|
1. Altshuller, A. P., Estimation of the natural background of ozone present at surface rural locations. Journal of Air Pollution Control Association 1987, 37 (12), 1409-1417. 2. Lippmann, M., Health effects of ozone a critical review. Journal of the Air Pollution Control Association 1989, 39 (5), 672-695. 3. Dueñas, C.; Fernández, M. C.; Cañete, S.; Carretero, J.; Liger, E., Analyses of ozone in urban and rural sites in Málaga (Spain). Chemosphere 2004, 56 (6), 631-639. 4. Coyle, M.; Smith, R. I.; Stedman, J. R.; Weston, K. J.; Fowler, D., Quantifying the spatial distribution of surface ozone concentration in the UK. Atmospheric Environment 2002, 36 (6), 1013-1024. 5. Chen, P. C.; Lai, Y. M.; Chan, C. C.; Hwang, J. S.; Yang, C. Y.; Wang, J. D., Short term effect of ozone on the pulmonary function of children in primary school. Environmental Health Perspectives 1999, 107 (11), 921-925. 6. Burnett, R. T.; Brook, J. R.; Yung, W. T.; Dales, R. E.; Krewski, D., Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environmental Research 1997, 72 (1), 24-31. 7. Khaniabadi, Y. O.; Hopke, P. K.; Goudarzi, G.; Daryanoosh, S. M.; Jourvand, M.; Basiri, H., Cardiopulmonary mortality and COPD attributed to ambient ozone. Environmental Research 2017, 152, 336-341. 8. Hodgkinson, J.; Tatam, R. P., Optical gas sensing: a review. Measurement Science and Technology 2012, 24 (1), 012004. 9. Stradiotto, N. R.; Yamanaka, H.; Zanoni, M. V. B., Electrochemical sensors: a powerful tool in analytical chemistry. Journal of the Brazilian Chemical Society 2003, 14 (2). 10. Stetter, J. R.; Li, J., Amperometric gas gensors a review. Chemical Reviews 2008, 108 (2), 352-366. 11. Janata, J., Principles of chemical sensors. Springer Science & Business Media: 2010. 12. Can, Z. Y.; Narita, H.; Mizusaki, J.; Tagawa, H., Detection of carbon monoxide by using zirconia oxygen sensor. Solid State Ionics 1995, 79, 344-348. 13. Sridhar, K. R.; Blanchard, J. A., Electronic conduction in low oxygen partial pressure measurements using an amperometric zirconia oxygen sensor. Sensors and Actuators B: Chemical 1999, 59 (1), 60-67. 14. Xu, J.; Pan, Q.; Shun, Y. a.; Tian, Z., Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical 2000, 66 (1), 277-279. 15. Li, Y.; Liang, J.; Tao, Z.; Chen, J., CuO particles and plates: synthesis and gas sensor application. Materials Research Bulletin 2008, 43 (8), 2380-2385. 16. Penza, M.; Tagliente, M. A.; Mirenghi, L.; Gerardi, C.; Martucci, C.; Cassano, G., Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor. Sensors and Actuators B: Chemical 1998, 50 (1), 9-18. 17. Waitz, T.; Wagner, T.; Sauerwald, T.; Kohl, C. D.; Tiemann, M., Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Advanced Functional Materials 2009, 19 (4), 653-661. 18. Wang, B.; Zhu, L. F.; Yang, Y. H.; Xu, N. S.; Yang, G. W., Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. The Journal of Physical Chemistry C 2008, 112 (17), 6643-6647. 19. Wong, Y. C.; Ang, B. C.; Haseeb, A. S. M. A.; Baharuddin, A. A.; Wong, Y. H., Conducting polymers as chemiresistive gas sensing materials: a review. Journal of the Electrochemical Society 2019, 167 (3), 037503. 20. Das, M.; Roy, S., Polypyrrole and associated hybrid nanocomposites as chemiresistive gas sensors: a comprehensive review. Materials Science in Semiconductor Processing 2021, 121, 105332. 21. Yoon, H. J.; Jun, D. H.; Yang, J. H.; Zhou, Z.; Yang, S. S.; Cheng, M. M., Carbon dioxide gas sensor using a graphene sheet. Sensors and Actuators B: Chemical 2011, 157 (1), 310-313. 22. Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G., MOF thin film coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Advanced Materials 2016, 28 (26), 5229-5234. 23. Drobek, M.; Kim, J. H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S. S., MOF based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Applied Materials & Interfaces 2016, 8 (13), 8323-8328. 24. Morrison, S. R., Selectivity in semiconductor gas sensors. Sensors and Actuators 1987, 12 (4), 425-440. 25. Tardy, P.; Coulon, J. R.; Lucat, C.; Menil, F., Dynamic thermal conductivity sensor for gas detection. Sensors and Actuators B: Chemical 2004, 98 (1), 63-68. 26. Firth, J.; Jones, A.; Jones, T., The principles of the detection of flammable atmospheres by catalytic devices. Combustion and Flame 1973, 20 (3), 303-311. 27. Ruhland, B.; Becker, T.; Müller, G., Gas kinetic interactions of nitrous oxides with SnO2 surfaces. Sensors and Actuators B: Chemical 1998, 50 (1), 85-94. 28. Shankar, P.; Rayappan, J. B. B., Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases a review. Science Letters Journal 2015, 4 (4), 126. 29. Kim, H. J.; Lee, J. H., Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sensors and Actuators B: Chemical 2014, 192, 607-627. 30. Yamazoe, N.; Shimanoe, K., Receptor function and response of semiconductor gas sensor. Journal of Sensors 2009, 2009. 31. Ahmad, R.; Majhi, S. M.; Zhang, X.; Swager, T. M.; Salama, K. N., Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Advances in Colloid and Interface Science 2019, 270, 1-27. 32. Fan, S. W.; Srivastava, A. K.; Dravid, V. P., UV activated room temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters 2009, 95 (14), 142106. 33. Zhu, L.; Zeng, W., Room temperature gas sensing of ZnO based gas sensor: a review. Sensors and Actuators A: Physical 2017, 267, 242-261. 34. Kumar, R.; Goel, N.; Kumar, M., UV activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors 2017, 2 (11), 1744-1752. 35. Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, T., Interactions of tin oxide surface with O2, H2O and H2. Surface Science 1979, 86, 335-344. 36. Afzal, A.; Cioffi, N.; Sabbatini, L.; Torsi, L., NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sensors and Actuators B: Chemical 2012, 171, 25-42. 37. Bejaoui, A.; Guerin, J.; Zapien, J.; Aguir, K., Theoretical and experimental study of the response of CuO gas sensor under ozone. Sensors and Actuators B: Chemical 2014, 190, 8-15. 38. Acuautla, M.; Bernardini, S.; Gallais, L.; Fiorido, T.; Patout, L.; Bendahan, M., Ozone flexible sensors fabricated by photolithography and laser ablation processes based on ZnO nanoparticles. Sensors and Actuators B: Chemical 2014, 203, 602-611. 39. Li, Y.; Chen, N.; Deng, D.; Xing, X.; Xiao, X.; Wang, Y., Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sensors and Actuators B: Chemical 2017, 238, 264-273. 40. Van Hieu, N.; Van Quang, V.; Hoa, N. D.; Kim, D., Preparing large scale WO3 nanowire like structure for high sensitivity NH3 gas sensor through a simple route. Current Applied Physics 2011, 11 (3), 657-661. 41. He, X.; Ying, Z.; Wen, F.; Li, L.; Zheng, X.; Zheng, P.; Wang, G., MoS2 doped spherical SnO2 for SO2 sensing under UV light at room temperature. Materials Science in Semiconductor Processing 2021, 134, 105997. 42. Ramu, S.; Chandrakalavathi, T.; Murali, G.; Kumar, K. S.; Sudharani, A.; Ramanadha, M.; Peta, K. R.; Jeyalakshmi, R.; Vijayalakshmi, R., UV enhanced NO gas sensing properties of the MoS2 monolayer gas sensor. Materials Research Express 2019, 6 (8), 085075. 43. Cabot, A.; Marsal, A.; Arbiol, J.; Morante, J. R., Bi2O3 as a selective sensing material for NO detection. Sensors and Actuators B: Chemical 2004, 99 (1), 74-89. 44. Franke, M. E.; Koplin, T. J.; Simon, U., Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2006, 2 (1), 36-50. 45. Sun, Y. F.; Liu, S. B.; Meng, F. L.; Liu, J. Y.; Jin, Z.; Kong, L. T.; Liu, J. H., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 2012, 12 (3), 2610-2631. 46. Xu, Y.; Tian, X.; Liu, P.; Sun, Y.; Du, G., In2O3 nanoplates with different crystallinity and porosity: controllable synthesis and gas sensing properties investigation. Journal of Alloys and Compounds 2019, 787, 1063-1073. 47. Korotcenkov, G.; Cerneavschi, A.; Brinzari, V.; Vasiliev, A.; Ivanov, M.; Cornet, A.; Morante, J.; Cabot, A.; Arbiol, J., In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors. Sensors and Actuators B: Chemical 2004, 99 (2-3), 297-303. 48. Matsunaga, N.; Sakai, G.; Shimanoe, K.; Yamazoe, N., Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction diffusion equation. Sensors and Actuators B: Chemical 2003, 96 (1-2), 226-233. 49. Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N., Theory of gas diffusion controlled sensitivity for thin film semiconductor gas sensor. Sensors and Actuators B: Chemical 2001, 80 (2), 125-131. 50. Kolmakov, A.; Moskovits, M., Chemical sensing and catalysis by one dimensional metal oxide nanostructures. Annual Review of Materials Research 2004, 34, 151-180. 51. Schmidt Mende, L.; MacManus Driscoll, J. L., ZnO nanostructures, defects, and devices. Materials Today 2007, 10 (5), 40-48. 52. Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H., Gas sensing properties of defect controlled ZnO nanowire gas sensor. Applied physics letters 2008, 93 (26), 263103. 53. Degler, D.; Weimar, U.; Barsan, N., Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal oxide based gas sensing materials. ACS Sensors 2019, 4 (9), 2228-2249. 54. Punetha, D.; Pandey, S. K., Ultrasensitive NH3 gas sensor based on Au/ZnO/n-Si heterojunction Schottky diode. IEEE Transactions on Electron Devices 2019, 66 (8), 3560-3567. 55. Hong, L. Y.; Ke, H. W.; Tsai, C. E.; Lin, H. N., Low concentration NO gas sensing under ambient environment using Cu2O nanoparticle modified ZnO nanowires. Materials Letters 2016, 185, 243-246. 56. Yamazoe, N.; Kurokawa, Y.; Seiyama, T., Effects of additives on semiconductor gas sensors. Sensors and Actuators 1983, 4, 283-289. 57. Yamaguchi, S., Gold colloid as applied to the H2S gas sensor. Materials Chemistry 1981, 6 (6), 505-508. 58. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, A comprehensive review of ZnO materials and devices. Journal of Applied Physics 2005, 98 (4), 11. 59. Wang, X.; Ahmad, M.; Sun, H., Three dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications. Materials 2017, 10 (11), 1304. 60. 徐正軒. 大面積合成氧化鋅奈米複合材料及應用於臭氧與二氧化氮氣體感測. 國立清華大學, 新竹市, 2020. 61. Zhang, Y.; Ram, M. K.; Stefanakos, E. K.; Goswami, D. Y., Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials 2012, 2012. 62. 呂文忠. 銅氧化物/金/氧化鋅奈米線複合材料應用於二氧化氮氣體感測. 國立清華大學, 新竹市, 2018. 63. Lide, D. R., CRC handbook of chemistry and physics. 85 ed.; CRC press: 2004. 64. Jung, S.; Jeon, S.; Yong, K., Fabrication and characterization of flower like CuO–ZnO heterostructure nanowire arrays by photochemical deposition. Nanotechnology 2010, 22 (1), 015606. 65. Kim, J.; Kim, W.; Yong, K., CuO/ZnO heterostructured nanorods: photochemical synthesis and the mechanism of H2S gas sensing. The Journal of Physical Chemistry C 2012, 116 (29), 15682-15691. 66. 陳銘福; 林儀豪; 陳志文; 陳柏睿; 林郁欣; 卓文浩; 陳建霖; 柯志忠, 應用於晶圓級氣體感測器之高效能點測設備開發. 科儀新知 2019, (221), 88-100.
|