|
1. Taniguchi, N., On the basic concept of nanotechnology. Proceeding of ICPE, 1974 .1: pp. 18-23. 2. Mulvaney, P., Nanoscience vs nanotechnology defining the field. ACS Nano, 2015. 3: pp. 2215-2217. 3. Freitas Jr, R., What is nanomedicine? Nanomed, 2005. 1: pp. 2-9. 4. Nussinov, R. and Alemán, C., Nanobiology: from physics and engineering to biology. Phys. Biol., 2006. 3: pp. 1-3. 5. Koenderink, A.F., Alu, A., and Polman, A., Nanophotonics: Shrinking light-based technology. Science, 2015. 348: pp. 516-521. 6. Poole Jr, C.P. and Owens, F.J., Introduction to nanotechnology. John Wiley & Sons. 2003: pp. 1-8. 7. Garnett, E., Mai, L., and Yang, P.J., Introduction: 1D nanomaterials/nanowires. 2011. Taniguchi, N., On the basic concept of nanotechnology. Proceeding of ICPE, 1974 .1: pp. 18-23. 8. Chen, L.J., Silicon nanowires: the building block forfuture electronic devices. J. Mater. Chem, 2007. 44: pp. 4629-4643. 9. Persson, A.I., Larsson, M.W., Stenström, S., Ohlsson, B.J., Samuelson, L., and Wallenberg, L.R., Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater, 2004. 3: pp. 677-681. 10. Zhang, X.M., Lu, M.Y., Zhang, Y., Chen, L.J., and Wang, Z.L., Fabrication of a high‐brightness blue‐light‐emitting diode using a ZnO‐nanowire array grown on p‐GaN thin film. Adv. Mater, 2009. 21: pp. 2767-2770. 11. Chen, M.T., Lu, M.P., Wu, Y.J., Song, J., Lee, C.Y., Lu, M.Y., Chang, Y.C., Chou, L.J., Wang, Z.L., and Chen, L.J., Near UV LEDs made with in situ doped pn homojunction ZnO nanowire arrays. Nano Lett., 2010. 10: pp. 4387-4393. 12. Cai, Y., Chan, S.K., Sou, I.K., Chan, Y.F., Su, D.S., and Wang, N.J.A.M., The Size‐Dependent Growth Direction of ZnSe Nanowires. Adv. Mater, 2006. 18: pp. 109-114. 13. Ma, C. and Wang, Z., Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing. Adv. Mater, 2005. 17: pp. 2635-2639. 14. He, Z., Jie, J., Zhang, W., Zhang, W., Luo, L., Fan, X., Yuan, G., Bello, I., and Lee, S.T., Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. Small, 2009. 5: pp. 345-350. 15. Koch, C.C., Top-Down Synthesis Of Nanostructured Materials: Mechanical And Thermal Processing Methods. Rev Adv. Mater.Sci, 2003. 5: pp. 91-99. 16. Lu, W., Lieber, C.M., Nanoelectronics from the bottom up. Nanoscience and Technology, 2010: pp. 137-146. 17. Khanna, P., Kaur, A., and Goyal, D.J., Algae-based metallic nanoparticles: Synthesis, characterization and applications. Microbiol. Methods, 2019. 163: 105656. 18. Wagner, R.S. and Ellis, W.C., Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett., 1964. 4: pp. 89-90. 19. Zeng, H., Zhang, G., Nagashima, K., Takahashi, T., Hosomi, T., and Yanagida, T.J., Metal–Oxide Nanowire Molecular Sensors and Their Promises. Chemosensors, 2021. 9: 41. 20. Parida, B., Iniyan, S., Goic, R.J.R., and reviews, s.e., A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 2011. 15: pp. 1625-1636. 21. Legrini, O., Oliveros, E., and Braun, A.J., Photochemical processes for water treatment. Chem. Rev., 1993. 93: pp. 671-698. 22. Dou, L., Yang, Y.M., You, J., Hong, Z., Chang, W.H., Li, G., and Yang, Y.J., Solution-processed hybrid perovskite photodetectors with high detectivity. Nature, 2014. 5: pp. 1-6. 23. Wang, Y., Gao, M.L., Wu, J.L., and Zhang, X.W., Metal halide perovskite photodetectors: Material features and device engineering. Chinese Physics B, 2019. 28: pp. 18-25. 24. Würthner, F., Generating a photocurrent on the nanometer scale. Sciencemag., 2006. 314: pp. 1693-1694. 25. Ahmadi, M., Wu, T., and Hu, B.J., A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater, 2017. 29: 1605242. 26. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: pp. 56-58. 27. Duan, X., Niu, C., Sahi, V., Chen, J., Parce, J.W., Empedocles, S., and Goldman, J.L., High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature, 2003. 425: pp. 274-278. 28. Hayden, O., Greytak, A.B., and Bell, D.C., Core–shell nanowire light‐emitting diodes. Adv. Mater., 2005. 17: pp. 701-704. 29. Huang, Y., Duan, X., and Lieber, C.M., Nanowires for integrated multicolor nanophotonics. Small, 2005. 1: pp. 142-147. 30. Grätzel, M., Photoelectrochemical cells, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles Nature Publishing Group, 2011. pp. 26-32. 31. Lin, Y.F., Song, J., Ding, Y., Lu, S.Y., and Wang, Z.L., Piezoelectric nanogenerator using CdS nanowires. Appl. Phys. Lett., 2008. 92: pp. 022105. 32. Fan, Z., Mohammad, S.N., Kim, W., Aktas, Ö., Botchkarev, A.E., and Morkoç, H.J., Very low resistance multilayer Ohmic contact to n‐GaN. Appl. Phys., 1996. 68: pp. 1672-1674. 33. Tersoff, J.J., Theory of semiconductor heterojunctions: The role of quantum dipoles. Phys. Rev. B, 1984. 30: 4874. 34. Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., and He, J.J., Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 2013. 5: pp. 8326-8339. 35. Vainorius, N., Jacobsson, D., Lehmann, S., Gustafsson, A., Dick, K.A., Samuelson, L., and Pistol, M.E., Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires. Phys. Rev. B, 2014. 89: 165423. 36. Tak, Y., Hong, S.J., Lee, J.S., and Yong, K., Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem., 2009. 19: pp. 5945-5951. 37. Sim, H., Lee, J., Cho, S., Cho, E.S., Kwon, S.J., A study on the band structure of ZnO/CdS heterojunction for CIGS solar-cell application. JSTS, 2015. 15: pp. 267-275. 38. Grier, A., Valavanis, A., Edmunds, C., Shao, J., Cooper, J.D., Gardner, G., Manfra, M., Malis, O., Indjin, D., and Ikonić, Z.J., Harrison P., Coherent vertical electron transport and interface roughness effects in AlGaN/GaN intersubband devices. J. Appl. Phys., 2015. 118: 224308. 39. Mukherjee, B., Tok, E.S., and Sow, C.H., Photocurrent characteristics of individual GeSe2 nanobelt with Schottky effects. J. Appl. Phys., 2013. 114: 134302. 40. Katz, O., Garber, V., Meyler, B., Bahir, G., and Salzman, J.J., Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys., 2001. 79: pp. 1417-1419. 41. Leung, K., Wright, A., and Stechel, E.J., Charge accumulation at a threading edge dislocation in gallium nitride. Appl. Phys. Lett.,1999. 74: pp. 2495-2497. 42. Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D., Park, J., Bao, X., Lo, Y.H., and Wang, D.J., ZnO nanowire UV photodetectors with high internal gain. Nano Lett., 2007. 7: pp. 1003-1009. 43. Zhou, W., Peng, Y., Yin, Y., Zhou, Y., Zhang, Y., and Tang, D.J., Broad spectral response photodetector based on individual tin-doped CdS nanowire. AIP Advances, 2014. 4: 123005. 44. Lou, Z., Li, L., and Shen, G.J., Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. Nanoscales, 2016. 8: pp. 5219-5225. 45. Gou, G., Dai, G., Qian, C., Liu, Y., Fu, Y., Tian, Z., He, Y., Kong, L., Yang, J., and Sun, J.J., High-performance ultraviolet photodetectors based on CdS/CdS: SnS 2 superlattice nanowires. Nanoscales, 2016. 8: pp. 14580-14586. 46. Zhang, C., Tian, W., Xu, Z., Wang, X., Liu, J., Li, S.L., Tang, D.M., Liu, D., Liao, M., and Bando, Y.J., Photosensing performance of branched CdS/ZnO heterostructures as revealed by in situ TEM and photodetector tests. Nanoscales, 2014. 6: pp. 8084-8090. 47. Li, L., Wu, P., Fang, X., Zhai, T., Dai, L., Liao, M., Koide, Y., Wang, H., Bando, Y., and Golberg, D.J., Single‐crystalline CdS nanobelts for excellent field‐emitters and ultrahigh quantum‐efficiency photodetectors. Adv. Mater, 2010. 22: pp. 3161-3165. 48. Chen, G., Liu, Z., Liang, B., Yu, G., Xie, Z., Huang, H., Liu, B., Wang, X., Chen, D., and Zhu, M.Q., Single‐crystalline p‐type Zn3As2 nanowires for field‐effect transistors and visible‐light photodetectors on rigid and flexible substrates. Adv. Funct. Mater., 2013. 23: pp. 2681-2690. 49. Lou, Z., Li, L., and Shen, G.J., High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Research, 2015. 8: pp. 2162-2169. 50. Tian, W., Zhang, C., Zhai, T., Li, S.L., Wang, X., Liu, J., Jie, X., Liu, D., Liao, M., and Koide, Y.J., Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS‐ZnO heterostructure nanofilms. Adv. Mater, 2014. 26: pp. 3088-3093. 51. Chen, G., Wang, W., Wang, C., Ding, T., and Yang, Q.J., Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv. Sci., 2015. 2: 1500109. 52. Hu, X., Zhang, X., Liang, L., Bao, J., Li, S., Yang, W., and Xie, Y.J., High‐performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater., 2014. 24: pp. 7373-7380. 53. Xue, D.J., Wang, J.J., Wang, Y.Q., Xin, S., Guo, Y.G., and Wan, L.J., Facile synthesis of germanium nanocrystals and their application in organic–inorganic hybrid photodetectors. Adv. Mater, 2011. 23: pp. 3704-3707. 54. Wang, X., Song, W., Liu, B., Chen, G., Chen, D., Zhou, C., and Shen, G.J., High‐performance organic‐inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates. Adv. Funct. Mater., 2013. 23: pp. 1202-1209. 55. Game, O., Singh, U., Kumari, T., Banpurkar, A., and Ogale, S.J., ZnO (N)–Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor. Nanoscale, 2014. 6: pp. 503-513. 56. Liu, X. and Swihart, M.T., Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chemical Society Reviews, 2014. 43: pp. 3908-3920. 57. Scaiano, J.C., Stamplecoskie, K.G., and Hallett-Tapley, G.L., Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem. Commun, 2012. 48: pp. 4798-4808.
|