帳號:guest(18.218.84.3)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李丞翊
作者(外文):Lee, Cheng-Yi
論文名稱(中文):銀及其合金電漿子奈米線作為優秀透明導電電極之研究
論文名稱(外文):Plasmonic Nanowires by Silver and Its Alloy as A Superior Transparent Conducting Electrode
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta- Jen
口試委員(中文):韋光華
郭宗枋
口試委員(外文):Wei, Kung-Hwa
Guo, Tzung-Fang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031565
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:117
中文關鍵詞:銀鋁合金奈米線超穎材料透明導電電極
外文關鍵詞:silver-aluminum alloynanowiresmetamaterialTransparentConductingElectrode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著光電元件的需求越來越大,在當中扮演傳遞電子角色的電極勢必不可或缺。因此,對於此種透明導電電極,同時擁有高導電能力與高光學穿透成為一重要課題。近年來,因在可見光波段展現高光學穿透(80%)以及不錯的導電能力(片電阻約50 Ω/),銦錫氧化物玻璃被廣泛應用於顯示器與太陽能電池等光學元件。然而銦錫氧化物作為一金屬氧化物,其介電屬性大大限制了元件的導電能力,且氧化銦的能帶間轉換,使得光學穿透在354奈米波段以下大幅下降,更是阻斷了其在紫外光波段的光學應用。超穎材料基底透明導電電極具有可調控之光學響應、高導電以及良好的機械延展性等優點,已經在過去實驗室的論文當中被實現。在所有金屬材透明電極當中,銀在具備可見光高光學穿透和超高導電性的條件下,展現了比銦錫氧化物高出一倍的FoM(238),但也因銀本身較低的電漿子頻率(9.0 eV)和低波段的能帶間轉換(308 nm),加上在多低端波激發出的電漿子共振,使其在藍光波段的表現較為尷尬。相反地,鋁因有較高電漿子頻率(12.5 eV)和能帶間轉換(800 nm),使得鋁透明電極在和銀透明電極比較時,反而在藍光展現良好的光學穿透,在長波長則出現較大的損耗。在此篇論文中,我們的目標是透過將銀鋁熔煉為合金,期望合金能夠融合銀、鋁在它們優勢波段的光學性質,創造出銀鋁合金超穎透明電極,以實現在整個可見光、近紫外光的寬頻穿透。最後我們也成功在實驗中看到此融合趨勢。
Motivated by the increasing demand of optoelectronic devices, electrodes that play roles on providing vertical potential difference are indispensable. Thus, simultaneously performing high electric conductivity and high optical transmittance become a crucial issue for transparent conducting electrodes (TCE). In recent years, owing to its high average optical transmittance (80%) over the visible range and decent electrical conductivity (sheet resistance≈50 Ω/), Indium Tin Oxide (ITO) glass is widely used on optoelectronic application, including display and solar cell. However, the ceramic nature limits the highest figure of merit (FoM) it could reaches, and the applications are also prohibited in UV range as well due to its inter-band transition. Metamaterial-based transparent conducting electrodes composed of continuous metallic grid that posing advantages of tunable optical response, high electric conductivity and also mechanical flexibility have been proposed in previous works. Among all kinds of metallic materials, silver TCE performs highest FoM value up to 238, which is one time higher than that of ITO, due to its high electrical conductivity and high optical transmission in visible range. However, the low plasma frequency 9.0 eV and inter-band transition at 308 nm [1] make the performance of silver TCE embarrassed at shorter wavelength range, moreover, localized surface polariton resonance excited at blue light region causes severe optical dissipation, and it is more intensive as the periodicity of metallic grid goes down. On the other hand, high plasma frequency (12.5 eV) and high inter-band transition (800 nm) make aluminum TCE demonstrate the opposite trend of transmittance spectrum, exhibiting excellent optical properties in blue light wavelength range and even UV range, when it is compared to silver one. Therefore, in this work, we aim to combine their optical properties at their dominating wavelength range by melting silver and aluminum together and creating silver-aluminum alloy metamaterial-based transparent conducting electrode, in order to revise and balance the optical transmittance of sub-wavelength TCE, and fulfill broadband transmission that can be applied on corelated applications.
摘要………………………………………………………………………………ii
Abstract…………………………………………………………………………..iv
Acknowledgements………………………………………………………………vi
List of Figures…………………………………………………………………..viii
List of Tables…….……………………………………………………………....xv
Content………………………………………………………………………….xvi
Chapter 1: Introduction….. ……………………………………………………….1
Chapter 2: Literature review………………………………………………………5
2.1 Transparent conducting electrodes……………………………………………..5
2.1.1 Figure of merit (FoM)………………………………………………….....5
2.1.2 Transparent conducting oxides (TCOs) …………………………...…………8
2.1.3 Graphene-based electrodes………………………………………...…….12
2.1.4 Metallic nanowires electrodes…………………………………………….14
2.1.5 Metallic nanowire network electrodes……………………………………...18
2.1.6 Comparison of different transparent conducting electrodes……………………..22
2.2 Metamaterial-based metallic grid TCE………………………………………...24
2.2.1 Drude Lorentz dispersion model…………………………………………..24
2.2.2 Subwavelength plasmonic effects…………………….…………………...30
2.2.3 Metallic material selection……………………………………………….38
Chapter 3: Design and simulation………………………………………………..46
3.1 Transmittance simulation……………………………………………………46
3.1.1 Silver simulated results………………………………………………….48
3.1.2 Aluminum simulated results……………………………………………...58
3.2 Figure of merit calculation…………………………………………………...64
3.3 Transmittance comparison between different TCEs……………………………..68
Chapter 4: Alloy preparation and optimization…..………………………………71
4.1 Alloy preparation…………………………………………………………...71
4.2 X-ray photoemission spectroscopy analysis……………………………………73
4.3 X-ray diffractometer analysis……………………………………………...…78
4.4 Ellipsometry measurement…………………………………………………..82
Chapter 5: Fabrication…………………………………………………………...88
5.1 Process flow……………………………………………………………….88
5.2 Electron beam lithography…………………………………………………...89
5.3 Electron beam evaporation…………………………………………………..93
Chapter 6: Results and discussions..……………………………………………..97
6.1 Transmittance measurement setup…………………………………………….97
6.2 Measured transmittance results……………………………………………….99
6.3 Sheet resistance measurement………………………………………………106
Chapter 7: Conclusion………………………………………………………….112
Reference……………………………………………………………………….114
1. Kolwas, K. and A. Derkachova, Impact of the Interband Transitions in Gold and Silver on the Dynamics of Propagating and Localized Surface Plasmons. Nanomaterials, 2020. 10: p. 1411.
2. Dolling, G., et al., Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial. Science, 2006. 312(5775): p. 892-894.
3. Amalathas, A.P. and M.M. Alkaisi, Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen. Journal of Materials Science: Materials in Electronics, 2016. 27(10): p. 11064-11071.
4. Sibin, K.P., et al., Optical and electrical properties of ITO thin films sputtered on flexible FEP substrate as passive thermal control system for space applications. Solar Energy Materials and Solar Cells, 2016. 145: p. 314-322.
5. De, S., et al., Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano, 2010. 4(12): p. 7064-7072.
6. Yu, L., C. Shearer, and J. Shapter, Recent Development of Carbon Nanotube Transparent Conductive Films. Chemical Reviews, 2016. 116(22): p. 13413-13453.
7. Kim, C.-C., et al., Highly stretchable, transparent ionic touch panel. Science, 2016. 353(6300): p. 682.
8. Lee, J., et al., An Analysis of Electrode Patterns in Capacitive Touch Screen Panels. Journal of Display Technology, 2014. 10(5): p. 362-366.
9. Stadler, A., Transparent Conducting Oxides-An Up-To-Date Overview. Materials (Basel), 2012. 5(4): p. 661-683.
10. Minami, T., Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology, 2005. 20(4): p. S35-S44.
11. Ellmer, K., Past achievements and future challenges in the development of optically transparent electrodes. Nature Photonics, 2012. 6(12): p. 809-817.
12. Amaral, A., et al., Early stage growth structure of indium tin oxide thin films deposited by reactive thermal evaporation. Surface and Coatings Technology, 2000. 125(1-3): p. 151-156.
13. Du, J., et al., Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature. Applied Physics A, 2014. 117(2): p. 815-822.
14. Kim, Y.-S., et al., Effect of substrate temperature on the bonded states of indium tin oxide thin films deposited by plasma enhanced chemical vapor deposition. Thin Solid Films, 2003. 426(1-2): p. 124-131.
15. Szkutnik, P., et al., Study of the functional properties of ITO grown by metalorganic chemical vapor deposition from different indium and tin precursors. Journal of Alloys and compounds, 2014. 603: p. 268-273.
16. Kim, S.I., et al., Properties of ITO films deposited by RF superimposed DC magnetron sputtering. Current Applied Physics, 2009. 9(3): p. S262-S265.
17. Kurdesau, F., et al., Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. Journal of Non-Crystalline Solids, 2006. 352(9-20): p. 1466-1470.
18. Fan, J.C., Preparation of Sn‐doped In2O3 (ITO) films at low deposition temperatures by ion‐beam sputtering. Applied Physics Letters, 1979. 34(8): p. 515-517.
19. Kim, D., et al., Low temperature deposition of ITO thin films by ion beam sputtering. Thin Solid Films, 2000. 377: p. 81-86.
20. Izumi, H., et al., Electrical properties of crystalline ITO films prepared at room temperature by pulsed laser deposition on plastic substrates. Thin Solid Films, 2002. 411(1): p. 32-35.
21. Kim, J.H., et al., Electrical, structural, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition. Applied Surface Science, 2006. 252(13): p. 4834-4837.
22. Yang, L., et al., Meter-scale transparent conductive circuits based on silver nanowire networks for rigid and flexible transparent light-emitting diode screens. Optical Materials Express, 2019. 9(12): p. 4483-4496.
23. Kwon, K.C., K.S. Choi, and S.Y. Kim, Increased Work Function in Few-Layer Graphene Sheets via Metal Chloride Doping. Advanced Functional Materials, 2012. 22(22): p. 4724-4731.
24. Dai, L., Functionalization of Graphene for Efficient Energy Conversion and Storage. Accounts of Chemical Research, 2013. 46(1): p. 31-42.
25. Panchakarla, L., et al., Synthesis, structure, and properties of boron‐and nitrogen‐doped graphene. Advanced Materials, 2009. 21(46): p. 4726-4730.
26. D'Arsié, L., et al., Stable, efficient p-type doping of graphene by nitric acid. RSC Advances, 2016. 6(114): p. 113185-113192.
27. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5(8): p. 574-578.
28. Han, T.-H., et al., Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics, 2012. 6(2): p. 105-110.
29. Lee, P., et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Advanced Materials, 2012. 24(25): p. 3326-3332.
30. Tokuno, T., et al., Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Research Letters, 2012. 7(1): p. 1-7.
31. Sannicolo, T., et al., Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: a Review. Small, 2016. 12(44): p. 6052-6075.
32. Bid, A., Achyut Bora, and A.K. Raychaudhuri, Temperature Dependence of The Resistance of Metallic Nanowires of Diameter≥15 nm: Applicability of Bloch-Gruneisen Theorem. Phsical Review B 74.3 (2006): 035426
33. Langley, D.P., et al., Metallic nanowire networks: effects of thermal annealing on electrical resistance. Nanoscale, 2014. 6(22): p. 13535-13543.
34. Hong, S., et al., Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano, 2013. 7(6): p. 5024-5031.
35. Stewart, I.E., et al., Solution-processed copper–nickel nanowire anodes for organic solar cells. Nanoscale, 2014. 6(11): p. 5980-5988.
36. Garnett, E.C., et al., Self-limited plasmonic welding of silver nanowire junctions. Nature Materials, 2012. 11(3): p. 241-249.
37. Jang, J., et al., A Flexible and Robust Transparent Conducting Electrode Platform Using an Electroplated Silver Grid/Surface-Embedded Silver Nanowire Hybrid Structure. ACS Applied Materials & Interfaces, 2016. 8(40): p. 27035-27043.
38. van de Groep, J., P. Spinelli, and A. Polman, Transparent Conducting Silver Nanowire Networks. Nano Letters, 2012. 12(6): p. 3138-3144.
39. Kang, M.-G., et al., Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes. Advanced Materials, 2008. 20(23): p. 4408-4413.
40. Park, J.H., et al., Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly. ACS Applied Materials & Interfaces, 2014. 6(15): p. 12380-12387.
41. Lee, H.B., et al., Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: A Review. Journal of Materials Chemistry C, 2019. 7(5): p. 1087-1110.
42. Rosli, N.N., et al., A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renewable and Sustainable Energy Reviews, 2019. 99: p. 83-99.
43. Langley, D., et al., Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology, 2013. 24(45): p. 452001.
44. Pendry, J.B., et al., Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996. 76(25): p. 4773.
45. Catchpole, K. and A. Polman, Design principles for particle plasmon enhanced solar cells. Applied Physics Letters, 2008. 93(19): p. 191113.
46. Catrysse, P.B. and S. Fan, Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices. Nano Letters, 2010. 10(8): p. 2944-2949.
47. Gérard, D. and S.K. Gray, Aluminium plasmonics. Journal of Physics D: Applied Physics, 2014. 48(18): p. 184001.
48. Sundararaman, R., et al., Theoretical predictions for hot-carrier generation from surface plasmon decay. Nature Communications, 2014. 5(1): p. 5788.
49. Ehrenreich, H., H.R. Philipp, and B. Segall, Optical Properties of Aluminum. Physical Review, 1963. 132(5): p. 1918-1928.
50. Sharma, R., A. Dhillon, and D. Kumar, Mentha-Stabilized Silver Nanoparticles for High-Performance Colorimetric Detection of Al(III) in Aqueous Systems. Scientific Reports, 2018. 8(1): p. 5189.
51. Parashar, P.K. and V.K. Komarala, Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells. Scientific Reports, 2017. 7(1): p. 12520.
52. Li, W., et al., Facile synthesis of cubic Ag/Ag2O composites and its shape-dependent photo-catalytic activity examination. Journal of Materials Science: Materials in Electronics, 2019. 30.
53. Kumar, N. and K. Biswas, Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles. Journal of Materials Research and Technology, 2019. 8(1): p. 63-74.
54. De Silva, K., et al., Optical properties and oxidation of α -phase Ag–Al thin films. Nanotechnology, 2017. 28: p. 095202.
55. Fu, S.-W. and C. Lee, A study on intermetallic compound formation in Ag–Al system and evaluation of its mechanical properties by micro-indentation. Journal of Materials Science: Materials in Electronics, 2018. 29: p. 1-7.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *