帳號:guest(3.145.175.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張庭維
作者(外文):Chang, Ting-Wei
論文名稱(中文):銅氧化物/金/氧化鋅奈米複合材料的批量生產與檢測並應用於環境監測臭氧與二氧化氮
論文名稱(外文):Batch Synthesis and Characterization of Copper Oxide/Gold/Zinc Oxide Nanocomposite and Application for Environmental Monitoring of Ozone and Nitrogen Dioxide
指導教授(中文):林鶴南
指導教授(外文):Lin, Hen-Nan
口試委員(中文):徐文光
許鉦宗
口試委員(外文):Hsu, Wen-Kuang
Sheu, Jeng-Tzong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031593
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:98
中文關鍵詞:金屬氧化物氣體感測批量生產材料分析場域測試神經網路
外文關鍵詞:Metal OxidesGas SensingBatch ProductionMaterials CharacterizationField TestArtificial Neural Network
相關次數:
  • 推薦推薦:0
  • 點閱點閱:318
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗於四吋晶圓上成長銅氧化物/金/氧化鋅三元複合材料,並使用此材料進行6種氣體的感測、四吋晶圓級形貌與感測均勻度分析、以及戶外場域的實際測試。
首先以曝光與電子束沉積技術,將302個電極圖案印刷於四吋矽晶圓。以水熱法成長氧化鋅柱於四吋晶圓並退火,再以光還原法依序修飾金與銅氧化物於氧化鋅。形成銅氧化物/金/氧化鋅三元複合材料。
由掃描式電子顯微鏡(SEM)觀察形貌。氧化鋅柱直徑約70 nm,長約1.7 um。銅氧化物呈現球狀並出現在氧化鋅柱頂端與側面,直徑約200 nm。且材料在四吋晶圓各處的形貌大致均勻。
使用此材料進行氣體感測,發現材料對300 ppb二氧化氮有44%響應。對300 ppb臭氧有74%響應。在1 ppm二氧化氮/臭氧內,響應與濃度有高度線性關係(R2>0.98)。而對1 ppm甲醛、2 ppm二氧化硫、2 ppm氨氣、5 ppm一氧化氮的響應分別為-11%、-1.35%、-6.5%、13.3%,皆非常的低。
使用儀科中心的晶圓級感測晶粒批量點測系統,進行302顆銅氧化物/金/氧化鋅晶粒的氣體感測均勻度分析。發現在空氣氣氛的電阻平均為4 MΩ而標準差為6.6 MΩ。在200 ppb二氧化氮,響應平均183%而標準差148%。此結果雖不算均勻,但可以挑選性質相近的晶粒進行分級與使用。
將三元複合材料感測晶片安裝至手機操控可攜式感測器,與智慧型手機一同放入防水之空氣盒子。並部屬到環保署新北永和空氣品質監測站,進行場域測試。並進行人工神經網路(ANN)模型的建構與測試。使用為期兩周的資料建構模型,並套入後續一個月的資料進行濃度分析 。ANN分析之臭氧值與環保署臭氧值比較結果,R2為0.31。ANN分析之二氧化氮值與環保署二氧化氮值比較結果,R2為0.245。
同時也分析二氧化氮與臭氧的組合濃度,依不同組合倍率共嘗試6組。每組與環保署值比較R2,皆大於單一氣體結果。最好的結果R2顯示0.395,為1倍二氧化氮加1倍臭氧的組合濃度。此倍率與實驗室測得臭氧與二氧化氮靈敏度比值1.27相似。並且此R2已接近商用產品,顯示三元複合材料應用於環境氣體感測領域有極高潛力。
In this work, a compact chemiresistive gas sensor is developed by using a CuxO/Au/ZnO ternary nanocomposite. Batch production of nanocomposite sensing chips was realized on a 4-inch Si wafer along with wafer scale characterization. The nanocomposite sensor was used for sensing 6 different gases and deployed for field test.
First, 302 electrode patterns were printed on a 4-inch Si wafer by photolithography and electron beam deposition. ZnO nanorods were grown on this 4-inch wafer via a hydrothermal method. After thermal annealing, gold and copper oxides were sequentially deposited on ZnO nanorods. Consequently, a CuxO/Au/ZnO ternary nanocomposite was formed.
The morphology of the CuxO/Au/ZnO nanocomposite was investigated by a scanning electron microscope. The diameter of the ZnO nanorods was 70 nm and the length was 1.7 um. The copper oxides were spherical and appeared on the top and side of the ZnO nanorods. The diameter of spherical copper oxides was 200 nm. The morphology of CuxO/Au/ZnO on a 4-inch wafer was uniform.
A CuxO/Au/ZnO sensing chip was set in a homemade chamber and activated by a 365 nm UV LED during gas sensing. The sensing results showed responses of 74% at 300 ppb O3 and 44% at 300 ppb NO2. Both showed an excellent linear range from 25 ppb to 1 ppm (R2>0.98). Furthermore, the sensing results also showed responses of 11%, 1.35%, 6.5%, and 13.3% at 1 ppm HCHO, 2 ppm SO2, 2 ppm NH3, and 5 ppm NO, respectively.
Using the wafer level gas sensor probing system from Taiwan Instrument Research Institute (TIRI) to analyze the gas sensing consistency of 302 CuxO/Au/ZnO dies. It was found that the air resistance was 4 MΩ on average and the standard deviation was 6.6 MΩ. The response at 200 ppb NO2 was 183% on average and the standard deviation was 148%.
A CuxO/Au/ZnO sensing chip was installed in a smart phone-operated portable gas sensor. The portable sensor and a smart phone were integrated in a waterproof air box. The box was deployed at an Environmental Protection Agency (EPA) environmental monitoring station in Yonghe, New Taipei City for field test. Data from the first 2 weeks was used for constructing an artificial neural network (ANN) algorithm. The ANN algorithm was responsible for converting the CuxO/Au/ZnO resistance to the gas concentration. The ANN converted gas concentration was compared with the EPA station data. Therefore, a linear coefficient of determination R2 could be calculated.
Eight different combinations of CNO2 + CO3 had been tested including a single component. For one month test, it was found that the R2 was 0.31 for pure O3 and 0.245 for pure NO2. The best one was the combination of 1CNO2 + 1CO3 with an R2 value of 0.395, which ratio was close to the experimental O3 to NO2 sensitivity ratio of 1.27. This R2 value compares well with values of some commercial products. With wafer-scale uniformity and acceptable field test results, the CuxO/Au/ZnO ternary nanocomposite has excellent potential for environmental gas sensing.
摘要---i
Abstract---iii
致謝---vi
總目錄---vii
圖目錄---xi
表目錄---xvi
第一章 序論---1
1.1 研究背景---1
1.2 研究動機---2
第二章 文獻回顧---4
2.1 氣體感測器概述---4
2.1.1 氣體感測器種類---4
2.1.2 氣體感測器效能指標---8
2.2 化學電阻式感測器原理---9
2.2.1 吸附原理---10
2.2.2 脫附原理---12
2.2.3 吸附化學反應式---15
2.3 材料對感測的影響---18
2.3.1 材料結構---18
2.3.2 缺陷---22
2.3.3 修飾物---22
2.3.4 氣體選擇性---25
2.5 氧化鋅概論---26
2.5.1 晶體結構---26
2.5.2 缺陷---28
2.5.3 成長方法---30
2.6 複合材料---32
2.6.1 複合材料優勢---32
2.6.2 合成方法---34
第三章 實驗流程與儀器---36
3.1 實驗架構---36
3.2 材料合成---37
3.2.1 基板製作---37
3.2.2 氧化鋅合成---37
3.2.3 退火---38
3.2.4 奈米粒子修飾---39
3.3 材料分析---40
3.4 實驗室氣體感測---40
3.4.1 封閉式---41
3.4.2 流動式---45
3.5 戶外場域氣體感測---49
3.5.1 手機操控可攜式氣體感測器---49
3.5.2 戶外感測系統架構---52
3.6 感測晶片批量挑選---53
第四章 結果與討論---56
4.1 材料分析---56
4.1.1 表面形貌---56
4.1.2 元素組成---60
4.1.3 晶體結構---62
4.1.4 光致發光性質---63
4.2 氣體感測結果---64
4.2.1 二氧化氮感測---65
4.2.2 臭氧感測---67
4.2.3 甲醛感測---70
4.2.4 氨氣感測---71
4.2.5 二氧化硫感測---72
4.2.6 一氧化氮感測---73
4.2.7 選擇性結果整理---74
4.3 感測晶片批量挑選---75
4.4 戶外場域測試---81
4.4.1 人工神經網路計算---83
第五章 結論---91
第六章 參考文獻---94
1. Altshuller, A. P., Estimation of the natural background of ozone present at surface rural locations. Journal of Air Pollution Control Association 1987, 37 (12), 1409-1417.
2. Lippmann, M., Health effects of ozone a critical review. Journal of the Air Pollution Control Association 1989, 39 (5), 672-695.
3. Dueñas, C.; Fernández, M. C.; Cañete, S.; Carretero, J.; Liger, E., Analyses of ozone in urban and rural sites in Málaga (Spain). Chemosphere 2004, 56 (6), 631-639.
4. Coyle, M.; Smith, R. I.; Stedman, J. R.; Weston, K. J.; Fowler, D., Quantifying the spatial distribution of surface ozone concentration in the UK. Atmospheric Environment 2002, 36 (6), 1013-1024.
5. Chen, P. C.; Lai, Y. M.; Chan, C. C.; Hwang, J. S.; Yang, C. Y.; Wang, J. D., Short term effect of ozone on the pulmonary function of children in primary school. Environmental Health Perspectives 1999, 107 (11), 921-925.
6. Burnett, R. T.; Brook, J. R.; Yung, W. T.; Dales, R. E.; Krewski, D., Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environmental Research 1997, 72 (1), 24-31.
7. Khaniabadi, Y. O.; Hopke, P. K.; Goudarzi, G.; Daryanoosh, S. M.; Jourvand, M.; Basiri, H., Cardiopulmonary mortality and COPD attributed to ambient ozone. Environmental Research 2017, 152, 336-341.
8. Hodgkinson, J.; Tatam, R. P., Optical gas sensing: a review. Measurement Science and Technology 2012, 24 (1), 012004.
9. Stradiotto, N. R.; Yamanaka, H.; Zanoni, M. V. B., Electrochemical sensors: a powerful tool in analytical chemistry. Journal of the Brazilian Chemical Society 2003, 14 (2).
10. Stetter, J. R.; Li, J., Amperometric gas gensors a review. Chemical Reviews 2008, 108 (2), 352-366.
11. Janata, J., Principles of chemical sensors. Springer Science & Business Media: 2010.
12. Can, Z. Y.; Narita, H.; Mizusaki, J.; Tagawa, H., Detection of carbon monoxide by using zirconia oxygen sensor. Solid State Ionics 1995, 79, 344-348.
13. Sridhar, K. R.; Blanchard, J. A., Electronic conduction in low oxygen partial pressure measurements using an amperometric zirconia oxygen sensor. Sensors and Actuators B: Chemical 1999, 59 (1), 60-67.
14. Xu, J.; Pan, Q.; Shun, Y. a.; Tian, Z., Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical 2000, 66 (1), 277-279.
15. Li, Y.; Liang, J.; Tao, Z.; Chen, J., CuO particles and plates: synthesis and gas sensor application. Materials Research Bulletin 2008, 43 (8), 2380-2385.
16. Penza, M.; Tagliente, M. A.; Mirenghi, L.; Gerardi, C.; Martucci, C.; Cassano, G., Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor. Sensors and Actuators B: Chemical 1998, 50 (1), 9-18.
17. Waitz, T.; Wagner, T.; Sauerwald, T.; Kohl, C. D.; Tiemann, M., Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Advanced Functional Materials 2009, 19 (4), 653-661.
18. Wang, B.; Zhu, L. F.; Yang, Y. H.; Xu, N. S.; Yang, G. W., Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. The Journal of Physical Chemistry C 2008, 112 (17), 6643-6647.
19. Wong, Y. C.; Ang, B. C.; Haseeb, A. S. M. A.; Baharuddin, A. A.; Wong, Y. H., Conducting polymers as chemiresistive gas sensing materials: a review. Journal of the Electrochemical Society 2019, 167 (3), 037503.
20. Das, M.; Roy, S., Polypyrrole and associated hybrid nanocomposites as chemiresistive gas sensors: a comprehensive review. Materials Science in Semiconductor Processing 2021, 121, 105332.
21. Yoon, H. J.; Jun, D. H.; Yang, J. H.; Zhou, Z.; Yang, S. S.; Cheng, M. M., Carbon dioxide gas sensor using a graphene sheet. Sensors and Actuators B: Chemical 2011, 157 (1), 310-313.
22. Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G., MOF thin film coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Advanced Materials 2016, 28 (26), 5229-5234.
23. Drobek, M.; Kim, J. H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S. S., MOF based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Applied Materials & Interfaces 2016, 8 (13), 8323-8328.
24. Morrison, S. R., Selectivity in semiconductor gas sensors. Sensors and Actuators 1987, 12 (4), 425-440.
25. Tardy, P.; Coulon, J. R.; Lucat, C.; Menil, F., Dynamic thermal conductivity sensor for gas detection. Sensors and Actuators B: Chemical 2004, 98 (1), 63-68.
26. Firth, J.; Jones, A.; Jones, T., The principles of the detection of flammable atmospheres by catalytic devices. Combustion and Flame 1973, 20 (3), 303-311.
27. Ruhland, B.; Becker, T.; Müller, G., Gas kinetic interactions of nitrous oxides with SnO2 surfaces. Sensors and Actuators B: Chemical 1998, 50 (1), 85-94.
28. Shankar, P.; Rayappan, J. B. B., Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases a review. Science Letters Journal 2015, 4 (4), 126.
29. Kim, H. J.; Lee, J. H., Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sensors and Actuators B: Chemical 2014, 192, 607-627.
30. Yamazoe, N.; Shimanoe, K., Receptor function and response of semiconductor gas sensor. Journal of Sensors 2009, 2009.
31. Ahmad, R.; Majhi, S. M.; Zhang, X.; Swager, T. M.; Salama, K. N., Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Advances in Colloid and Interface Science 2019, 270, 1-27.
32. Fan, S. W.; Srivastava, A. K.; Dravid, V. P., UV activated room temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters 2009, 95 (14), 142106.
33. Zhu, L.; Zeng, W., Room temperature gas sensing of ZnO based gas sensor: a review. Sensors and Actuators A: Physical 2017, 267, 242-261.
34. Kumar, R.; Goel, N.; Kumar, M., UV activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors 2017, 2 (11), 1744-1752.
35. Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, T., Interactions of tin oxide surface with O2, H2O and H2. Surface Science 1979, 86, 335-344.
36. Afzal, A.; Cioffi, N.; Sabbatini, L.; Torsi, L., NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sensors and Actuators B: Chemical 2012, 171, 25-42.
37. Bejaoui, A.; Guerin, J.; Zapien, J.; Aguir, K., Theoretical and experimental study of the response of CuO gas sensor under ozone. Sensors and Actuators B: Chemical 2014, 190, 8-15.
38. Acuautla, M.; Bernardini, S.; Gallais, L.; Fiorido, T.; Patout, L.; Bendahan, M., Ozone flexible sensors fabricated by photolithography and laser ablation processes based on ZnO nanoparticles. Sensors and Actuators B: Chemical 2014, 203, 602-611.
39. Li, Y.; Chen, N.; Deng, D.; Xing, X.; Xiao, X.; Wang, Y., Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sensors and Actuators B: Chemical 2017, 238, 264-273.
40. Van Hieu, N.; Van Quang, V.; Hoa, N. D.; Kim, D., Preparing large scale WO3 nanowire like structure for high sensitivity NH3 gas sensor through a simple route. Current Applied Physics 2011, 11 (3), 657-661.
41. He, X.; Ying, Z.; Wen, F.; Li, L.; Zheng, X.; Zheng, P.; Wang, G., MoS2 doped spherical SnO2 for SO2 sensing under UV light at room temperature. Materials Science in Semiconductor Processing 2021, 134, 105997.
42. Ramu, S.; Chandrakalavathi, T.; Murali, G.; Kumar, K. S.; Sudharani, A.; Ramanadha, M.; Peta, K. R.; Jeyalakshmi, R.; Vijayalakshmi, R., UV enhanced NO gas sensing properties of the MoS2 monolayer gas sensor. Materials Research Express 2019, 6 (8), 085075.
43. Cabot, A.; Marsal, A.; Arbiol, J.; Morante, J. R., Bi2O3 as a selective sensing material for NO detection. Sensors and Actuators B: Chemical 2004, 99 (1), 74-89.
44. Franke, M. E.; Koplin, T. J.; Simon, U., Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2006, 2 (1), 36-50.
45. Sun, Y. F.; Liu, S. B.; Meng, F. L.; Liu, J. Y.; Jin, Z.; Kong, L. T.; Liu, J. H., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 2012, 12 (3), 2610-2631.
46. Xu, Y.; Tian, X.; Liu, P.; Sun, Y.; Du, G., In2O3 nanoplates with different crystallinity and porosity: controllable synthesis and gas sensing properties investigation. Journal of Alloys and Compounds 2019, 787, 1063-1073.
47. Korotcenkov, G.; Cerneavschi, A.; Brinzari, V.; Vasiliev, A.; Ivanov, M.; Cornet, A.; Morante, J.; Cabot, A.; Arbiol, J., In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors. Sensors and Actuators B: Chemical 2004, 99 (2-3), 297-303.
48. Matsunaga, N.; Sakai, G.; Shimanoe, K.; Yamazoe, N., Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction diffusion equation. Sensors and Actuators B: Chemical 2003, 96 (1-2), 226-233.
49. Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N., Theory of gas diffusion controlled sensitivity for thin film semiconductor gas sensor. Sensors and Actuators B: Chemical 2001, 80 (2), 125-131.
50. Kolmakov, A.; Moskovits, M., Chemical sensing and catalysis by one dimensional metal oxide nanostructures. Annual Review of Materials Research 2004, 34, 151-180.
51. Schmidt Mende, L.; MacManus Driscoll, J. L., ZnO nanostructures, defects, and devices. Materials Today 2007, 10 (5), 40-48.
52. Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H., Gas sensing properties of defect controlled ZnO nanowire gas sensor. Applied physics letters 2008, 93 (26), 263103.
53. Degler, D.; Weimar, U.; Barsan, N., Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal oxide based gas sensing materials. ACS Sensors 2019, 4 (9), 2228-2249.
54. Punetha, D.; Pandey, S. K., Ultrasensitive NH3 gas sensor based on Au/ZnO/n-Si heterojunction Schottky diode. IEEE Transactions on Electron Devices 2019, 66 (8), 3560-3567.
55. Hong, L. Y.; Ke, H. W.; Tsai, C. E.; Lin, H. N., Low concentration NO gas sensing under ambient environment using Cu2O nanoparticle modified ZnO nanowires. Materials Letters 2016, 185, 243-246.
56. Yamazoe, N.; Kurokawa, Y.; Seiyama, T., Effects of additives on semiconductor gas sensors. Sensors and Actuators 1983, 4, 283-289.
57. Yamaguchi, S., Gold colloid as applied to the H2S gas sensor. Materials Chemistry 1981, 6 (6), 505-508.
58. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, A comprehensive review of ZnO materials and devices. Journal of Applied Physics 2005, 98 (4), 11.
59. Wang, X.; Ahmad, M.; Sun, H., Three dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications. Materials 2017, 10 (11), 1304.
60. 徐正軒. 大面積合成氧化鋅奈米複合材料及應用於臭氧與二氧化氮氣體感測. 國立清華大學, 新竹市, 2020.
61. Zhang, Y.; Ram, M. K.; Stefanakos, E. K.; Goswami, D. Y., Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials 2012, 2012.
62. 呂文忠. 銅氧化物/金/氧化鋅奈米線複合材料應用於二氧化氮氣體感測. 國立清華大學, 新竹市, 2018.
63. Lide, D. R., CRC handbook of chemistry and physics. 85 ed.; CRC press: 2004.
64. Jung, S.; Jeon, S.; Yong, K., Fabrication and characterization of flower like CuO–ZnO heterostructure nanowire arrays by photochemical deposition. Nanotechnology 2010, 22 (1), 015606.
65. Kim, J.; Kim, W.; Yong, K., CuO/ZnO heterostructured nanorods: photochemical synthesis and the mechanism of H2S gas sensing. The Journal of Physical Chemistry C 2012, 116 (29), 15682-15691.
66. 陳銘福; 林儀豪; 陳志文; 陳柏睿; 林郁欣; 卓文浩; 陳建霖; 柯志忠, 應用於晶圓級氣體感測器之高效能點測設備開發. 科儀新知 2019, (221), 88-100.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *