帳號:guest(3.17.157.165)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張簡證韓
作者(外文):Chang Chien, Cheng-Han
論文名稱(中文):添加交聯劑改善高分子衍生SiOC作為鋰離子電池負極材料之電化學表現
論文名稱(外文):Improved Electrochemical Performance of Polymer Derived SiOC by Adding Cross-linking Agent as Anode Materials for LIB
指導教授(中文):蔡哲正
指導教授(外文):Tsai, Cho-Jen
口試委員(中文):陳瀚儀
林居南
口試委員(外文):Chen, Han-Yi
Lin, Ju-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031544
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:72
中文關鍵詞:鋰離子電池負極SiOC高分子衍生交聯
外文關鍵詞:Lithium Ion BatteryAnodeSiOCPolymer DerivedCross-linking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:120
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
使用高分子有機矽化合物作為前驅物所衍生出的陶瓷材料SiOC在近10年來備受關注,其作為鋰離子電池的負極材料可相對於傳統使用的石墨(372 mAh/g)提供更高的電容量密度,且相對於矽基負極材料來得結構穩定體積膨脹率低,但其結構內部的自由碳量是有限的且結晶與非結晶的比例不易改變,會影響其導電度與電容量密度,因此如何控制其生成的量與比例是值得研究的方向。
本論文研究使用急速升降溫熱解製程方法,高分子前驅物選擇成本低且取得容易的商業化矽油類原料,分別是Dow Corning SylgardTM 184矽橡膠A劑與B劑以及虎王中性矽利康填縫劑,透過添加適當的交聯劑進行改質,尋找最佳的添加比例與交聯溫度時間,其衍生出的SiOC負極材料在500 mA/g的電流密度下表現出最高可逆電容量約為900 mAh/g,並持續循環300圈以上。如此優秀的電性表現要歸功於此材料內的非結晶碳,其大量sp3鍵結使結構中產生許多空隙及微孔的缺陷,進而增加鋰離子的儲存空間。而剩餘的sp2部分就如同石墨穿插在其中負責導電,矽氧鍵主鏈則負責穩固結構,進而優化其循環壽命。藉由前驅物改質的方式控制內部的自由碳可進一步提升其電化學性能,使此材料更具有商業化之潛力。
Polymer derived silicon oxycarbide (SiOC) has gained lots of attentions for the past ten years because of its high capacity. This ceramic material can offer higher theoretical capacity density than conventional anode materials, graphite (372mAh/g).It also has better structural stability and lower volume expansion than silicon anode material. However, the total amount of free carbon domain in SiOC is limited and the ratio of disorder carbon phase is difficult to change. These two issues would have a great effect on conductivity and theoretical capacity density. It is worthy to research how to control free carbon in SiOC.
In this work, we use simple pyrolysis process (rapid thermal treatment) to produce SiOC anode material. Three cheap commercialized polymers were selected as the precursor: Dow Corning SylgardTM silicone elastomer 184 A/B and FUN WAN Neutral silicone sealant. By adding cross-linking agent and changing cross-linking ratio or temperature, we can get SiOC anode exhibited high reversible discharge capacity density around 900 mAh/g and remained at least 300 cycles at a current density of 500 mA/g. Its excellent performance was attributed to the free carbon phase which contained disordered carbon sp3 bonding leading to a lot amount of nanovoids. Thus, lithium atoms can be stored in more places. Besides, the sp2 graphite enhanced the conductivity, and the Si-O-C glass phase maintained the structure stability; therefore, enhanced the cycle retention. If we can control the free carbon in SiOC easily, it is possible that SiOC can be the next generation commercialized anode material.
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1.1 全球氣候變遷與能源議題 1
1.2 鋰離子電池 3
1.3 SiOC材料的發展與結構 7
第二章 文獻回顧 8
2.1 結晶碳與非結晶碳 9
2.2 SiOC模型建構 12
2.3 熱解溫度 15
2.4 高分子前驅物 19
第三章 實驗步驟 23
3.1 實驗藥品 23
3.2 材料製備 23
3.2.1 配置前驅物與混合溶液 24
3.2.2 交聯反應 (Crosslinking reaction) 25
3.2.3 急速升降溫製程 (Rapid thermal treatment, RTT) 26
3.3 電極製備 28
3.4 電極裁片 28
3.5 電池組裝 28
3.6 材料分析與電性檢測儀器 29
3.6.1 傅立葉轉換紅外光譜儀 ( Fourier-transform infrared spectroscopy, FTIR ) 29
3.6.2 X光粉末繞射儀 ( X- ray Diffraction, XRD ) 29
3.6.3 場發式掃描電子顯微鏡 ( Scanning Electron Microscope, SEM ) 30
3.6.4 粒徑分析儀 ( Particle size analyzer, PSA ) 30
3.6.5 熱重分析儀 ( Thermogravimetric analysis, TGA ) 31
3.6.6 拉曼光譜儀 ( Raman Spectrum, Raman ) 31
3.6.7 電池循環壽命測試 31
3.6.8 交流阻抗分析 32
第四章 結果與討論 33
4.1 高分子前驅物與衍生SiOC粉末鍵結及結晶情形 33
4.1.1 傅立葉轉換紅外光譜儀 33
4.1.2 X光粉末繞射儀 36
4.2 粉末表面形貌與顆粒大小 38
4.2.1 場發式掃描電子顯微鏡 38
4.2.2 粒徑分析儀 41
4.3 重量分析與交聯溫度的討論分析 43
4.3.1 熱重分析儀 43
4.3.2 重量分析 46
4.4 非結晶碳比例的討論分析 48
4.4.1 拉曼光譜儀 48
4.4.2 X-ray 能量散佈分析儀 58
4.5 電化學測試 60
4.5.1 電池循環壽命測試 60
4.5.2 交流阻抗測試 63
4.5.3 電壓平台圖 64
第五章 結論 65
第六章 未來展望 68
第七章 參考文獻 69
1. If carbon dioxide hits a new high every year, why isn’t every year hotter than the last?. (2020). Retrieved from https://www.climate.gov/news-features/climate-qa/if-carbon-dioxide-hits-new-high-every-year-why-isn%E2%80%99t-every-year-hotter-last
2. Global Warming of 1.5 ºC. (2020). Retrieved from https://www.ipcc.ch/sr15
3. The IPCC special report on 1.5°C: key takeaways for PRI signatories. (2018). Retrieved from https://www.unpri.org/news-and-press/the-ipcc-special-report-on-15c-key-takeaways-for-pri-signatories-/3818.article
4. The Smart Grid. (2017). Retrieved from https://www.eettaiwan.com/news/article/20171023TA31-the-smart-grid
5. W.J. Zhang et al. (2011). Journal of Power Sources, 196, 13-24
6. Negative electrodes of lithium ion secondary batteries. (2019). Retrieved from https://ejournal.stpi.narl.org.tw/sd/download?source=10812-02.pdf&vlId=81c00b94ab824d3f8bae19957ea839e0&nd=1&ds=1
7. J. M. Tarascon, M. Armand. (2001). NATURE, VOL 414, 15 NONEMBER
8. Tobias Placke et al. (2017). J Solid State Electrochem 21:1939–1964
9. W. Verbeek et al. (1973). Production of shaped articles of homogeneous mixtures of silicon carbide and nitride.
10. S. Yajima, Y. Hasegawa, K. Okamura and T. Matzuzawa. (1978). Nature, 273, 525–527
11. Hong Sun et al. (2017). ACS Appl. Mater. Interfaces, 9, 40, 35001–35009
12. Fukui et al. (2010). ACS Appl. Mater. Interfaces, 2, 4, 998–1008
13. D. Ahn, R. Raj et al. (2011). Journal of Power Sources, 196, 2179-2186
14. J.Kaspar et al. (2013). Journal of Power Sources, 244, 450-455
15. V.S.Pradeep et al. (2014). Electrochimica Acta, 119, 78-85
16. Martin Halim et al. (2016). Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries. J. Mater. Chem. A, 4.2651-2656
17. M. Winter et al. (1998). Adv. Mater., 10, 725-763
18. Herold, Bull et al. (1955). Soc. Chim. Fr.
19. Hsin-Yeh Chang. (2020). Effects of Pyrolysis Temperatures and Heating Rates on Polymer Derived SiOC as Anode Materials of LIB.
20. Srisaran Venkatachalam et al. (2019). Heat treatment of commercial Polydimethylsiloxane PDMS precursors: Part I. Towards conversion of patternable soft gels into hard ceramics. Ceramics International 45 6255–6262
21. J.R.Dahn et al. (1997). Solid State Ionics 93 239-244
22. J.R.Dahn et al. (1997). Chem. Master. 1601-1606
23. Magdalena Graczyk-Zajac et al. (2018). The Li-storage capacity of SiOC glasses with and without mixed silicon oxycarbide bonds. J. Mater. Chem. A, 6, 93-103
24. Jan Kaspar et al. (2016). Impact of the electrical conductivity on the lithium capacity of polymer-derived silicon oxycarbide (SiOC) ceramics. Electrochimica Acta 216 196–202
25. Christian Chandra et al. (2018). Silicon oxycarbide produced from silicone oil for high-performance anode material in sodium ion batteries. Chemical Engineering Journal 338 126–136
26. Romain J.-C. Dubey et al. (2019). Silicon Oxycarbide—Tin Nanocomposite as a High-Power-Density Anode for Li-Ion Batteries. Adv. Sci. 6, 1901220
27. Dowon Kim et al. (2020). A facile control in free-carbon domain with divinylbenzene for the high-rate-performing Sb/SiOC composite anode material in sodium-ion batteries. Int J Energy Res. 2020;44:11473–11486
28. Romain J.-C. Dubey et al. (2020). Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes. Nanoscale, 12, 13540
29. Rio Nugraha Putra et al. (2020). High-rate sodium insertion/extraction into silicon oxycarbide-reduced graphene oxide. New J. Chem. 44, 14035
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *