帳號:guest(3.143.218.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭善元
作者(外文):Hsiao, Shan-Yuan
論文名稱(中文):碳氮摻雜之硼酸鐵作為異相光芬頓觸媒之研究
論文名稱(外文):Synthesis of carbon and nitrogen-doped iron borate as a heterogeneous photo-Fenton catalyst
指導教授(中文):龔佩雲
指導教授(外文):Keng, Pei-Yuin
口試委員(中文):吳志明
陳威宇
口試委員(外文):Wu, Jyh-Ming
Chen, Wei-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031579
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:85
中文關鍵詞:光芬頓觸媒硼酸鐵
外文關鍵詞:Photo-Fenton reactionBoron carbon oxynitrideIron borateDye degradation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:64
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,由於世界人口持續的增加,不管是家庭、畜牧或是工業用水,每天都會排放相當驚人的廢水量。假如這些廢水沒有經過適當的處理將會對人類的健康造成相當大的危害。在這個論文當中,我們合成出了一個碳氮摻雜的硼酸鐵材料。其特性為可吸收可見光、無毒、製程簡單,且作為光芬頓催化劑只需要少量的雙氧水濃度就可以擁有極高效率的表現。在短短的15分鐘內,10 ppm的亞甲基藍溶液就被完全降解。與傳統的光芬頓催化劑,雙氧水與未摻雜的硼酸鐵做比較,分別高出了10倍、77倍與26倍的效率。此外,碳氮摻雜硼酸鐵在未照光的情況下,在20分鐘內就可以將 75% 的亞甲基藍溶液降解。其高效率的表現有潛力應用於光照時間較短的國家或是光照較不足的汙水環境之中。摻雜的效益不僅能使此材料更有效率地吸收太陽光,且因為摻雜原子與材料本身電負度的差異而能有更多的帶電位點,三價鐵離子也因此可以更容易地捕獲電子以克服芬頓反應中的速率決定步驟。此篇論文會有大章篇幅對此碳氮摻雜的硼酸鐵材料做深入研究與分析,我們期許此新穎的材料能夠具有高效能且能運用在未來實際的環境修復領域。
In this master thesis, the goal is to develop an efficient catalyst for the photo-Fenton system. Herein, the synthesis and novel application of C, N-doped iron borates are demonstrated as single-component heterogeneous photo-Fenton catalysts with high Fenton activity under visible light. Under the optimal conditions, 10 mg of the catalyst is shown to completely degrade 10 ppm methylene blue (MB) dye under simulated solar irradiation with a first-order rate constant of k = 0.218 min–1. Moreover, the C, N-doped iron borate exhibits 10- and 26-fold increases in catalytic activity relative to that of the 50 nm hematite nanoparticles and that of the non-doped iron borate, respectively, in the presence of H2O2 under the simulated solar irradiation. In addition, the as-prepared C, N-doped iron borate achieves 75% MB degradation after 20 min in the dark, thus enabling the continuous degradation of pollutants at night and in areas with poor light exposure. The high Fenton activity of the C, N-doped iron borate is considered to be due to the synergistic action between the negatively-charged borate ligands and the metal center in promoting the Fenton reaction. Moreover, carbon and nitrogen doping are critical in modifying the electronic structure and increasing the conductivity of the catalyst. Because of its synthetic simplicity, low cost of reagents, the as-prepared heterogeneous single-component metal borate catalyst has potential application in the industrial treatment of wastewater.
Abstract--------------------------------------------------------2
Acknowledgment--------------------------------------------------3
Chapter 1 Introduction------------------------------------------8
1.1 Executive summary-------------------------------------------8
Chapter 2 Literature Review------------------------------------10
2.1 Materials for semiconductor photocatalyst (SCP)------------10
2.2 Advanced oxidation processes (AOPs)------------------------14
2.3 Fenton reaction--------------------------------------------16
2.4 Iron borate------------------------------------------------26
2.5 Doping-----------------------------------------------------27
Chapter 3 Preparation and Design of Experiments----------------30
3.1 Preparation of the BCNO NS@Fe3O4---------------------------31
3.2 Preparation of the C, N-doped iron borate------------------32
3.3 Characterization-------------------------------------------34
3.4 Photocatalytic degradation experiment----------------------35
3.5 Active species analysis------------------------------------36
3.6 Recyclability experiment-----------------------------------37
Chapter 4 Results and Discussion-------------------------------38
4.1 BCNO NS@Fe3O4 characterization and photocatalytic activity-41
4.2 The characterization of C, N-doped FeBO3-------------------45
4.3 The photocatalytic activity of C, N-doped FeBO3------------53
4.4 Proposed mechanism of C, N-doped FeBO3---------------------66
Chapter 5 Conclusion-------------------------------------------69
Chapter 6 Prospective------------------------------------------71
Reference -----------------------------------------------------76
[1] Rong M, Yang X, Huang L, Chi S, Zhou Y, Shen Y, Chen B, Deng X and Liu Z-Q 2019 Hydrogen Peroxide-Assisted Ultrasonic Synthesis of BCNO QDs for Anthrax Biomarker Detection ACS Appl. Mater. Interfaces 11 2336–43
[2] Wang W-N, Ogi T, Kaihatsu Y, Iskandar F and Okuyama K 2011 Novel rare-earth-free tunable-color-emitting BCNO phosphors J. Mater. Chem. 21 5183
[3] Ogi T, Kaihatsu Y, Iskandar F, Wang W-N and Okuyama K 2008 Facile Synthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency Adv. Mater. 20 3235–8
[4] Iwasaki H, Ogi T, Iskandar F, Aishima K and Okuyama K 2015 Microwave synthesis of homogeneous and highly luminescent BCNO nanoparticles for the light emitting polymer materials J. Lumin. 166 148–55
[5] Habanyama A, Msikita M, Simfukwe J, Baliga G T, Mumba N K, Mulenga M and Samukonga G 2018 Study of ultra-hard materials of the B-C-N-O quaternary system Results Phys. 11 984–93
[6] Ismail A A, Abdelfattah I, Helal A, Al-Sayari S A, Robben L and Bahnemann D W 2016 Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination J. Hazard. Mater. 307 43–54
[7] Xie T, Liu C, Xu L, Yang J and Zhou W 2013 Novel Heterojunction Bi 2 O 3 /SrFe 12 O 19 Magnetic Photocatalyst with Highly Enhanced Photocatalytic Activity J. Phys. Chem. C 117 24601–10
[8] Zhang S, Li J, Zeng M, Zhao G, Xu J, Hu W and Wang X 2013 In Situ Synthesis of Water-Soluble Magnetic Graphitic Carbon Nitride Photocatalyst and Its Synergistic Catalytic Performance ACS Appl. Mater. Interfaces 5 12735–43
[9] Zhu Z, Lu Z, Wang D, Tang X, Yan Y, Shi W, Wang Y, Gao N, Yao X and Dong H 2016 Construction of high-dispersed Ag/Fe 3 O 4 /g-C 3 N 4 photocatalyst by selective photo-deposition and improved photocatalytic activity Appl. Catal. B Environ. 182 115–22
[10] Dong S, Feng J, Fan M, Pi Y, Hu L, Han X, Liu M, Sun J and Sun J 2015 Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review RSC Adv. 5 14610–30
[11] Fermín D J, Ponomarev E A and Peter L M 1999 A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy J. Electroanal. Chem. 473 192–203
[12] Lee G-J and Wu J J 2017 Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — A review Powder Technol. 318 8–22
[13] Lee S-Y and Park S-J 2013 TiO2 photocatalyst for water treatment applications J. Ind. Eng. Chem. 19 1761–9
[14] Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B and Fu H 2012 Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation Chem. Commun. 48 2858
[15] Lin X, Wang X, Zhou Q, Wen C, Su S, Xiang J, Cheng P, Hu X, Li Y, Wang X, Gao X, Nözel R, Zhou G, Zhang Z and Liu J 2019 Magnetically Recyclable MoS 2 /Fe 3 O 4 Hybrid Composite as Visible Light Responsive Photocatalyst with Enhanced Photocatalytic Performance ACS Sustain. Chem. Eng. 7 1673–82
[16] Odling G and Robertson N 2019 Bridging the gap between laboratory and application in photocatalytic water purification Catal. Sci. Technol. 9 533–45
[17] Pang F, Zhang R, Lan D and Ge J 2018 Synthesis of Magnetite–Semiconductor–Metal Trimer Nanoparticles through Functional Modular Assembly: A Magnetically Separable Photocatalyst with Photothermic Enhancement for Water Reduction ACS Appl. Mater. Interfaces 10 4929–36
[18] Xiong P, Fu Y, Wang L and Wang X 2012 Multi-walled carbon nanotubes supported nickel ferrite: A magnetically recyclable photocatalyst with high photocatalytic activity on degradation of phenols Chem. Eng. J. 195–196 149–57
[19] Gao X, Ma C, Liu Y, Xing L and Yan Y 2019 Self-induced Fenton reaction constructed by Fe(III) grafted BiVO4 nanosheets with improved photocatalytic performance and mechanism insight Appl. Surf. Sci. 467–468 673–83
[20] Huang T, Zhu J, Ge S, Guo T, Jiang C and Xie L 2020 Synthesis of novel CdSe QDs/BiFeO3 composite catalysts and its application for the photo-Fenton catalytic degradation of phenol J. Environ. Chem. Eng. 8 104384
[21] Ma J, Yang Q, Wen Y and Liu W 2017 Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range Appl. Catal. B Environ. 201 232–40
[22] Li J, Jiang M, Zhou H, Jin P, Cheung K M C, Chu P K and Yeung K W K 2019 Vanadium Dioxide Nanocoating Induces Tumor Cell Death through Mitochondrial Electron Transport Chain Interruption Glob. Chall. 3 1800058
[23] Holt M S 2000 Sources of chemical contaminants and routes into the freshwater environment Food Chem. Toxicol. 38 S21–7
[24] Gupta V K, Ali I, Saleh T A, Nayak A and Agarwal S 2012 Chemical treatment technologies for waste-water recycling—an overview RSC Adv. 2 6380
[25] Mandal T, Maity S, Dasgupta D and Datta S 2010 Advanced oxidation process and biotreatment: Their roles in combined industrial wastewater treatment Desalination 250 87–94
[26] Pignatello J J, Oliveros E and MacKay A 2006 Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry Crit. Rev. Environ. Sci. Technol. 36 1–84
[27] Pei M, Zhang B, He Y, Su J, Gin K, Lev O, Shen G and Hu S 2019 State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants Environ. Int. 131 105026
[28] Wang J and Zhuan R 2020 Degradation of antibiotics by advanced oxidation processes: An overview Sci. Total Environ. 701 135023
[29] Fenton H J H 1894 LXXIII.—Oxidation of tartaric acid in presence of iron J Chem Soc Trans 65 899–910
[30] O’Dowd K and Pillai S C 2020 Photo-Fenton disinfection at near neutral pH: Process, parameter optimization and recent advances J. Environ. Chem. Eng. 8 104063
[31] Guo S, Yuan N, Zhang G and Yu J C 2017 Graphene modified iron sludge derived from homogeneous Fenton process as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants Microporous Mesoporous Mater. 238 62–8
[32] Li X, Liu L, Wu Y and Liu T 2019 Determination of the Redox Potentials of Solution and Solid Surface of Fe(II) Associated with Iron Oxyhydroxides ACS Earth Space Chem. 3 711–7
[33] Zhu Y, Zhu R, Xi Y, Zhu J, Zhu G and He H 2019 Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review Appl. Catal. B Environ. 255 117739
[34] Brillas E, Sirés I and Oturan M A 2009 Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry Chem. Rev. 109 6570–631
[35] Bauer R 1999 The photo-fenton reaction and the TiO2/UV process for waste water treatment − novel developments Catal. Today 53 131–44
[36] Giannakis S, López M I P, Spuhler D, Pérez J A S, Ibáñez P F and Pulgarin C 2016 Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection Appl. Catal. B Environ. 198 431–46
[37] Lamb J J, Islam M H, Hjelme D R, Pollet B G and Lien K M 2019 Effect of power ultrasound and Fenton reagents on the biomethane potential from steam-exploded birchwood Ultrason. Sonochem. 58 104675
[38] Ning X, Chen H, Wu J, Wang Y, Liu J and Lin M 2014 Effects of ultrasound assisted Fenton treatment on textile dyeing sludge structure and dewaterability Chem. Eng. J. 242 102–8
[39] Ahile U J, Wuana R A, Itodo A U, Sha’Ato R and Dantas R F 2020 A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: Current trends, knowledge gap and future studies Sci. Total Environ. 710 134872
[40] Yu D, Li L, Wu M and Crittenden J C 2019 Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework Appl. Catal. B Environ. 251 66–75
[41] Ma J, Ma W, Song W, Chen C, Tang Y, Zhao J, Huang Y, Xu Y and Zang L 2006 Fenton Degradation of Organic Pollutants in the Presence of Low-Molecular-Weight Organic Acids: Cooperative Effect of Quinone and Visible Light Environ. Sci. Technol. 40 618–24
[42] Clarizia L, Russo D, Di Somma I, Marotta R and Andreozzi R 2017 Homogeneous photo-Fenton processes at near neutral pH: A review Appl. Catal. B Environ. 209 358–71
[43] Xu X-R, Li X-Y, Li X-Z and Li H-B 2009 Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes Sep. Purif. Technol. 68 261–6
[44] Anon A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: Current trends, knowledge gap and future studies | Elsevier Enhanced Reader
[45] Xu T, Zhu R, Zhu G, Zhu J, Liang X, Zhu Y and He H 2017 Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO 4 at neutral pH Appl. Catal. B Environ. 212 50–8
[46] Li Y, Ouyang S, Xu H, Wang X, Bi Y, Zhang Y and Ye J 2016 Constructing Solid–Gas-Interfacial Fenton Reaction over Alkalinized-C 3 N 4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm J. Am. Chem. Soc. 138 13289–97
[47] Dastafkan K, Li Y, Zeng Y, Han L and Zhao C 2019 Enhanced surface wettability and innate activity of iron borate catalyst for efficient oxygen evolution and gas bubble detachment J. Mater. Chem. A 7
[48] Kumari K and Ram S 2018 Sensitivity Study of Nanocrystalline Fe3BO6 Sensor for Methane Gas Detection IEEE Sens. J. 18 8230–7
[49] Smirnov G V, van Bürck U, Chumakov A I, Baron A Q R and Rüffer R 1997 Synchrotron Mössbauer source Phys. Rev. B 55 5811–5
[50] Zhao W, Xu T, Li T, Wang Y, Liu H, Feng J, Ding S, Li Z and Wu M 2018 Amorphous Iron(III)-Borate Nanolattices as Multifunctional Electrodes for Self-Driven Overall Water Splitting and Rechargeable Zinc-Air Battery Small 14 1802829
[51] Meng Y 2020 Recent advances in the application of phosphates and borates as electrocatalysts for water oxidation 11
[52] Gupta S, Patel M K, Miotello A and Patel N 2020 Metal Boride-Based Catalysts for Electrochemical Water-Splitting: A Review Adv. Funct. Mater. 30 1906481
[53] Gao S, Liu X, Xu T, Ma X, Shen Z, Wu A, Zhu Y and Hosmane N S 2013 Synthesis and Characterization of Fe 10 BO 3 /Fe 3 O 4 /SiO 2 and GdFeO 3 /Fe 3 O 4 /SiO 2 : Nanocomposites of Biofunctional Materials ChemistryOpen 2 88–92
[54] Hu X, Li R, Zhao S and Xing Y 2017 Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton–like catalyst Appl. Surf. Sci. 396 1393–402
[55] Huang H, He Y, Lin Z, Kang L and Zhang Y 2013 Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation J. Phys. Chem. C 117 22986–94
[56] Li Y, Diao Y, Wang X, Tian X, Hu Y, Zhang B and Yang D 2020 Zn 4 B 6 O 13 : Efficient Borate Photocatalyst with Fast Carrier Separation for Photodegradation of Tetracycline Inorg. Chem. 59 13136–43
[57] Santamaría-Pérez D, Gomis O, Sans J A, Ortiz Henry M, Vegas Á, Errandonea D, Ruiz-Fuertes J, Martinez-Garcia D, Garcia-Domene B, Pereira A L J, Manjón F J, Rodríguez-Hernández P, Muñoz A, Piccinelli F, Bettinelli M and Popescu C 2014 Compressibility Systematics of Calcite-Type Borates: An Experimental and Theoretical Structural Study on ABO 3 (A = Al, Sc, Fe, and In) J. Phys. Chem. C 118 4354–61
[58] Marschall R and Wang L 2014 Non-metal doping of transition metal oxides for visible-light photocatalysis Catal. Today 225 111–35
[59] Yao Y, Chen H, Qin J, Wu G, Lian C, Zhang J and Wang S 2016 Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction Water Res. 101 281–91
[60] Zhou H, Wu S, Zhou Y, Yang Y, Zhang J, Luo L, Duan X, Wang S, Wang L and Tsang D C W 2019 Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH Environ. Int. 128 77–88
[61] Zhang X, Lu Z, Lin J, Li L, Fan Y, Hu L, Xu X, Meng F, Zhao J and Tang C 2013 Luminescence properties of BCNO phosphor prepared by a green and simple method Mater. Lett. 94 72–5
[62] Kumar S, Tonda S, Kumar B, Baruah A and Shanker V 2013 Synthesis of Magnetically Separable and Recyclable g‑C 3 N 4 −Fe 3 O 4 Hybrid Nanocomposites with Enhanced Photocatalytic Performance under Visible-Light Irradiation J. Phys. Chem. C 117
[63] Guo T, Wang K, Zhang G and Wu X 2019 A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance Appl. Surf. Sci. 469 331–9
[64] Makhotkina O A, Preis S V and Parkhomchuk E V 2008 Water delignification by advanced oxidation processes: Homogeneous and heterogeneous Fenton and H2O2 photo-assisted reactions Appl. Catal. B Environ. 84 821–6
[65] Single L and Chopra V 2011 Effect of Preparation Conditions on the Crystallinity of Chemically Synthesized BCNO Nanophosphor J. Mater. Sci. Technol. 27 967–72
[66] Wang Y, Yang W, Chen X, Wang J and Zhu Y 2018 Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer Appl. Catal. B Environ. 220 337–47
[67] Joubert J C, Shirk T, White W B and Roy R 1968 Stability, infrared spectrum and magnetic properties of FeBO3 Mater. Res. Bull. 3 671–6
[68] Ogi T, Iwasaki H, Nandiyanto A B D, Iskandar F, Wang W-N and Okuyama K 2014 Direct white light emission from a rare-earth-free aluminium–boron–carbon–oxynitride phosphor J Mater Chem C 2 4297–303
[69] Sun Y, Ma M, Zhang Y and Gu N 2004 Synthesis of nanometer-size maghemite particles from magnetite Colloids Surf. Physicochem. Eng. Asp. 245 15–9
[70] Agnoli S and Favaro M 2016 Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications J. Mater. Chem. A 4 5002–25
[71] Kumari K, Ram S and Kotnala R K 2011 Self-controlled growth of Fe3BO6 crystallites in shape of nanorods from iron-borate glass of small templates Mater. Chem. Phys. 129 1020–6
[72] Zhang C C, Gao X and Yilmaz B 2020 Development of FTIR Spectroscopy Methodology for Characterization of Boron Species in FCC Catalysts Catalysts 10 1327
[73] Sudeep P M, Vinod S, Ozden S, Sruthi R, Kukovecz A, Konya Z, Vajtai R, Anantharaman M R, Ajayan P M and Narayanan T N 2015 Functionalized boron nitride porous solids RSC Adv. 5 93964–8
[74] Das S K, Nandi M, Giri S and Bhaumik A 2009 A new mesoporous FeBO3 material having dominant surface magnetism Microporous Mesoporous Mater. 117 362–7
[75] Singh B, Kaur G, Singh P, Singh K, Kumar B, Vij A, Kumar M, Bala R, Meena R, Singh A, Thakur A and Kumar A 2016 Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy Sci. Rep. 6 35535
[76] Coates J, Meyers (ed R A, Wiley J and Coates J Molecular Backbone 6
[77] Fujisawa K, Cruz-Silva R, Yang K-S, Kim Y A, Hayashi T, Endo M, Terrones M and Dresselhaus M S 2014 Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications J Mater Chem A 2 9532–40
[78] Kurmaev E, Fedorenko V, Galakhov V, Bartkowski S, Uhlenbrock S, Neumann M, Slater P, Greaves C and Miyazaki Y 1996 Analysis of oxyanion (BO 3 3− , CO 3 2− , SO 4 2− , PO 4 3− , SeO 4 4- ) substitution in Y123 compounds studied by X-ray photoelectron spectroscopy J. Supercond. 9
[79] Hu J, Zhang P, An W, Liu L, Liang Y and Cui W 2019 In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater Appl. Catal. B Environ. 245 130–42
[80] Tu L, Xiao Q, Wei R and Liu X 2019 Fabrication and Enhanced Thermal Conductivity of Boron Nitride and Polyarylene Ether Nitrile Hybrids Polymers 11 1340
[81] Huang C, Chen C, Zhang M, Lin L, Ye X, Lin S, Antonietti M and Wang X 2015 Carbon-doped BN nanosheets for metal-free photoredox catalysis Nat. Commun. 6 7698
[82] Yamashita T and Hayes P 2008 Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials Appl. Surf. Sci. 254 2441–9
[83] Lyubutin I, Sarkisyan V, Gavriliuk A, Troyan I and Rüffer R 2003 Hyperfine interactions and electronic structure of FeBO3 at high pressure Bull. Russ. Acad. Sci. Phys. 67 1018
[84] Wu B, Qi S, Wu X, Wang H, Zhuang Q, Yi H, Xu P, Xiong Z, Shi G, Chen S and Wang B 2021 FeBO3 as a low cost and high-performance anode material for sodium-ion batteries Chin. Chem. Lett. S1001841721001431
[85] Liu C, Yang B, Chen J, Jia F and Song S 2022 Synergetic degradation of Methylene Blue through photocatalysis and Fenton reaction on two-dimensional molybdenite-Fe J. Environ. Sci. 111 11–23
[86] Song S, Wang Y, Shen H, Zhang J, Mo H, Xie J, Zhou N and Shen J 2019 Ultrasmall Graphene Oxide Modified with Fe 3 O 4 Nanoparticles as a Fenton-Like Agent for Methylene Blue Degradation ACS Appl. Nano Mater. 2 7074–84
[87] Uma K, KrishnaKumar B, Pan G-T, Yang T C-K and Lin J-H 2020 Enriched silver plasmon resonance activity on the sonochemical synthesis of ZnO flowers with α-Fe2O3 as an efficient catalyst for photo-Fenton reaction and photo-oxidation of ethanol J. Water Process Eng. 34 101089
[88] Wu H, Shabala L, Shabala S and Giraldo J P 2018 Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention Environ. Sci. Nano 5 1567–83
[89] Gao J, Liu Y, Xia X, Wang L, Shao L, Cai T and Dong W 2019 Mechanisms for photo assisted Fenton of synthesized pyrrhotite at neutral pH Appl. Surf. Sci. 463 863–71
[90] Bahrudin N N, Nawi M A and Nawawi W I 2018 Photocatalytic enhancement of immobilized TiO 2 -polyaniline bilayer (TiO 2 -PBL) system for decolorization of methyl orange dye Mater. Res. Bull. 106 388–95
[91] Li T, Li Y-B, Dai X-C, Huang M-H, He Y, Xiao G and Xiao F-X 2019 Ligand-Triggered Tunable Charge Transfer toward Multifarious Photoreduction Catalysis J. Phys. Chem. C 123 4701–14
[92] Rajoriya S, Bargole S, George S, Saharan V K, Gogate P R and Pandit A B 2019 Synthesis and characterization of samarium and nitrogen doped TiO2 photocatalysts for photo-degradation of 4-acetamidophenol in combination with hydrodynamic and acoustic cavitation Sep. Purif. Technol. 209 254–69
[93] Dmitrienko V E, Ovchinnikova E N, Collins S P, Nisbet G, Beutier G, Kvashnin Y O, Mazurenko V V, Lichtenstein A I and Katsnelson M I 2014 Measuring the Dzyaloshinskii–Moriya interaction in a weak ferromagnet Nat. Phys. 10 202–6
[94] Chaudhari N K, Jin H, Kim B and Lee K 2017 Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting Nanoscale 9 12231–47
[95] Tong M, Liu F, Dong Q, Ma Z and Liu W 2020 Magnetic Fe3O4-deposited flower-like MoS2 nanocomposites for the Fenton-like Escherichia coli disinfection and diclofenac degradation J. Hazard. Mater. 385 121604
[96] Heckert E G, Seal S and Self W T 2008 Fenton-Like Reaction Catalyzed by the Rare Earth Inner Transition Metal Cerium Environ. Sci. Technol. 42 5014–9
[97] Sun Y, Tian P, Ding D, Yang Z, Wang W, Xin H, Xu J and Han Y-F 2019 Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction Appl. Catal. B Environ. 258 117985
[98] Ghanbari F and Moradi M 2017 Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review Chem. Eng. J. 310 41–62
[99] Zhu Y-P, Ren T-Z and Yuan Z-Y 2014 Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst Nanoscale 6 11395–402
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *