帳號:guest(3.17.75.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林彥丞
作者(外文):Lin, Yan-Cheng
論文名稱(中文):電漿處理奈米碳管-多巴胺/聚醯胺複合薄膜於正滲透系統之應用
論文名稱(外文):Plasma Treated Carbon Nanotube-Dopamine/Polyamide Composite Film for Forward Osmosis Application
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):洪仁陽
林冠佑
李紫原
口試委員(外文):Horng, Ren-Yang
Lin, Guan-You
Lee, Chi-Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031574
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:102
中文關鍵詞:正滲透電漿處理奈米碳管多巴胺聚醯胺複合薄膜
外文關鍵詞:Forward osmosisPlasma treatmentCarbon nanotubesdopaminpolyamideThin-film composite membrane
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究開發出具有正滲透(Forward osmosis, FO)應用潛力的高通量碳複合薄膜,此薄膜包含以下三層結構:不織布基材、親水支撐層以及低交聯度選擇層。支撐層由經過電漿處理(Plasma treated)的奈米碳管(Carbon nanotubes, CNTs)所構成,刮塗於不織布形成親水pCNT支撐層;選擇層則是透過添加多巴胺(Dopamine, DA)於界面聚合法(Interfacial polymerization, IP)製備出的聚醯胺層(Polyamide, PA),命名為dPA。研究首先比較添加不同濃度DA於IP製程對製備出的PA層形貌、親水性、交聯程度以及FO效能影響;接著比較不同電漿處理功率以及時間對於CNT層形貌、吸水性以及缺陷程度的影響,並研究於其上以IP製程製備之PA層性質;最後結合以上兩種製程,探討製備的碳複合薄膜性質以及應用上的潛力。實驗結果顯示,添加DA於IP製程能夠調控PA層之交聯程度使FO效能提升;電漿處理後的CNT層能夠使親水性提升進而改善於其上合成之PA層性質。最後結合兩者製程所製備出之N-100p1CNT-dPA2薄膜在以1 M氯化鈉作為提取液、去離子水作為進流液的測試條件下,擁有水通量26.38 LMH,逆溶質通量8.54 gMH的表現,證明本研究製備之碳複合薄膜深具FO應用潛力。
This work proposes an innovative route to prepare a high performance carbon-based thin-film composite membrane for forward osmosis(FO)application, which consists of a nonwoven substrate, a hydrophilic supporting layer, and a low cross-linking degree selective layer. The supporting layer is composed of plasma treated carbon nanotubes(CNTs)and designated as pCNT, which is coated on polyethylene terephthalate nonwoven fabric by knife casting. Subsequently the polyamide(PA)selective layer is fabricated by the interfacial polymerization(IP)process with dopamine(DA)additive and is designated as dPA. Firstly, this study compares the effects of different DA additive in IP process. Secondly, effects of pCNT with different treating power and time are compared. Finally, this work combines dPA and pCNT to investigate their effect on FO performance. Results show that DA additive in IP process can control cross-linking degree of PA layer and improves FO performance. In addition, pCNT exhibits higher hydrophilicity compared to CNTs, and improves PA properties. Among all membranes, N-100p1CNT-dPA2 membrane fabricated by combining pCNT and dPA has the best FO performance with the water flux 26.38 LMH and reverse salt flux 8.54 gMH. The results show that the carbon-based composite membrane fabricated in this study has great potential in FO application.
摘要 I
Abstract II
目錄 III
表目錄 VII
圖目錄 VIII
第1章 緒論 1
1.1 前言 1
1.2 研究動機 1
第2章 文獻回顧 3
2.1 薄膜技術簡介 3
2.1.1 薄膜定義 3
2.1.2 薄膜分離程序 5
2.1.3 薄膜型態 8
2.2 複合薄膜簡介與製備方式 11
2.2.1 多孔支撐層製備方式 12
2.2.2 緻密選擇層製備方式 13
2.3 正滲透技術簡介 16
2.3.1 正滲透技術發展歷史 17
2.3.2 正滲透分離原理及應用 17
2.3.3 正滲透關鍵技術與發展瓶頸 20
2.4 奈米碳管簡介 25
2.4.1 奈米碳管結構和性質 25
2.4.2 奈米碳管合成方式 27
2.4.3 水處理薄膜研究中的奈米碳管應用 28
2.5 本實驗室於正滲透薄膜研究回顧 31
第3章 實驗方法與分析 33
3.1 實驗步驟與流程 34
3.1.1 基材膜製備 35
3.1.2 電漿親水處理 35
3.1.3 聚醯胺選擇層合成 36
3.2 分析方式與設備 38
3.2.1 場發射掃描式電子顯微鏡 38
3.2.2 穿透式電子顯微鏡 38
3.2.3 原子力顯微鏡 39
3.2.4 接觸角量測儀 40
3.2.5 X射線光電子能譜儀 41
3.2.6 拉曼光譜儀 41
3.2.7 正滲透效能測試系統 42
第4章 結果與討論 46
4.1 奈米碳管層刮塗於不織布層之可行性 46
4.1.1 SEM表面形貌分析 46
4.2 界面聚合法與界面聚合法添加多巴胺比較 48
4.2.1 SEM表面形貌分析。 48
4.2.2 AFM表面粗糙度分析 50
4.2.3 WCA水接觸角分析 51
4.2.4 XPS鍵結分析 52
4.2.5 FO效能分析 56
4.3 奈米碳管層之電漿處理參數影響 58
4.3.1 SEM表面形貌分析 58
4.3.2 TEM分析 62
4.3.3 AFM表面粗糙度分析 63
4.3.4 WCA水接觸角分析 65
4.3.5 Raman分析 69
4.3.6 XPS鍵結分析 71
4.3.7 FO效能分析 76
4.4 電漿處理奈米碳管層結合界面聚合法添加多巴胺分析 78
4.4.1 SEM表面形貌分析 78
4.4.2 AFM表面粗糙度分析 80
4.4.3 WCA水接觸角分析 80
4.4.4 XPS鍵結分析 82
4.4.5 FO效能分析 85
4.5 碳複合薄膜之正滲透效能分析 87
4.5.1 A、B、S值 87
4.5.2 提取液濃度對薄膜性能影響 88
第5章 結論 92
參考文獻 94
[1] U. Water, 2018 UN World Water Development Report, Nature-based Solutions for Water. 2018.
[2] I. Wenten, Ultrafiltration in water treatment and its evaluation as pretreatment for reverse osmosis. Unpublished paper, Bandung Institute of Technology, Indonesia, 2008.
[3] M. Mulder and J. Mulder, Basic principles of membrane technology. 1996: Springer Science & Business Media.
[4] J. Vrentas and J. Duda, Diffusion in polymer—solvent systems. I. Reexamination of the free‐volume theory. Journal of Polymer Science: Polymer Physics Edition, 1977. 15(3): p. 403-416.
[5] J. G. Wijmans and R. W. Baker, The solution-diffusion model: a review. Journal of membrane science, 1995. 107(1-2): p. 1-21.
[6] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003. 63(15): p. 2223-2253.
[7] F. E. Ahmed, B. S. Lalia and R. Hashaikeh, A review on electrospinning for membrane fabrication: challenges and applications. Desalination, 2015. 356: p. 15-30.
[8] P. Goh and A. Ismail, A review on inorganic membranes for desalination and wastewater treatment. Desalination, 2018. 434: p. 60-80.
[9] S. Yadav, H. Saleem, I. Ibrar, O. Naji, A. A. Hawari, A. A. Alanezi, et al., Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination, 2020. 482: p. 114375.
[10] J. A. Idarraga-Mora, A. S. Childress, P. S. Friedel, D. A. Ladner, A. M. Rao and S. M. Husson, Role of nanocomposite support stiffness on TFC membrane water permeance. Membranes, 2018. 8(4): p. 111.
[11] J. E. Cadotte and R. J. Petersen, Thin-film composite reverse-osmosis membranes: origin, development, and recent advances. 1981, ACS Publications.
[12] R. E. Kesting, Synthetic polymeric membranes: a structural perspectives. 1985.
[13] H. Matsuyama, M. Teramoto, R. Nakatani and T. Maki, Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology. Journal of applied polymer science, 1999. 74(1): p. 171-178.
[14] T. Matsuura, Synthetic membranes and membrane separation processes. 2020: CRC press.
[15] C. Smolders, A. Reuvers, R. Boom and I. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. Journal of Membrane Science, 1992. 73(2-3): p. 259-275.
[16] C. Klaysom, T. Y. Cath, T. Depuydt and I. F. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical society reviews, 2013. 42(16): p. 6959-6989.
[17] S.-J. Park, W. Choi, S.-E. Nam, S. Hong, J. S. Lee and J.-H. Lee, Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization. Journal of Membrane Science, 2017. 526: p. 52-59.
[18] P. M. Johnson, J. Yoon, J. Y. Kelly, J. A. Howarter and C. M. Stafford, Molecular layer‐by‐layer deposition of highly crosslinked polyamide films. Journal of Polymer Science Part B: Polymer Physics, 2012. 50(3): p. 168-173.
[19] S.-B. Kwon, J. S. Lee, S. J. Kwon, S.-T. Yun, S. Lee and J.-H. Lee, Molecular layer-by-layer assembled forward osmosis membranes. Journal of membrane science, 2015. 488: p. 111-120.
[20] W. Jin, A. Toutianoush and B. Tieke, Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes. Langmuir, 2003. 19(7): p. 2550-2553.
[21] S. Zhao, L. Zou, C. Y. Tang and D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges. Journal of membrane science, 2012. 396: p. 1-21.
[22] R. Pattle, Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 1954. 174(4431): p. 660-660.
[23] V. Hervouet, HTI starts producing thin-film composite FO membrane. Membr. Technol, 2012. 7: p. 5-6.
[24] I. L. Alsvik and M.-B. Hägg, Pressure retarded osmosis and forward osmosis membranes: materials and methods. Polymers, 2013. 5(1): p. 303-327.
[25] K. Lee, R. Baker and H. Lonsdale, Membranes for power generation by pressure-retarded osmosis. Journal of membrane science, 1981. 8(2): p. 141-171.
[26] S. Loeb, Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations. Journal of Membrane Science, 1976. 1: p. 49-63.
[27] E. M. Garcia-Castello, J. R. McCutcheon and M. Elimelech, Performance evaluation of sucrose concentration using forward osmosis. Journal of membrane science, 2009. 338(1-2): p. 61-66.
[28] E. M. Garcia-Castello and J. R. McCutcheon, Dewatering press liquor derived from orange production by forward osmosis. Journal of Membrane Science, 2011. 372(1-2): p. 97-101.
[29] A. Thombre, J. Cardinal, A. DeNoto and D. Gibbes, Asymmetric membrane capsules for osmotic drug delivery II. In vitro and in vivo drug release performance. Journal of controlled release, 1999. 57(1): p. 65-73.
[30] J. Li, D. Hou, K. Li, Y. Zhang, J. Wang and X. Zhang, Domestic wastewater treatment by forward osmosis-membrane distillation (FO-MD) integrated system. Water Science and Technology, 2018. 77(6): p. 1514-1523.
[31] M. M. Ling and T.-S. Chung, Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration. Desalination, 2011. 278(1-3): p. 194-202.
[32] J. R. McCutcheon and M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of membrane science, 2006. 284(1-2): p. 237-247.
[33] N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman and M. Elimelech, High performance thin-film composite forward osmosis membrane. Environmental science & technology, 2010. 44(10): p. 3812-3818.
[34] J. S. Yong, W. A. Phillip and M. Elimelech, Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. Journal of Membrane Science, 2012. 392: p. 9-17.
[35] B. Mi and M. Elimelech, Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of membrane science, 2010. 348(1-2): p. 337-345.
[36] H. Guo, Z. Yao, J. Wang, Z. Yang, X. Ma and C. Y. Tang, Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. Journal of Membrane Science, 2018. 551: p. 234-242.
[37] X. Zhang, J. Tian, S. Gao, Z. Zhang, F. Cui and C. Y. Tang, In situ surface modification of thin film composite forward osmosis membranes with sulfonated poly (arylene ether sulfone) for anti-fouling in emulsified oil/water separation. Journal of Membrane Science, 2017. 527: p. 26-34.
[38] S. Iijima, Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
[39] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, et al., Methods for carbon nanotubes synthesis. Journal of Materials Chemistry, 2011. 21(40): p. 15872-15884.
[40] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, et al., Measuring the thermal conductivity of a single carbon nanotube. Physical review letters, 2005. 95(6): p. 065502.
[41] M.-F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical review letters, 2000. 84(24): p. 5552.
[42] J. Che, P. Chen and M. B. Chan-Park, High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. Journal of Materials Chemistry A, 2013. 1(12): p. 4057-4066.
[43] Y. Wei, G. Eres, V. Merkulov and D. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Applied Physics Letters, 2001. 78(10): p. 1394-1396.
[44] O. Nerushev, S. Dittmar, R.-E. Morjan, F. Rohmund and E. Campbell, Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition. Journal of applied physics, 2003. 93(7): p. 4185-4190.
[45] M. Okai, T. Muneyoshi, T. Yaguchi and S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2000. 77(21): p. 3468-3470.
[46] L. Ci, Y. Li, B. Wei, J. Liang, C. Xu and D. Wu, Preparation of carbon nanofibers by the floating catalyst method. Carbon, 2000. 38(14): p. 1933-1937.
[47] M. Sianipar, S. H. Kim, F. Iskandar and I. G. Wenten, Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC advances, 2017. 7(81): p. 51175-51198.
[48] X. Song, L. Wang, L. Mao and Z. Wang, Nanocomposite membrane with different carbon nanotubes location for nanofiltration and forward osmosis applications. ACS Sustainable Chemistry & Engineering, 2016. 4(6): p. 2990-2997.
[49] M. Tian, Y.-N. Wang and R. Wang, Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination, 2015. 370: p. 79-86.
[50] F.-Y. Zhao, Y.-L. Ji, X.-D. Weng, Y.-F. Mi, C.-C. Ye, Q.-F. An, et al., High-flux positively charged nanocomposite nanofiltration membranes filled with poly (dopamine) modified multiwall carbon nanotubes. ACS applied materials & interfaces, 2016. 8(10): p. 6693-6700.
[51] B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas and L. G. Bachas, Aligned multiwalled carbon nanotube membranes. Science, 2004. 303(5654): p. 62-65.
[52] J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, et al., Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006. 312(5776): p. 1034-1037.
[53] 姜如芸, 聚多巴胺/氧化石墨烯複合膜應用於正向滲透之可行性研究. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2017.
[54] 簡明紳, 具蕾絲結構與底表面阻鹽層的聚丙烯腈複合膜在正滲透之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018.
[55] 蔡孟庭, 奈米碳管-聚丙烯腈-分子級逐層堆疊聚醯胺選擇層複合膜於正向滲透之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018.
[56] 林佶峰, 聚多巴胺/氧化石墨烯改良分子級逐層堆疊法於正滲透複合薄膜之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018.
[57] 李欣樺, 高耐化學性碳複合薄膜於正滲透系統之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2019.
[58] 馬少陽, 聚丙烯腈/氧化石墨烯改良基材膜於正滲透複合膜之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2020.
[59] 黃瑋軒, 還原氧化石墨烯碳複合薄膜於正滲透系統之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2020.
[60] A. I. Nicolas-Silvente, E. Velasco-Ortega, I. Ortiz-Garcia, L. Monsalve-Guil, J. Gil and A. Jimenez-Guerra, Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials, 2020. 13(2): p. 314.
[61] T. Young, III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, 1805(95): p. 65-87.
[62] S. Azizian and M. Khosravi, Advanced oil spill decontamination techniques, in Interface Science and Technology. 2019, Elsevier. p. 283-332.
[63] 汪建民, 材料分析. 1998, 材料科學學會.
[64] J. Martín, E. J. Díaz-Montaña and A. G. Asuero, Recovery of anthocyanins using membrane technologies: A review. Critical reviews in analytical chemistry, 2018. 48(3): p. 143-175.
[65] L. Shen, S. Xiong and Y. Wang, Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chemical Engineering Science, 2016. 143: p. 194-205.
[66] A. Tiraferri, N. Y. Yip, A. P. Straub, S. R.-V. Castrillon and M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. Journal of membrane science, 2013. 444: p. 523-538.
[67] L. Xu, J. Xu, B. Shan, X. Wang and C. Gao, Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination. Journal of Materials Chemistry A, 2017. 5(17): p. 7920-7932.
[68] Q.-Y. Wu, X.-Y. Xing, Y. Yu, L. Gu and Z.-K. Xu, Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis. Polymer, 2018. 153: p. 150-160.
[69] M. M. Said, A. H. M. El-Aassar, Y. H. Kotp, H. A. Shawky and M. S. A. Mottaleb, Performance assessment of prepared polyamide thin film composite membrane for desalination of saline groundwater at Mersa Alam-Ras Banas, Red Sea Coast, Egypt. Desalination and Water Treatment, 2013. 51(25-27): p. 4927-4937.
[70] M. N. Fini, J. Zhu, B. Van der Bruggen, H. T. Madsen and J. Muff, Preparation, characterization and scaling propensity study of a dopamine incorporated RO/FO TFC membrane for pesticide removal. Journal of Membrane Science, 2020. 612: p. 118458.
[71] B. Khorshidi, T. Thundat, B. Fleck and M. Sadrzadeh, Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. RSC Advances, 2015. 5(68): p. 54985-54997.
[72] N. Ma, J. Wei, R. Liao and C. Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. Journal of Membrane Science, 2012. 405: p. 149-157.
[73] R. Scaffaro, A. Maio, S. Agnello and A. Glisenti, Plasma Functionalization of Multiwalled Carbon Nanotubes and Their Use in the Preparation of Nylon 6‐Based Nanohybrids. Plasma processes and polymers, 2012. 9(5): p. 503-512.
[74] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Raman spectrum of graphene and graphene layers. Physical review letters, 2006. 97(18): p. 187401.
[75] M. Dresselhaus, A. Jorio and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys., 2010. 1(1): p. 89-108.
[76] F. Yu, H. Shi, J. Shi, K. Teng, Z. Xu and X. Qian, High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer. Journal of Membrane Science, 2020. 616: p. 118611.
[77] N. Ma, J. Wei, S. Qi, Y. Zhao, Y. Gao and C. Y. Tang, Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. Journal of Membrane Science, 2013. 441: p. 54-62.
[78] X. Zhao, J. Li and C. Liu, A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance. Desalination, 2017. 413: p. 176-183.
[79] T. Y. Cath, M. Elimelech, J. R. McCutcheon, R. L. McGinnis, A. Achilli, D. Anastasio, et al., Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination, 2013. 312: p. 31-38.
[80] Y. Wang, Z. Fang, S. Zhao, D. Ng, J. Zhang and Z. Xie, Dopamine incorporating forward osmosis membranes with enhanced selectivity and antifouling properties. RSC advances, 2018. 8(40): p. 22469-22481.
[81] W. A. Phillip, J. S. Yong and M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments. Environmental science & technology, 2010. 44(13): p. 5170-5176.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *