帳號:guest(3.145.66.66)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施廷穎
作者(外文):Shih, Ting-Ying
論文名稱(中文):鎳鈦基高熵介金屬化合物之塑性變形與缺陷回復探討
論文名稱(外文):Plastic Deformation and Defect Recovery of NiTi-Based High-Entropy Intermetallic Compound
指導教授(中文):張守一
指導教授(外文):Chang, Shou-Yi
口試委員(中文):吳芳賓
蔡銘洪
口試委員(外文):Wu, Fan-Bean
Tsai, Ming-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031580
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:98
中文關鍵詞:介金屬化合物高熵合金塑性變形缺陷回復
外文關鍵詞:intermetallic compoundhigh-entropy alloyplastic deformationdefect recovery
相關次數:
  • 推薦推薦:0
  • 點閱點閱:296
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
介金屬化合物具有特殊高溫機械性質、化學及結構穩定性等優點,然而低延展性特性使其應用受到很大侷限。近年來結合高熵合金概念,透過增加元素種類,降低合金系統有序程度方式使變形更加均勻,且缺陷生成不再侷限於表面,轉以晶格扭曲處生成。因此本研究對高熵介金屬化合物NiCoFeTiZrHf (6C) 進行微觀機械行為與缺陷回復分析。本研究先以EBSD、EDS、XRD和TEM進行基本性質分析,再針對 (110) 晶粒進行奈米壓痕測試及臨場壓縮測試,並透過TEM 觀察及臨場加熱了解缺陷回復行為。研究結果顯示6C高熵介金屬化合物主要為 B2 結構所組成 (含有少量 Fe2Zr 相),針對 (110) 晶粒測試可發現有別於傳統合金之變形行為,由於內部缺陷以大量糾結部分差排為主,使變形呈現桶狀變形的方式。並且於12000 μN 600 s和循環測試皆可發現其微小缺陷在300°C下存在缺陷回復行為,該結果對於未來高熵介金屬化合物研究提供重要訊息。
Intermetallic compounds have the advantages of special high-temperature mechanical properties, chemical and structural stability, etc. However, the application of these alloys still have some limitations because of the low ductility characteristics. In recent years, the concept of high-entropy alloys has been combined with intermetallic compounds. By increasing the types of elements and reducing the degree of order in the alloy system, the deformation is more uniform, and the generation of defects is at the distortion of the crystal lattice instead of the surface. Therefore, this study focuses on the micro-mechanical behavior and defect recovery of the high-entropy intermetallic compound NiCoFeTiZrHf (6C). In this study, EBSD, EDS, XRD and TEM were used to analyze the basic properties, and then nanoindentation test and in-situ compression test were performed on (110) grains, and the defect recovery behavior was understood through TEM observation and in-situ heating. The research results show that the 6C high-entropy intermetallic compound is a mainly composed of B2 phase (with minor Fe2Zr phase) The (110) grain test shows that it is different from the deformation behavior of traditional alloys. Because the internal defects are dominated by a large number of entangled partial dislocations, the deformation shows a barrel-like deformation. In 12000 μN 600 s test and cycle test, it can be found that the small defects have recovery behavior at 300°C. These results provide important information for exploring future research of high-entropy intermetallic compounds.
目錄
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VIII
表目錄 XV
壹、前言 1
貳、文獻回顧 2
2-1介金屬化合物 2
2-1-1基本性質 2
2-1-2結構與組成 4
2-1-3低延展性 6
2-2形狀記憶合金 8
2-2-1基本特性 8
2-2-2核心效應 10
2-2-3種類及應用 12
2-3高熵合金及其介金屬化合物 14
2-3-1高熵四大核心效應 14
2-3-2 FCC高熵合金 17
2-3-3 BCC高熵合金 19
2-3-4高熵介金屬化合物 21
2-3-5高熵形狀記憶合金 23
2-3-6高熵介金屬化合物特殊機械行為 25
2-4材料機械行為及其影響因素 27
2-4-1晶體結構 27
2-4-2異向性 29
2-4-3組成成分 31
2-4-4尺寸效應 33
2-5變形機制與缺陷 35
2-5-1介金屬化合物 35
2-5-2形狀記憶合金 38
2-5-3金屬玻璃 40
2-6研究目的 42
參、實驗步驟 43
3-1實驗規劃 43
圖3-1 43
3-2實驗流程 44
3-2-1高熵介金屬化合物試片 44
3-2-2 EBSD晶粒方向鑑定 44
3-2-3 EDS成分分析 45
3-2-4 XRD晶體結構分析 45
3-2-5 TEM微結構觀察 45
3-2-6奈米壓痕測試 47
3-2-6聚焦離子束 (FIB) 微米柱試片製備 50
3-2-7臨場SEM微米柱壓縮測試 52
3-2-8微米柱縱剖面TEM分析 54
肆、結果與討論 55
4-1晶粒方向鑑定 55
4-2 EDS成分分析 57
4-3 XRD晶體結構分析 59
4-4 TEM微結構觀察 61
4-5 變溫變應變速率之奈米壓痕測試分析 62
4-5-1彈性模數 (Elastic Modulus) 62
4-5-2奈米硬度 (Nano Hardness) 63
4-5-3位移突進分析 (Burst) 66
4-6 臨場SEM微米柱壓縮測試 69
4-6-1 變溫變應變速率壓縮測試 69
4-6-2 12000 μN持重600 s 77
4-6-3 循環測試 81
4-7縱剖面TEM試片觀察 86
伍、結論 92
陸、參考文獻 94

[1] N. Stoloff, C. Liu, and S. Deevi, "Emerging applications of intermetallics," Intermetallics, vol. 8, no. 9-11, pp. 1313-1320, 2000.
[2] K. Otsuka and X. Ren, "Recent developments in the research of shape memory alloys," Intermetallics, vol. 7, no. 5, pp. 511-528, 1999.
[3] J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, "A review of shape memory alloy research, applications and opportunities," Materials & Design (1980-2015), vol. 56, pp. 1078-1113, 2014
[4]Darolia, Ram. "NiAl alloys for high-temperature structural applications." JoM 43.3 (1991): 44-49.
[5]Russell, Alan M. "Ductility in intermetallic compounds." Advanced engineering materials 5.9 (2003): 629-639.
[6]Taub, Alan I., and Robert L. Fleischer. "Intermetallic compounds for high-temperature structural use." Science 243.4891 (1989): 616-621.
[7]Mulay, R. P., et al. "X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics." Acta materialia 58.7 (2010): 2788-2796.
[8]Agnew, S. R., and T. Ungar. "Determination of the dislocation-based mechanism (s) responsible for the anomalous ductility of a class of B2 intermetallic alloys." IOP Conference Series: Materials Science and Engineering. Vol. 580. No. 1. IOP Publishing, 2019.
[9]Liu, C. To, C. L. White, and J. A. Horton. "Effect of boron on grain-boundaries in Ni3Al." Acta metallurgica 33.2 (1985): 213-229.
[10]Baker, Ian. "Improving the ductility of intermetallic compounds by particle-induced slip homogenization." Scripta materialia 41.4 (1999).
[11]Patoor, Etienne, et al. "Shape memory alloys, Part I: General properties and modeling of single crystals." Mechanics of materials 38.5-6 (2006): 391-429.
[12]Naresh, C., P. S. C. Bose, and C. S. P. Rao. "Shape memory alloys: a state of art review." IOP Conference Series: Materials Science and Engineering. Vol. 149. No. 1. IOP Publishing, 2016.
[13]Ryhänen, Jorma. (1999). Biocompatibility evaluation of nickel-titanium shape memory metal alloy. Oulu : Oulun yliopisto
[14]K. Otsuka and K. Shimizu, "Pseudoelasticity and shape memory effects in alloys," International Metals Reviews, vol. 31, no. 1, pp. 93-114, 1986.
[15]Laplanche, G., et al. "Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys." Acta Materialia 127 (2017): 143-152.
[16]Xiao, Yao, et al. "In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy." Materials & Design 134 (2017): 111-120.
[17]Chowdhury, Piyas, and Huseyin Sehitoglu. "Deformation physics of shape memory alloys–fundamentals at atomistic frontier." Progress in Materials Science 88 (2017): 49-88.
[18] A. H. Volume, "2: properties and selection: nonferrous alloys and special-purpose materials," ASM international, pp. 889-896, 1990.
[19]K. Otsuka and X. Ren, "Physical metallurgy of Ti–Ni-based shape memory alloys," Progress in Materials Science, vol. 50, no. 5, pp. 511-678, 2005.
[20]H. Sehitoglu, L. Patriarca, and Y. Wu, "Shape memory strains and temperatures in the extreme," Current Opinion in Solid State and Materials Science, vol. 21, no. 2, pp. 113-120, 2017
[21]Xue, Deqing, et al. "Design of high temperature Ti-Pd-Cr shape memory alloys with small thermal hysteresis." Scientific reports 6.1 (2016): 1-7.
[22]Miracle, Daniel B., and Oleg N. Senkov. "A critical review of high entropy alloys and related concepts." Acta Materialia 122 (2017): 448-511.
[23]Chang, Shou-Yi, et al. "Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials." Scientific reports 4.1 (2014): 1-8.
[24]Li, Weidong, et al. "Mechanical behavior of high-entropy alloys." Progress in Materials Science (2021): 100777.
[25]George, Easo P., Dierk Raabe, and Robert O. Ritchie. "High-entropy alloys." Nature Reviews Materials 4.8 (2019): 515-534.
[26]Guo, Sheng, et al. "Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys." Journal of applied physics 109.10 (2011): 103505.
[27]Laplanche, G., et al. "Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy." Acta Materialia 118 (2016): 152-163.
[28]Gutiérrez-Urrutia, Ivan, and Dierk Raabe. "Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel." Acta Materialia 60.16 (2012): 5791-5802.
[29]Li, Zhiming, et al. "Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off." Nature 534.7606 (2016): 227-230.
[30]Huang, Hailong, et al. "Phase‐transformation ductilization of brittle high‐entropy alloys via metastability engineering." Advanced Materials 29.30 (2017): 1701678.
[31]Senkov, Oleg N., et al. "Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys." Intermetallics 19.5 (2011): 698-706.
[32]Zhou, Naixie, et al. "Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions." Scripta Materialia 124 (2016): 160-163.
[33]Eleti, Rajeshwar R., et al. "Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy." Acta Materialia 171 (2019): 132-145.
[34]Eleti, Rajeshwar R., et al. "Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy." Acta Materialia 183 (2020): 64-77.
[35]Yang, T., et al. "Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys." Science 362.6417 (2018): 933-937.
[36]Yang, T., et al. "Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces." Science 369.6502 (2020): 427-432.
[37]Gorbatov, Oleg I., et al. "Effect of composition on antiphase boundary energy in Ni 3 Al based alloys: Ab initio calculations." Physical Review B 93.22 (2016): 224106.
[38]Sun, Ruoshi, Christopher Woodward, and Axel van de Walle. "First-principles study on Ni 3 Al (111) antiphase boundary with Ti and Hf impurities." Physical Review B 95.21 (2017): 214121.
[39]Feuerbacher, Michael. "Dislocations and deformation microstructure in a B2-ordered Al 28 Co 20 Cr 11 Fe 15 Ni 26 high-entropy alloy." Scientific reports 6.1 (2016): 1-9.
[40]Canadinc, Demircan, et al. "Ultra-high temperature multi-component shape memory alloys." Scripta Materialia 158 (2019): 83-87.
[41]Li, Shaohui, et al. "A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery." Materials Research Letters 9.6 (2021): 263-269.
[42]Yaacoub, J., et al. "Superelasticity of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy." Scripta Materialia 186 (2020): 43-47.
[43] C. C. Chen, S. Y. Chang, Mechanical Deformation Behavior of Nickel-Titanium Compound-Based Low-, Mediumand High-Entropy Alloys, National Tsing Hua University, 2018.
[44]Muskeri, Saideep, et al. "Small-scale mechanical behavior of a eutectic high entropy alloy." Scientific reports 10.1 (2020): 1-12.
[45]Sato, A., et al. "Shape memory effect in γ⇄ ϵ transformation in Fe-30Mn-1Si alloy single crystals." Acta Metallurgica 30.6 (1982): 1177-1183.
[46]Omori, Toshihiro, and Ryosuke Kainuma. "Martensitic transformation and superelasticity in Fe–Mn–Al-based shape memory alloys." Shape Memory and Superelasticity 3.4 (2017): 322-334.
[47]Ojha, A., and H. Sehitoglu. "Transformation stress modeling in new FeMnAlNi shape memory alloy." International Journal of Plasticity 86 (2016): 93-111.
[48]Pfetzing-Micklich, Janine, et al. "On the crystallographic anisotropy of nanoindentation in pseudoelastic NiTi." Acta materialia 61.2 (2013): 602-616.
[49]Pfetzing-Micklich, J., et al. "Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale." Materials Science and Engineering: A 538 (2012): 265-271.
[50]Zhang, Qian, et al. "Deformation Mechanisms and Remarkable Strain Hardening in Single-Crystalline High-Entropy-Alloy Micropillars/Nanopillars." Nano Letters 21.8 (2021): 3671-3679.
[51]Frenzel, J., et al. "Influence of Ni on martensitic phase transformations in NiTi shape memory alloys." Acta Materialia 58.9 (2010): 3444-3458.
[52]Wang, Fulin, et al. "Multiplicity of dislocation pathways in a refractory multiprincipal element alloy." Science 370.6512 (2020): 95-101.
[53]Uchic, Michael D., et al. "Sample dimensions influence strength and crystal plasticity." Science 305.5686 (2004): 986-989.
[54]Chen, Zhenghao MT, et al. "Micropillar compression deformation of single crystals of Co3 (Al, W) with the L12 structure." Scripta Materialia 121 (2016): 28-31.
[55]Frick, C. P., S. Orso, and E. Arzt. "Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars." Acta Materialia 55.11 (2007): 3845-3855.
[56]Zhong, Yuan, Ken Gall, and Ting Zhu. "Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars." Acta Materialia 60.18 (2012): 6301-6311.
[57]Harry Bhadeshia. (2019). Materials Science and Metallurgy Course A: Metals & Alloys. Retrieved from https://slideplayer.com/slide/15130043/ (July 15,2021)
[58]Lin, Yi-Shen, et al. "Why is the slip direction different in different B2 alloys?." Acta materialia 60.3 (2012): 881-888.
[59]Yan, J. X., et al. "Core structures and planar faults associated with< 111> screw superdislocations in B2 alloys." Intermetallics 110 (2019): 106470.
[60]Paidar, Václav, and Miroslav Čák. "Three types of dislocation core structure in B2 alloys." Intermetallics 73 (2016): 21-25.
[61]Zhuang, Zhuo, Zhanli Liu, and Yinan Cui. Dislocation Mechanism-Based Crystal Plasticity: Theory and Computation at the Micron and Submicron Scale. Academic Press, 2019.
[62]Reed-Hill, Robert E., Reza Abbaschian, and Reza Abbaschian. Physical metallurgy principles. Vol. 17. New York: Van Nostrand, 1973.
[63]K. Bhattacharya, Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect (Oxford series on materials modelling ;, no. 2). Oxford ; New York: Oxford University Press, 2003, pp. xi, 288 p.
[64]Laplanche, G., J. Pfetzing-Micklich, and G. Eggeler. "Sudden stress-induced transformation events during nanoindentation of NiTi shape memory alloys." Acta materialia 78 (2014): 144-160.
[65]Wang, J., and H. Sehitoglu. "Twinning stress in shape memory alloys: theory and experiments." Acta materialia 61.18 (2013): 6790-6801.
[66]Dilibal, Savas. "Investigation of nucleation and growth of detwinning mechanism in martensitic single crystal NiTi using digital image correlation." Metallography, Microstructure, and Analysis 2.4 (2013): 242-248.
[67]Wang, J., and H. Sehitoglu. "Martensite modulus dilemma in monoclinic NiTi-theory and experiments." International Journal of Plasticity 61 (2014): 17-31.
[68]Şopu, Daniel, et al. "Atomic-level processes of shear band nucleation in metallic glasses." Physical review letters 119.19 (2017): 195503.
[69]Albe, Karsten, Yvonne Ritter, and Daniel Şopu. "Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations." Mechanics of Materials 67 (2013): 94-103.
[70]Ketov, S. V., et al. "Rejuvenation of metallic glasses by non-affine thermal strain." Nature 524.7564 (2015): 200-203.
[71]Wakeda, Masato, et al. "Controlled rejuvenation of amorphous metals with thermal processing." Scientific reports 5.1 (2015): 1-8.
[72]Song, Wenli, et al. "Improving plasticity of the Zr46Cu46Al8 bulk metallic glass via thermal rejuvenation." Science Bulletin 63.13 (2018): 840-844.
[73]Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, "Solidsolution phase formation rules for multi‐component alloys," Advanced Engineering Materials, vol. 10, no. 6, pp. 534-538, 2008.
[74]Beake, Ben D., et al. "Temperature dependence of strain rate sensitivity, indentation size effects and pile-up in polycrystalline tungsten from 25 to 950° C." Materials & Design 156 (2018): 278-286.
[75]Sadeghilaridjani, Maryam, et al. "Deformation and tribological behavior of ductile refractory high-entropy alloys." Wear 478 (2021): 203916.
[76]Alcalá, Jorge, et al. "Statistics of dislocation avalanches in FCC and BCC metals: dislocation mechanisms and mean swept distances across microsample sizes and temperatures." Scientific reports 10.1 (2020): 1-14.
[77]Cui, Yinan, et al. "The role of slow screw dislocations in controlling fast strain avalanche dynamics in body-centered cubic metals." International journal of plasticity 124 (2020): 117-132.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *