|
1. If carbon dioxide hits a new high every year, why isn’t every year hotter than the last?. (2020). Retrieved from https://www.climate.gov/news-features/climate-qa/if-carbon-dioxide-hits-new-high-every-year-why-isn%E2%80%99t-every-year-hotter-last 2. Global Warming of 1.5 ºC. (2020). Retrieved from https://www.ipcc.ch/sr15 3. The IPCC special report on 1.5°C: key takeaways for PRI signatories. (2018). Retrieved from https://www.unpri.org/news-and-press/the-ipcc-special-report-on-15c-key-takeaways-for-pri-signatories-/3818.article 4. The Smart Grid. (2017). Retrieved from https://www.eettaiwan.com/news/article/20171023TA31-the-smart-grid 5. W.J. Zhang et al. (2011). Journal of Power Sources, 196, 13-24 6. Negative electrodes of lithium ion secondary batteries. (2019). Retrieved from https://ejournal.stpi.narl.org.tw/sd/download?source=10812-02.pdf&vlId=81c00b94ab824d3f8bae19957ea839e0&nd=1&ds=1 7. J. M. Tarascon, M. Armand. (2001). NATURE, VOL 414, 15 NONEMBER 8. Tobias Placke et al. (2017). J Solid State Electrochem 21:1939–1964 9. W. Verbeek et al. (1973). Production of shaped articles of homogeneous mixtures of silicon carbide and nitride. 10. S. Yajima, Y. Hasegawa, K. Okamura and T. Matzuzawa. (1978). Nature, 273, 525–527 11. Hong Sun et al. (2017). ACS Appl. Mater. Interfaces, 9, 40, 35001–35009 12. Fukui et al. (2010). ACS Appl. Mater. Interfaces, 2, 4, 998–1008 13. D. Ahn, R. Raj et al. (2011). Journal of Power Sources, 196, 2179-2186 14. J.Kaspar et al. (2013). Journal of Power Sources, 244, 450-455 15. V.S.Pradeep et al. (2014). Electrochimica Acta, 119, 78-85 16. Martin Halim et al. (2016). Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries. J. Mater. Chem. A, 4.2651-2656 17. M. Winter et al. (1998). Adv. Mater., 10, 725-763 18. Herold, Bull et al. (1955). Soc. Chim. Fr. 19. Hsin-Yeh Chang. (2020). Effects of Pyrolysis Temperatures and Heating Rates on Polymer Derived SiOC as Anode Materials of LIB. 20. Srisaran Venkatachalam et al. (2019). Heat treatment of commercial Polydimethylsiloxane PDMS precursors: Part I. Towards conversion of patternable soft gels into hard ceramics. Ceramics International 45 6255–6262 21. J.R.Dahn et al. (1997). Solid State Ionics 93 239-244 22. J.R.Dahn et al. (1997). Chem. Master. 1601-1606 23. Magdalena Graczyk-Zajac et al. (2018). The Li-storage capacity of SiOC glasses with and without mixed silicon oxycarbide bonds. J. Mater. Chem. A, 6, 93-103 24. Jan Kaspar et al. (2016). Impact of the electrical conductivity on the lithium capacity of polymer-derived silicon oxycarbide (SiOC) ceramics. Electrochimica Acta 216 196–202 25. Christian Chandra et al. (2018). Silicon oxycarbide produced from silicone oil for high-performance anode material in sodium ion batteries. Chemical Engineering Journal 338 126–136 26. Romain J.-C. Dubey et al. (2019). Silicon Oxycarbide—Tin Nanocomposite as a High-Power-Density Anode for Li-Ion Batteries. Adv. Sci. 6, 1901220 27. Dowon Kim et al. (2020). A facile control in free-carbon domain with divinylbenzene for the high-rate-performing Sb/SiOC composite anode material in sodium-ion batteries. Int J Energy Res. 2020;44:11473–11486 28. Romain J.-C. Dubey et al. (2020). Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes. Nanoscale, 12, 13540 29. Rio Nugraha Putra et al. (2020). High-rate sodium insertion/extraction into silicon oxycarbide-reduced graphene oxide. New J. Chem. 44, 14035 |