|
1. Zhang, B.; Du, Z.; Wang, Z., Carbon reduction from sustainable consumption of waste resources: An optimal model for collaboration in an industrial symbiotic network. Journal of Cleaner Production 2018, 196, 821-828. 2. Stahel, W. R., The circular economy. Nature News 2016, 531 (7595), 435. 3. Funke, A.; Ziegler, F., Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining 2010, 4 (2), 160-177. 4. Jo, G.; Choe, M.; Lee, S.; Park, W.; Kahng, Y. H.; Lee, T., The application of graphene as electrodes in electrical and optical devices. Nanotechnology 2012, 23 (11), 112001. 5. Liu, Q.; Shi, J.; Jiang, G., Application of graphene in analytical sample preparation. TrAC Trends in Analytical Chemistry 2012, 37, 1-11. 6. Ragan, S.; Marsh, H., Science and technology of graphite manufacture. Journal of materials science 1983, 18 (11), 3161-3176. 7. Lee, S.-M.; Kang, D.-S.; Roh, J.-S., Bulk graphite: materials and manufacturing process. Carbon letters 2015, 16 (3), 135-146. 8. Endo, M.; Kim, Y.; Hayashi, T.; Yanagisawa, T.; Muramatsu, H.; Ezaka, M.; Terrones, H.; Terrones, M.; Dresselhaus, M., Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment. Carbon 2003, 41 (10), 1941-1947. 9. Bacon, G., The interlayer spacing of graphite. Acta crystallographica 1951, 4 (6), 558-561. 10. Raj, P.; Gupta, G. S.; Rudolph, V., Silicon carbide formation by carbothermal reduction in the Acheson process: A hot model study. Thermochimica Acta 2020, 687, 178577. 11. Suzuki, R. O., Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. Journal of Physics and Chemistry of Solids 2005, 66 (2-4), 461-465. 12. Suzuki, R. O.; Fukui, S., Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis. Materials transactions 2004, 45 (5), 1665-1671. 13. Perry, G. S.; Macdonald, L. G., Role of CaCl2 in the reduction of PuO2. Journal of Nuclear Materials 1985, 130, 234-241. 14. Song, Y.; Dou, Z.; Zhang, T.-a.; Liu, Y., Research progress on the extractive metallurgy of titanium and its alloys. Mineral Processing and Extractive Metallurgy Review 2020, 1-17. 15. Wang, D.; Jin, X.; Chen, G. Z., Solid state reactions: an electrochemical approach in molten salts. Annual Reports Section" C"(Physical Chemistry) 2008, 104, 189-234. 16. Jin, X.; Gao, P.; Wang, D.; Hu, X.; Chen, G. Z., Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride. Angewandte Chemie International Edition 2004, 43 (6), 733-736. 17. Leis, J.; Arulepp, M.; Kuura, A.; Lätt, M.; Lust, E., Electrical double-layer characteristics of novel carbide-derived carbon materials. Carbon 2006, 44 (11), 2122-2129. 18. Heidarpour, A.; Aghamohammadi, H.; Ghasemi, S., Structural and morphological characterization of the layered carbide-derived-carbon nanostructures obtained by HF etching of Ti2AlC. Synthetic Metals 2020, 267, 116478. 19. Oschatz, M.; Kockrick, E.; Rose, M.; Borchardt, L.; Klein, N.; Senkovska, I.; Freudenberg, T.; Korenblit, Y.; Yushin, G.; Kaskel, S., A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications. Carbon 2010, 48 (14), 3987-3992. 20. Cambaz, Z.; Yushin, G.; Gogotsi, Y.; Vyshnyakova, K.; Pereselentseva, L., Formation of Carbide‐Derived Carbon on β‐Silicon Carbide Whiskers. Journal of the American Ceramic Society 2006, 89 (2), 509-514. 21. El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M., Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds 2020, 817, 153261. 22. Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4), 1-16. 23. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341. 24. Lee, S. W.; McDowell, M. T.; Choi, J. W.; Cui, Y., Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano letters 2011, 11 (7), 3034-3039. 25. Ryu, I.; Choi, J. W.; Cui, Y.; Nix, W. D., Size-dependent fracture of Si nanowire battery anodes. Journal of the Mechanics and Physics of Solids 2011, 59 (9), 1717-1730. 26. Lee, S. W.; Lee, H.-W.; Ryu, I.; Nix, W. D.; Gao, H.; Cui, Y., Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nature communications 2015, 6 (1), 1-7. 27. Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J., Challenges and recent progress in the development of Si anodes for lithium‐ion battery. Advanced Energy Materials 2017, 7 (23), 1700715. 28. Ashuri, M.; He, Q.; Shaw, L. L., Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 2016, 8 (1), 74-103. 29. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano letters 2011, 11 (7), 2949-2954. 30. Jung, D. S.; Ryou, M.-H.; Sung, Y. J.; Park, S. B.; Choi, J. W., Recycling rice husks for high-capacity lithium battery anodes. Proceedings of the National Academy of Sciences 2013, 110 (30), 12229-12234. 31. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology 2008, 3 (1), 31-35. 32. Pode, R., Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews 2016, 53, 1468-1485. 33. Li, Y.; Yan, K.; Lee, H.-W.; Lu, Z.; Liu, N.; Cui, Y., Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nature Energy 2016, 1 (2), 1-9. 34. Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H.-W.; Cui, Y.; Cho, J., Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy 2016, 1 (9), 1-8. 35. Schwan, J.; Ulrich, S.; Batori, V.; Ehrhardt, H.; Silva, S., Raman spectroscopy on amorphous carbon films. Journal of Applied Physics 1996, 80 (1), 440-447. 36. Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L.; Jorio, A.; Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Physical chemistry chemical physics 2007, 9 (11), 1276-1290. 37. Li, Z.; Lu, C.; Xia, Z.; Zhou, Y.; Luo, Z., X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45 (8), 1686-1695. 38. Heon, M.; Lofland, S.; Applegate, J.; Nolte, R.; Cortes, E.; Hettinger, J. D.; Taberna, P.-L.; Simon, P.; Huang, P.; Brunet, M., Continuous carbide-derived carbon films with high volumetric capacitance. Energy & Environmental Science 2011, 4 (1), 135-138. 39. Zhang, Y.; Tang, Y.; Wang, N.; Yu, D.; Lee, C.; Bello, I.; Lee, S., Silicon nanowires prepared by laser ablation at high temperature. Applied physics letters 1998, 72 (15), 1835-1837. 40. Jänes, A.; Thomberg, T.; Kurig, H.; Lust, E., Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide. Carbon 2009, 47 (1), 23-29. 41. Welz, S.; McNallan, M. J.; Gogotsi, Y., Carbon structures in silicon carbide derived carbon. Journal of Materials Processing Technology 2006, 179 (1-3), 11-22. 42. Gogotsi, Y.; Nikitin, A.; Ye, H.; Zhou, W.; Fischer, J. E.; Yi, B.; Foley, H. C.; Barsoum, M. W., Nanoporous carbide-derived carbon with tunable pore size. Nature materials 2003, 2 (9), 591-594. 43. Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews 2019, 48 (1), 285-309. 44. Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P. O.; Eklund, P.; Hultman, L.; Li, M., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature materials 2020, 19 (8), 894-899. 45. Yeon, S.-H.; Ahn, W.; Shin, K.-H.; Jin, C.-S.; Jung, K.-N.; Jeon, J.-D.; Lim, S.; Kim, Y., Carbide-derived carbon/sulfur composite cathode for multi-layer separator assembled Li-S battery. Korean Journal of Chemical Engineering 2015, 32 (5), 867-873. 46. Presser, V.; McDonough, J.; Yeon, S.-H.; Gogotsi, Y., Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy & Environmental Science 2011, 4 (8), 3059-3066. 47. Arulepp, M.; Leis, J.; Lätt, M.; Miller, F.; Rumma, K.; Lust, E.; Burke, A., The advanced carbide-derived carbon based supercapacitor. Journal of power sources 2006, 162 (2), 1460-1466.
|