solid electrolyte 23
3.1.4 Preparation of LiFePO4 cathode 24
3.1.5 Hybrid solid-state LiFePO4/CSE/Li cell assembly 25
3.2 Material characterization 26
3.2.1 X-ray Diffraction (XRD) 26
3.2.2 Scanning electron microscope (SEM) 27
3.2.3 Raman spectroscopy 27
3.2.4 Particle size analyzer 28
3.3 Electrochemical characterization 28
3.3.1 Cycle performance and rate capability test 28
3.3.2 Electrochemical impedance spectroscopy (EIS) 28
3.3.3 Linear sweep voltammetry (LSV) 29
Chapter 4 Results and Discussion 30
4.1 LATP 30
4.1.1 The synthesis of LATP powder 30
4.1.2 Lithium ionic conductivity of LATP 32
4.2 Composite solid electrolyte (CSE) 36
4.2.1 Material characterizations of CSEs 36
4.2.2 Electrochemical stability windows of CSEs 38
4.2.3 Compatibility 39
4.3 Performance of LiFePO4/CSE/Li cells 44
4.3.1 Rate capability 44
4.3.2 Cycle performance 50
Chapter 5 Conclusion 52
Chapter 6 Future prospects 53
Referees 54
1. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 2011: p. 171-179.
2. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004. 104(10): p. 4303-417.
3. Eshetu, G.G., et al., In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Phys Chem Chem Phys, 2013. 15(23): p. 9145-55.
4. Fenton, D.E., J.M. Parker, and P.V. Wright, Complexes of Alkali-Metal Ions with Poly(Ethylene Oxide). Polymer, 1973. 14(11): p. 589-589.
5. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal, 2006. 42(1): p. 21-42.
6. Song, J.Y., Y.Y. Wang, and C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources, 1999. 77(2): p. 183-197.
7. Bates, J.B., et al., Electrical-Properties of Amorphous Lithium Electrolyte Thin-Films. Solid State Ionics, 1992. 53: p. 647-654.
8. Bates, J.B., et al., Fabrication and Characterization of Amorphous Lithium Electrolyte Thin-Films and Rechargeable Thin-Film Batteries. Journal of Power Sources, 1993. 43(1-3): p. 103-110.
9. Yu, X.H., et al., A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. Journal of the Electrochemical Society, 1997. 144(2): p. 524-532.
10. Richards, W.D., et al., Interface Stability in Solid-State Batteries. Chemistry of Materials, 2016. 28(1): p. 266-273.
11. Harada, Y., et al., Lithium ion conductivity of polycrystalline perovskite La0.67-xLi3xTiO3 with ordered and disordered arrangements of the A-site ions. Solid State Ionics, 1998. 108(1-4): p. 407-413.
12. Inaguma, Y., et al., High Ionic-Conductivity in Lithium Lanthanum Titanate. Solid State Communications, 1993. 86(10): p. 689-693.
13. Li, Y.T., et al., Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry, 2012. 22(30): p. 15357-15361.
14. Ohta, S., T. Kobayashi, and T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7− X La3 (Zr2− X, NbX) O12 (X= 0–2). Journal of Power Sources, 2011. 196(6): p. 3342-3345.
15. Aono, H., et al., Ionic-Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. Journal of the Electrochemical Society, 1990. 137(4): p. 1023-1027.
16. Thokchom, J.S., N. Gupta, and B. Kumar, Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass-Ceramic. Journal of the Electrochemical Society, 2008. 155(12): p. A915-A920.
17. Kato, Y., et al., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 2016. 1(4): p. 1-7.
18. Kamaya, N., et al., A lithium superionic conductor. Nat Mater, 2011. 10(9): p. 682-6.
19. Matsuo, M., et al., Complex Hydrides with (BH4)(-) and (NH2)(-) Anions as New Lithium Fast-Ion Conductors. Journal of the American Chemical Society, 2009. 131(45): p. 16389-+.
20. Li, X., et al., Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angew Chem Int Ed Engl, 2019. 58(46): p. 16427-16432.
21. Asano, T., et al., Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. Adv Mater, 2018. 30(44): p. e1803075.
22. Goodenough, J.B., H.Y.P. Hong, and J.A. Kafalas, Fast Na+-Ion Transport in Skeleton Structures. Materials Research Bulletin, 1976. 11(2): p. 203-220.
23. Francisco, B.E., C.R. Stoldt, and J.C. M'Peko, Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes. Chemistry of Materials, 2014. 26(16): p. 4741-4749.
24. Aono, H., N. Imanaka, and G. Adachi, High Li+ Conducting Ceramics. Accounts of Chemical Research, 1994. 27(9): p. 265-270.
25. Subramanian, M., R. Subramanian, and A. Clearfield, Lithium ion conductors in the system AB (IV) 2 (PO4) 3 (B= Ti, Zr and Hf). Solid State Ionics, 1986. 18: p. 562-569.
26. Aono, H., et al., Ionic conductivity of the lithium titanium phosphate (Li/sub 1+ x/M/sub x/Ti/sub 2-x/(PO/sub 4/)/sub 3/, M= Al, Sc, Y, and La) systems. Journal of the Electrochemical Society, 1989. 136(2): p. 590.
27. Arbi, K., J. Rojo, and J. Sanz, Lithium mobility in titanium based Nasicon Li1+ xTi2− xAlx (PO4) 3 and LiTi2− x Zrx (PO4) 3 materials followed by NMR and impedance spectroscopy. Journal of the European Ceramic Society, 2007. 27(13-15): p. 4215-4218.
28. Hasegawa, S., et al., Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water. Journal of Power Sources, 2009. 189(1): p. 371-377.
29. Knauth, P., Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009. 180(14-16): p. 911-916.
30. Cheng, Q., et al., Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating. Joule, 2019. 3(6): p. 1510-1522.
31. Yang, Z.L., et al., Facile interfacial adhesion enabled LATP-based solid-state lithium metal battery. Chemical Engineering Journal, 2020. 392: p. 123650.
32. Young, W.S., W.F. Kuan, and T.H. Epps, Block Copolymer Electrolytes for Rechargeable Lithium Batteries. Journal of Polymer Science Part B-Polymer Physics, 2014. 52(1): p. 1-16.
33. Meyer, W.H., Polymer electrolytes for lithium-ion batteries. Adv Mater, 1998. 10(6): p. 439-48.
34. Ma, J., et al., A Strategy to Make High Voltage LiCoO2 Compatible with Polyethylene Oxide Electrolyte in All-Solid-State Lithium Ion Batteries. Journal of the Electrochemical Society, 2017. 164(14): p. A3454-A3461.
35. Tao, C., et al., A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochimica Acta, 2017. 257: p. 31-39.
36. Das, S. and A. Ghosh, Effect of plasticizers on ionic conductivity and dielectric relaxation of PEO-LiClO4 polymer electrolyte. Electrochimica Acta, 2015. 171: p. 59-65.
37. Weston, J.E. and B.C.H. Steele, Effects of Inert Fillers on the Mechanical and Electrochemical Properties of Lithium Salt Poly (Ethylene-Oxide) Polymer Electrolytes. Solid State Ionics, 1982. 7(1): p. 75-79.
38. Croce, F., et al., Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998. 394(6692): p. 456-458.
39. Jayathilaka, P., et al., Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO) 9LiTFSI polymer electrolyte system. Electrochimica acta, 2002. 47(20): p. 3257-3268.
40. Dissanayake, M., et al., Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO) 9LiCF3SO3: Al2O3 composite polymer electrolyte. Journal of Power Sources, 2003. 119: p. 409-414.
41. Sun, H.Y., et al., Enhanced lithium‐ion transport in PEO‐based composite polymer electrolytes with ferroelectric BaTiO3. Journal of the Electrochemical Society, 1999. 146(5): p. 1672.
42. Sun, H.Y., et al., Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. Journal of the Electrochemical Society, 2000. 147(7): p. 2462-2467.
43. Choi, J.H., et al., Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. Journal of Power Sources, 2015. 274: p. 458-463.
44. Wang, W., et al., Lithium ion conducting poly (ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. The Journal of Physical Chemistry C, 2017. 121(5): p. 2563-2573.
45. Zheng, J., M. Tang, and Y.Y. Hu, Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes. Angew Chem Int Ed Engl, 2016. 55(40): p. 12538-42.
46. Zhang, J.X., et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016. 28: p. 447-454.
47. Key, B., et al., Solution-based synthesis and characterization of lithium-ion conducting phosphate ceramics for lithium metal batteries. Chemistry of materials, 2012. 24(2): p. 287-293.
48. Yu, S., et al., Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li 1. 3 Al 0. 3 Ti 1. 7 (PO 4) 3 solid-state electrolyte. Functional Materials Letters, 2016. 9(05): p. 1650066.
49. Li, L., et al., Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification. Ionics, 2020. 26(8): p. 3815-3821.
50. Dashjav, E., et al., The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates. Solid State Ionics, 2018. 321: p. 83-90.
51. Giarola, M., et al., Structure and vibrational dynamics of NASICON-type LiTi2 (PO4) 3. The Journal of Physical Chemistry C, 2017. 121(7): p. 3697-3706.
52. Burba, C.M. and R. Frech, Vibrational spectroscopic study of lithium intercalation into LiTi2 (PO4) 3. Solid State Ionics, 2006. 177(17-18): p. 1489-1494.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *