|
1. Quarton, C.J., O. Tlili, L. Welder, C. Mansilla, H. Blanco, H. Heinrichs, J. Leaver, N.J. Samsatli, P. Lucchese, M. Robinius, and S. Samsatli, The curious case of the conflicting roles of hydrogen in global energy scenarios. Sustain. Energy Fuels., 2020, 4, 80-95. 2. Turner, J.A., A realizable renewable energy future. Science, 1999, 285, 687-689. 3. Zhang, P., J. Zhang, and J. Gong, Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev., 2014, 43, 4395-4422. 4. Zhu, S. and D. Wang, Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater., 2017, 7, 1700841. 5. Warren, S.C. and E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci., 2012, 5, 5133-5146. 6. Gomes Silva, C.u., R. Juárez, T. Marino, R. Molinari, and H. García, Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc., 2011, 133, 595-602. 7. Mubeen, S., J. Lee, N. Singh, S. Krämer, G.D. Stucky, and M. Moskovits, An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotech. , 2013, 8, 247-251. 8. Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C: Photochem. Rev. , 2010, 11, 179-209. 9. Babu, V.J., S. Vempati, T. Uyar, and S. Ramakrishna, Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys., 2015, 17, 2960-2986. 10. Raether, H., Surface plasmons on smooth and rough surfaces and on gratings, in Surface plasmons on smooth and rough surfaces and on gratings. 1988, Springer Tracts Mod. Phys. pp. 4-39. 11. Chou, C.H. and F.C. Chen, Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale, 2014, 6, 8444-8458. 12. Liu, X. and M.T. Swihart, Heavily-doped colloidal semiconductor and metal oxide nanocrystals: An emerging new class of plasmonic nanomaterials. Chem. Soc. Rev., 2014, 43, 3908-3920. 13. Peiris, S., J. McMurtrie, and H.Y. Zhu, Metal nanoparticle photocatalysts: Emerging processes for green organic synthesis. Cata. Sci. Technol., 2016, 6, 320-338. 14. Vigderman, L., B.P. Khanal, and E.R. Zubarev, Functional gold nanorods: Synthesis, self‐assembly, and sensing applications. Adv. Mater., 2012, 24, 4811-4841. 15. Amendola, V., R. Pilot, M. Frasconi, O.M. Marago, and M.A. Iati, Surface plasmon resonance in gold nanoparticles: A review. J. Phys.: Condens. Matter, 2017, 29, 203002. 16. Murray, W.A. and W.L. Barnes, Plasmonic materials. Adv. Mater., 2007, 19, 3771-3782. 17. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 1974, 26, 163-166. 18. Albrecht, M.G. and J.A. Creighton, Anomalously intense raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc., 1977, 99, 5215-5217. 19. Gwo, S. and C.K. Shih, Semiconductor plasmonic nanolasers: Current status and perspectives. Rep. Prog. Phys., 2016, 79, 086501. 20. Noginov, M.A., G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Demonstration of a spaser-based nanolaser. Nature, 2009, 460, 1110-1112. 21. Zeng, S., D. Baillargeat, H.P. Ho, and K.T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev., 2014, 43, 3426-3452. 22. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003, 424, 824-830. 23. Oulton, R.F., V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale. Nature, 2009, 461, 629-632. 24. Lu, Y.J., J. Kim, H.Y. Chen, C. Wu, N. Dabidian, C.E. Sanders, C.Y. Wang, M.Y. Lu, B.H. Li, X. Qiu, W.H. Chang, L.J. Chen, G. Shvets, C.K. Shih, and S. Gwo, Plasmonic nanolaser using epitaxially grown silver film. Science, 2012, 337, 450-453. 25. West, P.R., S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, and A. Boltasseva, Searching for better plasmonic materials. Laser & Photon. Rev., 2010, 4, 795-808. 26. Naik, G.V., V.M. Shalaev, and A. Boltasseva, Alternative plasmonic materials: Beyond gold and silver. Adv Mater., 2013, 25, 3264-3294. 27. Xia, Y. and N.J. Halas, Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull., 2011, 30, 338-348. 28. Lee, K.S. and M.A. El Sayed, Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B, 2006, 110, 19220-19225. 29. Chen, Y., X. Xin, N. Zhang, and Y.-J. Xu, Aluminum-based plasmonic photocatalysis. Part. Part. Syst. Charact., 2017, 34. 1600357 30. Rycenga, M., C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, and Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111, 3669-3712. 31. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nature Mater., 2010, 9, 205-213. 32. Ming, T., H. Chen, R. Jiang, Q. Li, and J. Wang, Plasmon-controlled fluorescence: Beyond the intensity enhancement. J. Phys. Chem. Lett., 2012, 3, 191-202. 33. Sönnichsen, C., T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 2002, 88, 077402. 34. Jiang, R., B. Li, C. Fang, and J. Wang, Metal/semiconductor hybrid nanostructures for plasmon‐enhanced applications. Adv. Mater., 2014, 26, 5274-5309. 35. Rodrigues, T.S., M. Zhao, T.H. Yang, K.D. Gilroy, A.G. da Silva, P.H. Camargo, and Y. Xia, Synthesis of colloidal metal nanocrystals: A comprehensive review on the reductants. Chem. Eur. J., 2018, 24, 16944-16963. 36. Zhou, S., M. Zhao, T.H. Yang, and Y. Xia, Decahedral nanocrystals of noble metals: Synthesis, characterization, and applications. Mater. Today, 2019, 22, 108-131. 37. Nakata, K. and A. Fujishima, TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochem. Rev. , 2012, 13, 169-189. 38. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37-38. 39. Jaeger, C.D. and A.J. Bard, Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J. Phys. Chem. , 1979, 83, 3146-3152. 40. Reddy, N.L., V.N. Rao, M.M. Kumari, R.R. Kakarla, P. Ravi, M. Sathish, M. Karthik, and S.M. Venkatakrishnan, Nanostructured semiconducting materials for efficient hydrogen generation. Environ. Chem. Lett., 2018, 16, 765-796. 41. Awate, S., S. Deshpande, K. Rakesh, P. Dhanasekaran, and N. Gupta, Role of micro-structure and interfacial properties in the higher photocatalytic activity of TiO2-supported nanogold for methanol-assisted visible-light-induced splitting of water. Phys. Chem. Chem. Phys. , 2011, 13, 11329-11339. 42. Wu, H.L., C.H. Kuo, and M.H. Huang, Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir, 2010, 26, 12307-12313. 43. Ding, D., K. Liu, S. He, C. Gao, and Y. Yin, Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett., 2014, 14, 6731-6736. 44. Dewi, M.R., G. Laufersky, and T. Nann, A highly efficient ligand exchange reaction on gold nanoparticles: Preserving their size, shape and colloidal stability. RSC Adv., 2014, 4, 34217-34220. 45. Li, J. and H.C. Zeng, Preparation of monodisperse Au/TiO2 nanocatalysts via self-assembly. Chem. Mater., 2006, 18, 4270-4277. 46. Lu, Z., C. Gao, Q. Zhang, M. Chi, J.Y. Howe, and Y. Yin, Direct assembly of hydrophobic nanoparticles to multifunctional structures. Nano Lett. , 2011, 11, 3404-3412. 47. Johnson, P.B. and R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. 48. Yao, G.Y., Q.L. Liu, and Z.Y. Zhao, Studied localized surface plasmon resonance effects of au nanoparticles on TiO2 by FDTD simulations. Catalysts, 2018, 8, 236. 49. Veenkamp, R.J. and W.N. Ye, Plasmonic metal nanocubes for broadband light absorption enhancement in thin-film a-Si solar cells. J. Appl. Phys., 2014, 115, 124317. 50. Hassan, N.A. and A.M. Hashim, The effect of size of au nanodisc on the localized surface plasmon resonance simulated using finite-difference time-domain (FDTD) method. Mater. Today: Proc., 2019, 7, 607-611. 51. Lesina, A.C., A. Vaccari, P. Berini, and L. Ramunno, On the convergence and accuracy of the FDTD method for nanoplasmonics. Opt. Express, 2015, 23, 10481-10497. 52. Cao, Y., A. Manjavacas, N. Large, and P. Nordlander, Electron energy-loss spectroscopy calculation in finite-difference time-domain package. ACS Photonics, 2015, 2, 369-375. 53. Markovich, D.L., K.S. Ladutenko, and P.A. Belov, Performance of FDTD method CPU implementations for simulation of electromagnetic processes. Prog. Electromagn. Res. Symp., 2013, 139, 655-670. 55. Yin, S., S. Liu, Y. Yuan, S. Guo, and Z. Ren, Octahedral shaped PbTiO3-TiO2 nanocomposites for high-efficiency photocatalytic hydrogen production. Nanomaterials, 2021, 11, 2295. 56. Zhang, L., G. Niu, N. Lu, J. Wang, L. Tong, L. Wang, M.J. Kim, and Y. Xia, Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. Nano Lett., 2014, 14, 6626-6631.
|