帳號:guest(13.59.20.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李 季
作者(外文):Lee, Ji
論文名稱(中文):氧化鋅披護硫化鎘奈米線應用於高性能軟性光偵測元件
論文名稱(外文):High Performance Flexible Photodetector Based on CdS Nanowires Coated with ZnO Overlayer
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Jaunn
口試委員(中文):呂明諺
吳文偉
口試委員(外文):Lu, MIng-Yen
Wu, Wen-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031570
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:93
中文關鍵詞:光偵測可撓曲軟性元件奈米線
外文關鍵詞:photodetectflexiblenanowires
相關次數:
  • 推薦推薦:0
  • 點閱點閱:76
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今的社會當中,軟性元件在學術界和業界都引起了極大的關注。為了適應在元件越做越小、性能越來越強的這個時代,擁有高彈性、高耐久度、性質優異的可靠元件是每個人共同追求的目標。軟性元件例如壓力感測器、彎曲感測器、光感測器、氣體感測器等等都有極高的需求。
而本次研究將會將目標放在製作出性能優秀的軟性光偵測元件。軟性光偵測元件可以被大量應用於現今的自駕車、無人機、穿戴式電子裝置之中。因此軟性光偵測器的可彎曲程度、耐久度、高靈敏性便成為重要的參考依據。
本研究將會將重點放在如何順利地利用簡單的化學氣相沉積製程來生長出硫化鎘奈米線,並且確認其物理、光電性質表現。此後利用氧化鋅生成type2的異質結構,並且利用簡單的轉移法將奈米線轉移至軟性的聚醯亞胺基板(PI)來形成金屬-半導體-金屬的光偵測器。光偵測器會在紅綠藍三種不同波段及不同強度下的光源下進行量測,並且軟性光偵測器的彎曲測試與耐久度測試都會被測試。
以結論來說,以硫化鎘為基底的軟性光偵測元件表現出優異的光感測開關特性和高元件反應速度。此外聚醯亞胺基板(PI)更是提供了優異的元件穩定度,在高彎曲角度與高彎曲次數下元件都保持良好的光偵測特性。這些結果都指出本研究合成的高質量硫化鎘奈米線與元件製作方法為實際應用於生活中帶來可能性。
In recent years, flexible components have aroused great attention in both academia and industry. In order to adapt to this era of increasingly miniaturized components and stronger performance, it is prudent to fabricate reliable components with high elasticity, high durability, and excellent properties. Flexible components such as pressure sensors, bending sensors, photodetectors, gas sensors, etc. are in extremely high demand.
Flexible photodetectors have been widely used in today's self-driving vehicles, drones, and wearable electronic devices. The flexibility, reliability, and high sensitivity of the flexible light detection components are important criteria. The present work focused on the fabrication of flexible light detection components with excellent performance.
CdS nanowires have been successfully synthesized with a simple chemical vapor deposition process. Their physical and optical properties were characterized. Afterwards, zinc oxide was deposited on CdS nanowires to form a typeⅡ heterostructure, and a simple transfer method was applied to transfer the nanowires to a flexible PI substrate to form a metal-semiconductor-metal photodetector. The photodetector has been measured under light sources of different wavelengths and different intensities. The bending and reliability tests of the flexible photodetector were also carried out.
The CdS-based flexible photodetector exhibits excellent on-off photo-switching characteristics and high photo-response speed. In addition, the PI substrate provides excellent device stability, and the device maintains great performance under high bending angles and high bending cycles. These results indicate that the fabrication of flexible transparent photodetectors based on high-quality CdS-ZnO nanowires is very promising for practical applications in wearable devices.
Abstract I
摘要 III
誌謝 IV
Acknowledgments VI
Contents VIII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Overview of Nanotechnology 2
1.2.1 One-Dimensional Nanostructures 4
1.2.2 Synthesis of 1D Nanostructure 4
1.2.3 Vapor-Liquid-Solid (VLS) Growth Mechanism 6
1.3 Photodetector 8
1.3.1 Photoconductive Effect 9
1.3.2 Photoconductor 10
1.3.3 Photodiode 11
1.3.4 Key Parameter in Performance of Photodetector 13
1.4 Cadmium Sulfide 16
1.4.1 Properties of Cadmium Sulfide (CdS) 16
1.4.2 Structure of Cadmium Sulfide 17
1.4.3 Applications of CdS Nanostructure 18
1.5 Metal-Semiconductor Contact (MS Contact) 19
1.5.1 Ohmic Contact 21
1.5.2 Schottky Contact 22
1.5.3 Metal-Semiconductor-Metal Contact Photodetector 24
1.6 Heterostructure 25
1.6.1 CdS-ZnO Core-Shell Heterostructure Nanowires 27
Chapter 2 Experimental Procedures 28
2.1 Experimental Flowchart 28
2.1.1 Preparation of Substrates 29
2.1.2 Synthesis Procedures of CdS Nanowires and CZx nanowires 30
2.1.3 Fabrication of Single CdS Nanowire Photodetector 32
2.1.4 Fabrication of CZx Heterostructure Flexible Photodetector 34
2.1.5 Photoelectric Properties Measurements 36
2.2 Experimental Equipments 37
2.2.1 Three-Zone Furnace 37
2.2.2 Electron Beam Evaporation System 38
2.2.3 Spin Coater 40
2.2.4 Mask Aligner 41
2.2.5 Xenon Arc Lamp 43
2.3 Characterization Instruments 44
2.3.1 Scanning Electron Microscope (SEM) 44
2.3.2 Energy Dispersive Spectroscope (EDS) 46
2.3.3 X-Ray Diffractometer (XRD) 47
2.3.4 Transmission Electron Microscopy (TEM) 49
2.3.5 X-ray Photoelectron Spectroscopy (XPS) 51
2.3.6 UV-VIS Spectrometer 52
2.3.7 Photoluminescence (PL) 53
2.3.8 Probe Station and Semiconductor Characterization System 54
Chapter 3 Results and Discussion 55
3.1 Properties and Characteristics of CdS NWs 55
3.1.1 SEM Observation 55
3.1.2 EDS Analysis 56
3.1.3 XRD Analysis 57
3.1.4 TEM Observation 58
3.1.5 XPS Analysis 59
3.1.6 UV-VIS Absorbance Spectrum 60
3.1.7 PL Spectrum 61
3.2 Single CdS Nanowire Photodetector 62
3.2.1 Au-CdS-Au Structure 63
3.2.2 I-V Characteristics 65
3.2.3 Photoswitching Characteristics 67
3.2.4 Comparison of Single CdS 1D Photodetectors 70
3.3 CdS Based Flexible Photodetector 71
3.3.1 I-V Curves Characteristics 71
3.3.2 Photoswitching Characteristics 74
3.3.3 Reliability Characteristics 77
3.3.4 Comparison of Flexible Photodetectors 80
Chapter 4 Summary and Conclusions 81
Chapter 5 Future Prospects 83
5.1 Plasmon Enhancement of Photodetector on Plasmonic metals 83
5.2 Flexible 1D Nanostructure Photodetector 84
References 85
1. Taniguchi, N., On the basic concept of nanotechnology. Proceeding of ICPE, 1974 .1: pp. 18-23.
2. Mulvaney, P., Nanoscience vs nanotechnology defining the field. ACS Nano, 2015. 3: pp. 2215-2217.
3. Freitas Jr, R., What is nanomedicine? Nanomed, 2005. 1: pp. 2-9.
4. Nussinov, R. and Alemán, C., Nanobiology: from physics and engineering to biology. Phys. Biol., 2006. 3: pp. 1-3.
5. Koenderink, A.F., Alu, A., and Polman, A., Nanophotonics: Shrinking light-based technology. Science, 2015. 348: pp. 516-521.
6. Poole Jr, C.P. and Owens, F.J., Introduction to nanotechnology. John Wiley & Sons. 2003: pp. 1-8.
7. Garnett, E., Mai, L., and Yang, P.J., Introduction: 1D nanomaterials/nanowires. 2011. Taniguchi, N., On the basic concept of nanotechnology. Proceeding of ICPE, 1974 .1: pp. 18-23.
8. Chen, L.J., Silicon nanowires: the building block forfuture electronic devices. J. Mater. Chem, 2007. 44: pp. 4629-4643.
9. Persson, A.I., Larsson, M.W., Stenström, S., Ohlsson, B.J., Samuelson, L., and Wallenberg, L.R., Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater, 2004. 3: pp. 677-681.
10. Zhang, X.M., Lu, M.Y., Zhang, Y., Chen, L.J., and Wang, Z.L., Fabrication of a high‐brightness blue‐light‐emitting diode using a ZnO‐nanowire array grown on p‐GaN thin film. Adv. Mater, 2009. 21: pp. 2767-2770.
11. Chen, M.T., Lu, M.P., Wu, Y.J., Song, J., Lee, C.Y., Lu, M.Y., Chang, Y.C., Chou, L.J., Wang, Z.L., and Chen, L.J., Near UV LEDs made with in situ doped pn homojunction ZnO nanowire arrays. Nano Lett., 2010. 10: pp. 4387-4393.
12. Cai, Y., Chan, S.K., Sou, I.K., Chan, Y.F., Su, D.S., and Wang, N.J.A.M., The Size‐Dependent Growth Direction of ZnSe Nanowires. Adv. Mater, 2006. 18: pp. 109-114.
13. Ma, C. and Wang, Z., Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing. Adv. Mater, 2005. 17: pp. 2635-2639.
14. He, Z., Jie, J., Zhang, W., Zhang, W., Luo, L., Fan, X., Yuan, G., Bello, I., and Lee, S.T., Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. Small, 2009. 5: pp. 345-350.
15. Koch, C.C., Top-Down Synthesis Of Nanostructured Materials: Mechanical And Thermal Processing Methods. Rev Adv. Mater.Sci, 2003. 5: pp. 91-99.
16. Lu, W., Lieber, C.M., Nanoelectronics from the bottom up. Nanoscience and Technology, 2010: pp. 137-146.
17. Khanna, P., Kaur, A., and Goyal, D.J., Algae-based metallic nanoparticles: Synthesis, characterization and applications. Microbiol. Methods, 2019. 163: 105656.
18. Wagner, R.S. and Ellis, W.C., Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett., 1964. 4: pp. 89-90.
19. Zeng, H., Zhang, G., Nagashima, K., Takahashi, T., Hosomi, T., and Yanagida, T.J., Metal–Oxide Nanowire Molecular Sensors and Their Promises. Chemosensors, 2021. 9: 41.
20. Parida, B., Iniyan, S., Goic, R.J.R., and reviews, s.e., A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 2011. 15: pp. 1625-1636.
21. Legrini, O., Oliveros, E., and Braun, A.J., Photochemical processes for water treatment. Chem. Rev., 1993. 93: pp. 671-698.
22. Dou, L., Yang, Y.M., You, J., Hong, Z., Chang, W.H., Li, G., and Yang, Y.J., Solution-processed hybrid perovskite photodetectors with high detectivity. Nature, 2014. 5: pp. 1-6.
23. Wang, Y., Gao, M.L., Wu, J.L., and Zhang, X.W., Metal halide perovskite photodetectors: Material features and device engineering. Chinese Physics B, 2019. 28: pp. 18-25.
24. Würthner, F., Generating a photocurrent on the nanometer scale. Sciencemag., 2006. 314: pp. 1693-1694.
25. Ahmadi, M., Wu, T., and Hu, B.J., A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater, 2017. 29: 1605242.
26. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: pp. 56-58.
27. Duan, X., Niu, C., Sahi, V., Chen, J., Parce, J.W., Empedocles, S., and Goldman, J.L., High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature, 2003. 425: pp. 274-278.
28. Hayden, O., Greytak, A.B., and Bell, D.C., Core–shell nanowire light‐emitting diodes. Adv. Mater., 2005. 17: pp. 701-704.
29. Huang, Y., Duan, X., and Lieber, C.M., Nanowires for integrated multicolor nanophotonics. Small, 2005. 1: pp. 142-147.
30. Grätzel, M., Photoelectrochemical cells, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles Nature Publishing Group, 2011. pp. 26-32.
31. Lin, Y.F., Song, J., Ding, Y., Lu, S.Y., and Wang, Z.L., Piezoelectric nanogenerator using CdS nanowires. Appl. Phys. Lett., 2008. 92: pp. 022105.
32. Fan, Z., Mohammad, S.N., Kim, W., Aktas, Ö., Botchkarev, A.E., and Morkoç, H.J., Very low resistance multilayer Ohmic contact to n‐GaN. Appl. Phys., 1996. 68: pp. 1672-1674.
33. Tersoff, J.J., Theory of semiconductor heterojunctions: The role of quantum dipoles. Phys. Rev. B, 1984. 30: 4874.
34. Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., and He, J.J., Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 2013. 5: pp. 8326-8339.
35. Vainorius, N., Jacobsson, D., Lehmann, S., Gustafsson, A., Dick, K.A., Samuelson, L., and Pistol, M.E., Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires. Phys. Rev. B, 2014. 89: 165423.
36. Tak, Y., Hong, S.J., Lee, J.S., and Yong, K., Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem., 2009. 19: pp. 5945-5951.
37. Sim, H., Lee, J., Cho, S., Cho, E.S., Kwon, S.J., A study on the band structure of ZnO/CdS heterojunction for CIGS solar-cell application. JSTS, 2015. 15: pp. 267-275.
38. Grier, A., Valavanis, A., Edmunds, C., Shao, J., Cooper, J.D., Gardner, G., Manfra, M., Malis, O., Indjin, D., and Ikonić, Z.J., Harrison P., Coherent vertical electron transport and interface roughness effects in AlGaN/GaN intersubband devices. J. Appl. Phys., 2015. 118: 224308.
39. Mukherjee, B., Tok, E.S., and Sow, C.H., Photocurrent characteristics of individual GeSe2 nanobelt with Schottky effects. J. Appl. Phys., 2013. 114: 134302.
40. Katz, O., Garber, V., Meyler, B., Bahir, G., and Salzman, J.J., Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys., 2001. 79: pp. 1417-1419.
41. Leung, K., Wright, A., and Stechel, E.J., Charge accumulation at a threading edge dislocation in gallium nitride. Appl. Phys. Lett.,1999. 74: pp. 2495-2497.
42. Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D., Park, J., Bao, X., Lo, Y.H., and Wang, D.J., ZnO nanowire UV photodetectors with high internal gain. Nano Lett., 2007. 7: pp. 1003-1009.
43. Zhou, W., Peng, Y., Yin, Y., Zhou, Y., Zhang, Y., and Tang, D.J., Broad spectral response photodetector based on individual tin-doped CdS nanowire. AIP Advances, 2014. 4: 123005.
44. Lou, Z., Li, L., and Shen, G.J., Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. Nanoscales, 2016. 8: pp. 5219-5225.
45. Gou, G., Dai, G., Qian, C., Liu, Y., Fu, Y., Tian, Z., He, Y., Kong, L., Yang, J., and Sun, J.J., High-performance ultraviolet photodetectors based on CdS/CdS: SnS 2 superlattice nanowires. Nanoscales, 2016. 8: pp. 14580-14586.
46. Zhang, C., Tian, W., Xu, Z., Wang, X., Liu, J., Li, S.L., Tang, D.M., Liu, D., Liao, M., and Bando, Y.J., Photosensing performance of branched CdS/ZnO heterostructures as revealed by in situ TEM and photodetector tests. Nanoscales, 2014. 6: pp. 8084-8090.
47. Li, L., Wu, P., Fang, X., Zhai, T., Dai, L., Liao, M., Koide, Y., Wang, H., Bando, Y., and Golberg, D.J., Single‐crystalline CdS nanobelts for excellent field‐emitters and ultrahigh quantum‐efficiency photodetectors. Adv. Mater, 2010. 22: pp. 3161-3165.
48. Chen, G., Liu, Z., Liang, B., Yu, G., Xie, Z., Huang, H., Liu, B., Wang, X., Chen, D., and Zhu, M.Q., Single‐crystalline p‐type Zn3As2 nanowires for field‐effect transistors and visible‐light photodetectors on rigid and flexible substrates. Adv. Funct. Mater., 2013. 23: pp. 2681-2690.
49. Lou, Z., Li, L., and Shen, G.J., High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Research, 2015. 8: pp. 2162-2169.
50. Tian, W., Zhang, C., Zhai, T., Li, S.L., Wang, X., Liu, J., Jie, X., Liu, D., Liao, M., and Koide, Y.J., Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS‐ZnO heterostructure nanofilms. Adv. Mater, 2014. 26: pp. 3088-3093.
51. Chen, G., Wang, W., Wang, C., Ding, T., and Yang, Q.J., Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv. Sci., 2015. 2: 1500109.
52. Hu, X., Zhang, X., Liang, L., Bao, J., Li, S., Yang, W., and Xie, Y.J., High‐performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater., 2014. 24: pp. 7373-7380.
53. Xue, D.J., Wang, J.J., Wang, Y.Q., Xin, S., Guo, Y.G., and Wan, L.J., Facile synthesis of germanium nanocrystals and their application in organic–inorganic hybrid photodetectors. Adv. Mater, 2011. 23: pp. 3704-3707.
54. Wang, X., Song, W., Liu, B., Chen, G., Chen, D., Zhou, C., and Shen, G.J., High‐performance organic‐inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates. Adv. Funct. Mater., 2013. 23: pp. 1202-1209.
55. Game, O., Singh, U., Kumari, T., Banpurkar, A., and Ogale, S.J., ZnO (N)–Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor. Nanoscale, 2014. 6: pp. 503-513.
56. Liu, X. and Swihart, M.T., Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chemical Society Reviews, 2014. 43: pp. 3908-3920.
57. Scaiano, J.C., Stamplecoskie, K.G., and Hallett-Tapley, G.L., Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem. Commun, 2012. 48: pp. 4798-4808.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *