帳號:guest(3.145.16.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施養鑫
作者(外文):Shih, Yang-Hsin
論文名稱(中文):利用碳黑合成碳化物衍生物應用於鋰離子電池矽負極研究
論文名稱(外文):Synthesis of carbide derived carbon from carbon black on silicon anode as novel lithium ions battery
指導教授(中文):闕郁倫
指導教授(外文):Chueh, Yu-Lun
口試委員(中文):黃炳照
胡啟章
口試委員(外文):Hwang, Bing-Joe
Hu, Chi-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031586
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:55
中文關鍵詞:碳化物衍生物石墨化熔融鹽鋰離子電池
外文關鍵詞:Carbide derived carbonGraphitizationMolten salt processLithium ion battery
相關次數:
  • 推薦推薦:0
  • 點閱點閱:294
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在最近幾十年,由於人口的急劇上升,越來越多的廢棄物被製造出來,也因為人口的增加,使得有限的能源消耗的速度越來越快,由於這些資源消耗與廢棄物處理的問題,循環經濟的想法被提出來,從生活中的種種廢棄物中尋找可再利用的東西成為了現今人們的目標。在全世界裡,農業廢棄物一直是佔所有廢棄物裡的一大部分,包含了稻殼、甘蔗渣、大麻莖等等,如何將這些含碳的農業廢棄物加以處理使其產生經濟價值,將這些碳材循環高值化成為了重要議題,目前據大家所知,碳材料在能源儲存方面,最具應用價值的就是石墨,然而傳統生產人工石墨所需的轉換溫度大約在3000度左右,這需要消耗大量的能源及時間,最近有研究團隊提出運用熔融鹽低溫電化學法能實現電化學石墨化,並且也成功將其石墨產物進行了電池效能的分析。此篇研究中先是將與德國農業部合作的大麻莖廢棄物,運用水熱法的方式將其纖維素轉變為方便石墨化的生物碳黑,在成功將其石墨化,並且想將此技術加以應用在解決氧化矽負極材料在鋰離子電池裡的膨脹問題上,於是我們將氧化矽粉末混合大麻莖碳黑進行熔融鹽電化學反應,成功在氧化矽上生成一層多孔的碳化物衍生物以保護氧化矽負極在鋰離子電池裡膨脹的問題。接著,運用氯化銅在高溫狀態下容易與碳化矽產生反應,進而去控制碳化物衍生物層的孔洞大小,使其在保護氧化矽負極的同時不犧牲太多的電容量。此研究不僅將低溫熔融鹽電化學法運用在更多的生物廢棄物上,且成功實現在氧化矽負極上生成一層碳材的保護層,去解決現在氧化矽負極在鋰離子電池上最大的膨脹問題。在本研究中,將擁有一層碳化物衍生物保護層的氧化矽材料進行電化學測試,該樣品在鋰離子電池的測試中,放電的電容量可以達到450 mAh/g,且在300圈的充放電測試後,仍然保有超過90%的庫倫效率。
In recent decades, with more and more population, more and more wastes are made, so the idea of circular economy is coming out. The idea of circular economy has been proposed to recycle various kinds of waste and to increase their values, including agriculture wastes. There is a lot of carbon contained in agriculture wastes, so try to transform the carbon inside agriculture wastes to graphite which is highly valuable becomes some researcher’s goals. Recently, electrochemical graphitization has been investigated in molten CaCl2. However, previous studies only transformed amorphous carbon to graphite and increased the graphitization degree. In this work, silicon anode has high potential, but only needs to overcome the problem of expansion, so coating some strong structure to protect silicon and the lithium battery becomes one of the solutions. Through this molten salt route, but change the salt to ternary salt (MgCl2/NaCl/KCl), and add some CuCl2 into silicon-carbon composite which is replacing the amorphous carbon ingot. The result is shown that the carbide derived carbon thin film is formed on silicon and carbon boundary. The carbide derived carbon thin film can protect the expansion from silicon when it acts as anode in lithium battery, but if the thickness too thick or the total pore volume of carbide derived carbon too small, it will make the lithium ions cannot react with silicon, so the result is shown that adding CuCl2 can control the total pore volume of carbide derived carbon. This can make the silicon anode have better battery performance in lithium ion battery. The obtained SiO2@CDC composite delivers a specific discharge capacity of 450 mAh/g at 0.1 A/g, even after 300 cycles with over 90% cycle efficiency.
Abstract i
摘要 ii
致謝 iii
Table of Contents iv
List of Figures caption vi
List of Table caption viii
Chapter 1 Introduction 1
1.1 Introduction of Bio-carbon recycling 1
1.1.1 The advantage of circular economy 1
1.1.2 Potential application of hemp after hydrothermal process 2
1.2 Introduction of Graphite 2
1.2.1 Application of Graphite 3
1.2.2 Graphitization process 3
1.2.2.1 High-temperature treatment of graphitization 4
1.2.2.2 Molten-Salt electrolysis 5
1.3 Introduction of CDC 8
1.3.1 The characteristics of CDC 8
1.3.2 Application of CDC 9
1.4 Lithium ions battery 10
1.4.1 Lithium ions battery overview 10
1.4.2 Working mechanism of lithium ions battery 11
1.4.3 Silicon as the anode of lithium ions battery 12


Chapter 2 Motivation 15
2.1 The superiority of Si-based anode materials 15
2.2 Thickness of CDC layer in Si anode 15
Chapter 3 Material Synthesis and Characterization 16
3.1 Preparation of Hemp Carbon Ingot 16
3.2 Synthesis of Graphitic Carbon in Molten Salt 17
3.3 Preparation of Carbon/Silicon composite Ingot 18
3.4 Synthesis of CDC film in Molten Salt 18
3.5 Control CDC film by adding CuCl/CuCl2 into precursor 19
3.6 Lithium IonS Battery Fabrication and Measurement 20
3.7 Material Characterization 20
Chapter 4 Result and discussion 22
4.1 Transfer hemp fiber into carbon black by hydrothermal process 22
4.2 Graphitization of hemp carbon black by molten salt process 23
4.3 Use carbon-silicon composite to form CDC by molten salt process 27
4.3.1 Material analysis 27
4.3.2 Characteristic of CDC film & mechanism discussion 31
4.3.3 Battery and electrochemical performance in LIBs 33
4.4 Control CDC film by adding CuCl2 into precursor 38
4.4.1 Material analysis 38
4.4.2 Mechanism discussion of adding CuCl2 to control CDC film 44
4.4.3 Battery and electrochemical performance in LIBs 46
Chapter 5 Conclusion and Future works 51
Chapter 6 Reference 52
1. Zhang, B.; Du, Z.; Wang, Z., Carbon reduction from sustainable consumption of waste resources: An optimal model for collaboration in an industrial symbiotic network. Journal of Cleaner Production 2018, 196, 821-828.
2. Stahel, W. R., The circular economy. Nature News 2016, 531 (7595), 435.
3. Funke, A.; Ziegler, F., Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining 2010, 4 (2), 160-177.
4. Jo, G.; Choe, M.; Lee, S.; Park, W.; Kahng, Y. H.; Lee, T., The application of graphene as electrodes in electrical and optical devices. Nanotechnology 2012, 23 (11), 112001.
5. Liu, Q.; Shi, J.; Jiang, G., Application of graphene in analytical sample preparation. TrAC Trends in Analytical Chemistry 2012, 37, 1-11.
6. Ragan, S.; Marsh, H., Science and technology of graphite manufacture. Journal of materials science 1983, 18 (11), 3161-3176.
7. Lee, S.-M.; Kang, D.-S.; Roh, J.-S., Bulk graphite: materials and manufacturing process. Carbon letters 2015, 16 (3), 135-146.
8. Endo, M.; Kim, Y.; Hayashi, T.; Yanagisawa, T.; Muramatsu, H.; Ezaka, M.; Terrones, H.; Terrones, M.; Dresselhaus, M., Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment. Carbon 2003, 41 (10), 1941-1947.
9. Bacon, G., The interlayer spacing of graphite. Acta crystallographica 1951, 4 (6), 558-561.
10. Raj, P.; Gupta, G. S.; Rudolph, V., Silicon carbide formation by carbothermal reduction in the Acheson process: A hot model study. Thermochimica Acta 2020, 687, 178577.
11. Suzuki, R. O., Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. Journal of Physics and Chemistry of Solids 2005, 66 (2-4), 461-465.
12. Suzuki, R. O.; Fukui, S., Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis. Materials transactions 2004, 45 (5), 1665-1671.
13. Perry, G. S.; Macdonald, L. G., Role of CaCl2 in the reduction of PuO2. Journal of Nuclear Materials 1985, 130, 234-241.
14. Song, Y.; Dou, Z.; Zhang, T.-a.; Liu, Y., Research progress on the extractive metallurgy of titanium and its alloys. Mineral Processing and Extractive Metallurgy Review 2020, 1-17.
15. Wang, D.; Jin, X.; Chen, G. Z., Solid state reactions: an electrochemical approach in molten salts. Annual Reports Section" C"(Physical Chemistry) 2008, 104, 189-234.
16. Jin, X.; Gao, P.; Wang, D.; Hu, X.; Chen, G. Z., Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride. Angewandte Chemie International Edition 2004, 43 (6), 733-736.
17. Leis, J.; Arulepp, M.; Kuura, A.; Lätt, M.; Lust, E., Electrical double-layer characteristics of novel carbide-derived carbon materials. Carbon 2006, 44 (11), 2122-2129.
18. Heidarpour, A.; Aghamohammadi, H.; Ghasemi, S., Structural and morphological characterization of the layered carbide-derived-carbon nanostructures obtained by HF etching of Ti2AlC. Synthetic Metals 2020, 267, 116478.
19. Oschatz, M.; Kockrick, E.; Rose, M.; Borchardt, L.; Klein, N.; Senkovska, I.; Freudenberg, T.; Korenblit, Y.; Yushin, G.; Kaskel, S., A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications. Carbon 2010, 48 (14), 3987-3992.
20. Cambaz, Z.; Yushin, G.; Gogotsi, Y.; Vyshnyakova, K.; Pereselentseva, L., Formation of Carbide‐Derived Carbon on β‐Silicon Carbide Whiskers. Journal of the American Ceramic Society 2006, 89 (2), 509-514.
21. El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M., Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds 2020, 817, 153261.
22. Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4), 1-16.
23. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
24. Lee, S. W.; McDowell, M. T.; Choi, J. W.; Cui, Y., Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano letters 2011, 11 (7), 3034-3039.
25. Ryu, I.; Choi, J. W.; Cui, Y.; Nix, W. D., Size-dependent fracture of Si nanowire battery anodes. Journal of the Mechanics and Physics of Solids 2011, 59 (9), 1717-1730.
26. Lee, S. W.; Lee, H.-W.; Ryu, I.; Nix, W. D.; Gao, H.; Cui, Y., Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nature communications 2015, 6 (1), 1-7.
27. Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J., Challenges and recent progress in the development of Si anodes for lithium‐ion battery. Advanced Energy Materials 2017, 7 (23), 1700715.
28. Ashuri, M.; He, Q.; Shaw, L. L., Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 2016, 8 (1), 74-103.
29. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano letters 2011, 11 (7), 2949-2954.
30. Jung, D. S.; Ryou, M.-H.; Sung, Y. J.; Park, S. B.; Choi, J. W., Recycling rice husks for high-capacity lithium battery anodes. Proceedings of the National Academy of Sciences 2013, 110 (30), 12229-12234.
31. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology 2008, 3 (1), 31-35.
32. Pode, R., Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews 2016, 53, 1468-1485.
33. Li, Y.; Yan, K.; Lee, H.-W.; Lu, Z.; Liu, N.; Cui, Y., Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nature Energy 2016, 1 (2), 1-9.
34. Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H.-W.; Cui, Y.; Cho, J., Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy 2016, 1 (9), 1-8.
35. Schwan, J.; Ulrich, S.; Batori, V.; Ehrhardt, H.; Silva, S., Raman spectroscopy on amorphous carbon films. Journal of Applied Physics 1996, 80 (1), 440-447.
36. Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L.; Jorio, A.; Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Physical chemistry chemical physics 2007, 9 (11), 1276-1290.
37. Li, Z.; Lu, C.; Xia, Z.; Zhou, Y.; Luo, Z., X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45 (8), 1686-1695.
38. Heon, M.; Lofland, S.; Applegate, J.; Nolte, R.; Cortes, E.; Hettinger, J. D.; Taberna, P.-L.; Simon, P.; Huang, P.; Brunet, M., Continuous carbide-derived carbon films with high volumetric capacitance. Energy & Environmental Science 2011, 4 (1), 135-138.
39. Zhang, Y.; Tang, Y.; Wang, N.; Yu, D.; Lee, C.; Bello, I.; Lee, S., Silicon nanowires prepared by laser ablation at high temperature. Applied physics letters 1998, 72 (15), 1835-1837.
40. Jänes, A.; Thomberg, T.; Kurig, H.; Lust, E., Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide. Carbon 2009, 47 (1), 23-29.
41. Welz, S.; McNallan, M. J.; Gogotsi, Y., Carbon structures in silicon carbide derived carbon. Journal of Materials Processing Technology 2006, 179 (1-3), 11-22.
42. Gogotsi, Y.; Nikitin, A.; Ye, H.; Zhou, W.; Fischer, J. E.; Yi, B.; Foley, H. C.; Barsoum, M. W., Nanoporous carbide-derived carbon with tunable pore size. Nature materials 2003, 2 (9), 591-594.
43. Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews 2019, 48 (1), 285-309.
44. Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P. O.; Eklund, P.; Hultman, L.; Li, M., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature materials 2020, 19 (8), 894-899.
45. Yeon, S.-H.; Ahn, W.; Shin, K.-H.; Jin, C.-S.; Jung, K.-N.; Jeon, J.-D.; Lim, S.; Kim, Y., Carbide-derived carbon/sulfur composite cathode for multi-layer separator assembled Li-S battery. Korean Journal of Chemical Engineering 2015, 32 (5), 867-873.
46. Presser, V.; McDonough, J.; Yeon, S.-H.; Gogotsi, Y., Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy & Environmental Science 2011, 4 (8), 3059-3066.
47. Arulepp, M.; Leis, J.; Lätt, M.; Miller, F.; Rumma, K.; Lust, E.; Burke, A., The advanced carbide-derived carbon based supercapacitor. Journal of power sources 2006, 162 (2), 1460-1466.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *