帳號:guest(18.117.192.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林孟嫻
作者(外文):Lin, Meng-Hsien
論文名稱(中文):於FTO基板上直接成長奈米碳管再修飾葡萄糖氧化酶後應用於唾液葡萄糖感測
論文名稱(外文):Directly Growing Multiwall Carbon Nanotubes on FTO Following with Glucose Oxidase Modification for Electrochemical Saliva Glucose Sensing
指導教授(中文):李紫原
戴念華
指導教授(外文):Lee, Chi-Young
Tai, Nyan-Hwa
口試委員(中文):黃禹堯
郭有迪
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031540
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:104
中文關鍵詞:奈米碳管葡萄糖氧化酶葡萄糖生物感測器
外文關鍵詞:carbon-nanotubesglucose-oxidaseglucosebiosensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:71
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著經濟之成長,人們生活作息與飲食隨之產生巨大改變,雖近年來對於血糖控管意識提升,卻礙於現今血糖檢測尚存有缺點,使得人們難以主動執行血糖監控,因此全球糖尿病之患者數仍持續快速攀升。故本研究之目的為研發一電極用於唾液葡萄糖之感測,以提高非侵入之形式,提供更方便的檢測方法,期望提高世人對健康控管意願,並改善量測血糖之不便。
本研究利用化學氣相沉積法直接成長奈米碳管於FTO導電玻璃上,並藉由修飾聚乙烯亞胺高分子,使得葡萄糖氧化酶以靜電力作用吸附於碳管表面,製備出具有高敏感度及高專一性之電極。搭配各式分析儀器探討電極之形貌與結構之差異,並以電化學方法探討電極之電子傳遞能力,最後,藉由循環伏安法分析法偵測系統中氧氣之消耗量以及葡萄糖氧化酶氧化還原反應所產生電流差作為葡萄糖感測機制。研究結果顯示,經由成長的奈米碳管可以大幅提升電極之電子傳遞能力,且其網狀結構能夠提供電極高粗糙表面,搭配聚乙烯亞胺高分子作為碳管與酵素之間的媒介,使得葡萄糖氧化酶可以有效的被固定於電極之上,而展現優良的感測效果,其中電極之氧氣還原峰敏感度可以達64 μA/μMcm2,且線性範圍涵蓋50-700 μM葡萄糖濃度,顯示出其具有應用於測量唾液葡萄糖濃度之潛力。
Although the awareness of body glucose management has arose in recent years, few people exactly execute monitoring for blood glucose level due to the discomfort when using blood glucose meter, which caused the number of diabetics keep increasing sharply. In order to increase the willingness of testing of glucose level and further provide a better life quality for diabetics, the aim of this research is to develop an electrode for non-invasive glucose sensor by measuring glucose level in saliva. In this work, carbon nanotubes (CNTs) are fabricated onto fluorine doped tin oxide (FTO) substrate by using the chemical vapor deposition method, then polyethylenimine (PEI) and glucose oxidase (GOx) are immobilized on CNTs surface by the drop casting method. To further investigate the morphology and microstructure of the electrode, SEM, TEM, Raman, XRD, and AFM are used, while the electrochemical properties and sensing performance are studied by the electrochemical methods including EIS and cyclic voltammetry (CV). According to the results, the CNTs, directly growing on the FTO substrate can greatly enhance the charge transfer ability, and with the network structure of CNTs forest, it can provide a rougher surface for PEI and GOx to be stably immobilized, so that both oxygen reduce reaction and enzyme redox reaction can be detected by the CV method, and the current difference in CV tests of the fabricated electrode can be used as the signal for glucose sensing. Finally, the FTO-CNTs/PEI/GOx electrode exhibits the best sensitivity of 64 µA/mMcm2 with a wide linear range from 50 to 700 µM glucose concentration, which possesses high potential for practical application.
摘要 I
Abstract II
致謝 III
目次 IV
表目次 VII
圖目次 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 糖尿病與診斷方法 3
2.1.1 糖尿病類型和病徵 4
2.1.2 糖尿病診斷及檢測方法 5
2.1.3 唾液葡萄糖濃度範圍 6
2.2 葡萄糖感測系統發展 9
2.2.1 酵素型葡萄糖感測系統 10
2.2.1.1 第一世代葡萄糖感測原理 12
2.2.1.2 第二世代葡萄糖感測原理 13
2.2.1.3 第三世代葡萄糖感測原理 14
2.2.2 非酵素型葡萄感測系統 15
2.3 奈米碳管之介紹 17
2.3.1 奈米碳管製備方法 17
2.3.2 奈米碳管結構與特性 19
2.3.3 奈米碳管於葡萄糖感測器之應用 20
2.4 本實驗室過去於葡萄糖感測之回顧 23
第三章 實驗方法 24
3.1 實驗藥品及製程儀器 24
3.2 電極製備流程 28
3.2.1 摻氟氧化錫玻璃前處理 29
3.2.2 濺鍍法沉積鎳金屬於基板 29
3.2.3 以化學氣相沉積法成長奈米碳管於基板 30
3.2.4 聚乙烯亞胺之修飾 30
3.2.5 葡萄糖氧化酶之修飾 31
3.3 實驗分析儀器與技術 32
3.3.1 電極之材料性質分析 32
3.3.1.1 場發射式掃描電子顯微鏡 32
3.3.1.2 X光繞射分析儀 33
3.3.1.3 拉曼光譜儀 34
3.3.1.4 聚焦離子束 34
3.3.1.5 場發射掃描穿透式球差修正電子顯微鏡 35
3.3.1.6 原子力顯微鏡 36
3.3.2 電極之電化學性質分析及葡萄糖感測 36
3.3.2.1 電化學感測裝置 36
3.3.2.2 葡萄糖濃度配置與感測操作 37
3.3.2.3 循環伏安法測試 38
3.3.2.4 電化學阻抗頻譜測試 39
3.3.2.5 電極感測表現定義 39
第四章 結果與討論 41
4.1 以化學氣相沉積法成長奈米碳管 41
4.1.1 溫度條件之影響 42
4.1.2 乙炔流量之影響 45
4.1.3 奈米碳管成長機制探討 47
4.2 電極之結構與電化學分析 51
4.2.1 鎳含量對FTO-CNTs之電化學影響 51
4.2.1.1 SEM表面形貌分析 51
4.2.1.2 循環伏安法分析 55
4.2.1.3 阻抗頻譜測試分析 56
4.2.2 電極之酵素修飾與電化學分析 59
4.2.2.1 奈米碳管對酵素修飾之影響 59
4.2.2.2 聚乙烯亞胺對酵素修飾之影響 61
4.2.2.3 阻抗頻譜測試分析 63
4.2.3 電極於磷酸鹽緩衝溶液中之電化學行為 65
4.2.3.1 掃速探討 65
4.2.3.2 酸鹼度探討 66
4.3 電極之葡萄糖感測機制和效能探討 69
4.3.1 葡萄糖感測機制探討 69
4.3.2 電位窗對感測之影響 72
4.3.3 葡萄糖感測之效能 74
4.3.4 干擾物測試 89
4.3.5 人工唾液葡萄糖感測 91
4.3.6 再現性與穩定性測試 94
第五章 結論 96
參考文獻 98
1. P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, and K. Ogurtsova, "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas", Diabetes research and clinical practice 157 (2019): 107843.
2. W. Zhang, Y. Du, and M.L. Wang, "On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase", Sensing and Bio-Sensing Research 4 (2015): 96-102.
3. S. Malik, H. Parikh, N. Shah, S. Anand, and S. Gupta, "Non-invasive platform to estimate fasting blood glucose levels from salivary electrochemical parameters", Healthcare technology letters 6 4(2019): 87-91.
4. J.M. Baena-Díez, J. Peñafiel, I. Subirana, R. Ramos, R. Elosua, A. Marín-Ibañez, M.J. Guembe, F. Rigo, M.J. Tormo-Díaz, and C. Moreno-Iribas, "Risk of cause-specific death in individuals with diabetes: a competing risks analysis", Diabetes care 39 11(2016): 1987-1995.
5. N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, "IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045", Diabetes research and clinical practice 138 (2018): 271-281.
6. M.A. Pfeifer, J.B. Halter, and D. Porte Jr, "Insulin secretion in diabetes mellitus", The American journal of medicine 70 3(1981): 579-588.
7. W.H. Organization, "Classification of diabetes mellitus", (2019).
8. Z. Punthakee, R. Goldenberg, and P. Katz, "Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome", Canadian journal of diabetes 42 (2018): S10-S15.
9. T. Sato, K. Katayama, T. Arai, T. Sako, and H. Tazaki, "Simultaneous determination of serum mannose and glucose concentrations in dog serum using high performance liquid chromatography", Research in veterinary science 84 1(2008): 26-29.
10. S. Chen, X. Hai, X.-W. Chen, and J.-H. Wang, "In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose", Analytical chemistry 86 13(2014): 6689-6694.
11. J.-W. Liu, Y. Luo, Y.-M. Wang, L.-Y. Duan, J.-H. Jiang, and R.-Q. Yu, "Graphitic carbon nitride nanosheets-based ratiometric fluorescent probe for highly sensitive detection of H2O2 and glucose", ACS applied materials & interfaces 8 49(2016): 33439-33445.
12. P.-C. Lee, N.-S. Li, Y.-P. Hsu, C. Peng, and H.-W. Yang, "Direct glucose detection in whole blood by colorimetric assay based on glucose oxidase-conjugated graphene oxide/MnO 2 nanozymes", Analyst 144 9(2019): 3038-3044.
13. M. Hao, N. Liu, and Z. Ma, "A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide", Analyst 138 15(2013): 4393-4397.
14. 黃莉棋, 陳瑜忻, 李治中, and 林慶齡, "由最新的國際標準規格看血糖機精準的必要性與影響檢測準確的因素", 內科學誌 27 5(2016): 239-247.
15. R. Agrawal, N. Sharma, M. Rathore, V. Gupta, S. Jain, V. Agarwal, and S. Goyal, "Noninvasive method for glucose level estimation by saliva", J Diabetes metab 4 5(2013): 2-5.
16. V. Kadashetti, R. Baad, N. Malik, K. Shivakumar, N. Vibhute, U. Belgaumi, S. Gugawad, and R. Pramod, "Glucose level estimation in diabetes mellitus by saliva: a bloodless revolution", Romanian journal of internal medicine 53 3(2015): 248-252.
17. S. Kumar, S. Padmashree, and R. Jayalekshmi, "Correlation of salivary glucose, blood glucose and oral candidal carriage in the saliva of type 2 diabetics: A case-control study", Contemporary clinical dentistry 5 3(2014): 312.
18. B. Satish, P. Srikala, B. Maharudrappa, S.M. Awanti, P. Kumar, and D. Hugar, "Saliva: A tool in assessing glucose levels in Diabetes Mellitus", Journal of international oral health: JIOH 6 2(2014): 114.
19. M. Dhanya and S. Hegde, "Salivary glucose as a diagnostic tool in Type II diabetes mellitus: A case-control study", Nigerian journal of clinical practice 19 4(2016): 486-490.
20. R. Sashikumar and R. Kannan, "Salivary glucose levels and oral candidal carriage in type II diabetics", Oral surgery, oral medicine, oral pathology, oral radiology, and endodontology 109 5(2010): 706-711.
21. M. Adeel, M.M. Rahman, I. Caligiuri, V. Canzonieri, F. Rizzolio, and S. Daniele, "Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions", Biosensors and bioelectronics (2020): 112331.
22. H. Chen, O. Simoska, K. Lim, M. Grattieri, M. Yuan, F. Dong, Y.S. Lee, K. Beaver, S. Weliwatte, and E.M. Gaffney, "Fundamentals, applications, and future directions of bioelectrocatalysis", Chemical reviews 120 23(2020): 12903-12993.
23. Y. Holade, S. Tingry, K. Servat, T.W. Napporn, D. Cornu, and K.B. Kokoh, "Nanostructured inorganic materials at work in electrochemical sensing and biofuel cells", Catalysts 7 1(2017): 31.
24. H. Lee, Y.J. Hong, S. Baik, T. Hyeon, and D.H. Kim, "Enzyme‐based glucose sensor: from invasive to wearable device", Advanced healthcare materials 7 8(2018): 1701150.
25. L.C. Clark Jr and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery", Annals of the New York Academy of sciences 102 1(1962): 29-45.
26. J. Wang, "Electrochemical glucose biosensors", Chemical reviews 108 2(2008): 814-825.
27. Y. Lin, M. Bariya, H.Y.Y. Nyein, L. Kivimäki, S. Uusitalo, E. Jansson, W. Ji, Z. Yuan, T. Happonen, and C. Liedert, "Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring", Advanced functional materials 29 33(2019): 1902521.
28. A. Olejnik, K. Siuzdak, J. Karczewski, and K. Grochowska, "A flexible nafion coated enzyme‐free glucose sensor based on Au‐dimpled Ti Structures", Electroanalysis 32 2(2020): 323-332.
29. K.E. Toghill and R.G. Compton, "Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation", Int. J. Electrochem. Sci 5 9(2010): 1246-1301.
30. B. Dinesh, K. Shalini Devi, and U.M. Krishnan, "Achieving a stable high surface excess of glucose oxidase on pristine multiwalled carbon nanotubes for glucose quantification", ACS applied bio materials 2 4(2019): 1740-1750.
31. F. Mao, N. Mano, and A. Heller, "Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme “wiring” hydrogels", Journal of the American Chemical Society 125 16(2003): 4951-4957.
32. J. Morshed, R. Nakagawa, M.M. Hossain, Y. Nishina, and S. Tsujimura, "Disposable electrochemical glucose sensor based on water-soluble quinone-based mediators with flavin adenine dinucleotide-dependent glucose dehydrogenase", Biosensors and bioelectronics (2021): 113357.
33. Y. Degani and A. Heller, "Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme", Journal of physical chemistry 91 6(1987): 1285-1289.
34. T. Terse-Thakoor, K. Komori, P. Ramnani, I. Lee, and A. Mulchandani, "Electrochemically functionalized seamless three-dimensional graphene-carbon nanotube hybrid for direct electron transfer of glucose oxidase and bioelectrocatalysis", Langmuir 31 47(2015): 13054-13061.
35. J. Chen, X. Zheng, Y. Li, H. Zheng, Y. Liu, and S.-i. Suye, "A glucose biosensor based on direct electron transfer of glucose oxidase on PEDOT modified microelectrode", Journal of the electrochemical society 167 6(2020): 067502.
36. C. Cai and J. Chen, "Direct electron transfer of glucose oxidase promoted by carbon nanotubes", Analytical biochemistry 332 1(2004): 75-83.
37. A. Lambrianou, S. Demin, and E.A. Hall, "Protein engineering and electrochemical biosensors", Biosensing for the 21st Century (2007): 65-96.
38. D.-W. Hwang, S. Lee, M. Seo, and T.D. Chung, "Recent advances in electrochemical non-enzymatic glucose sensors–a review", Analytica chimica acta 1033 (2018): 1-34.
39. L. Burke, "Premonolayer oxidation and its role in electrocatalysis", Electrochimica acta 39 11-12(1994): 1841-1848.
40. K. Tian, M. Prestgard, and A. Tiwari, "A review of recent advances in nonenzymatic glucose sensors", Materials science and engineering: C 41 (2014): 100-118.
41. A. Şavk, H. Aydın, K. Cellat, and F. Şen, "A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite", Journal of molecular liquids 300 (2020): 112355.
42. Y. Dilmac and M. Guler, "Fabrication of non-enzymatic glucose sensor dependent upon Au nanoparticles deposited on carboxylated graphene oxide", Journal of electroanalytical chemistry 864 (2020): 114091.
43. C. Heyser, R. Schrebler, and P. Grez, "New route for the synthesis of nickel (II) oxide nanostructures and its application as non-enzymatic glucose sensor", Journal of electroanalytical chemistry 832 (2019): 189-195.
44. S. Marini, N. Ben Mansour, M. Hjiri, R. Dhahri, L. El Mir, C. Espro, A. Bonavita, S. Galvagno, G. Neri, and S.G. Leonardi, "Non‐enzymatic glucose sensor based on nickel/carbon composite", Electroanalysis 30 4(2018): 727-733.
45. T. Sridara, J. Upan, G. Saianand, A. Tuantranont, C. Karuwan, and J. Jakmunee, "Non-enzymatic amperometric glucose sensor based on carbon nanodots and copper oxide nanocomposites electrode", Sensors 20 3(2020): 808.
46. M. Reibold, P. Paufler, A. Levin, W. Kochmann, N. Pätzke, and D. Meyer, "Carbon nanotubes in an ancient Damascus sabre", Nature 444 7117(2006): 286-286.
47. S. Iijima, "Helical microtubules of graphitic carbon", Nature 354 6348(1991): 56-58.
48. R. Shoukat and M.I. Khan, "Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology", Microsystem technologies (2021): 1-10.
49. D. Vairavapandian, P. Vichchulada, and M.D. Lay, "Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing", Analytica chimica acta 626 2(2008): 119-129.
50. M. Kumar, "Carbon nanotube synthesis and growth mechanism", Carbon nanotubes-synthesis, characterization, applications (2011): 147-170.
51. N. Arora and N. Sharma, "Arc discharge synthesis of carbon nanotubes: Comprehensive review", Diamond and related materials 50 (2014): 135-150.
52. R.L. Vander Wal, G. Berger, and T. Ticich, "Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation", Applied physics A 77 7(2003): 885-889.
53. M.D. Yadav and K. Dasgupta, "Kinetics of carbon nanotube aerogel synthesis using floating catalyst chemical vapor deposition", Industrial & engineering chemistry research 60 5(2021): 2187-2196.
54. N. Tai, H. Chen, Y. Chen, P. Hsieh, J. Liang, and T. Chou, "Optimization of processing parameters of the chemical vapor deposition process for synthesizing high-quality single-walled carbon nanotube fluff and roving", Composites science and technology 72 15(2012): 1855-1862.
55. X.-D. Wang, K. Vinodgopal, and G.-P. Dai, "Synthesis of carbon nanotubes by catalytic chemical vapor deposition", Perspective of carbon nanotubes (2019).
56. M. Tehrani and P. Khanbolouki, ""Carbon nanotubes: synthesis, characterization, and applications"", Advances in nanomaterials (2018): 3-35.
57. G.D. Nessim, "Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition", Nanoscale 2 8(2010): 1306-1323.
58. V. Choudhary and A. Gupta, "Polymer/carbon nanotube nanocomposites", Carbon nanotubes-polymer nanocomposites 2011 (2011): 65-90.
59. K. Hyun, S.W. Han, W.-G. Koh, and Y. Kwon, "Direct electrochemistry of glucose oxidase immobilized on carbon nanotube for improving glucose sensing", International journal of hydrogen energy 40 5(2015): 2199-2206.
60. J. Lee, K. Hyun, and Y. Kwon, "A study on the stability and sensitivity of mediator-based enzymatic glucose sensor measured by catalyst consisting of multilayer stacked via layer-by-layer", Journal of industrial and engineering chemistry 93 (2021): 383-387.
61. M. Hossain and G. Slaughter, "PtNPs decorated chemically derived graphene and carbon nanotubes for sensitive and selective glucose biosensing", Journal of electroanalytical chemistry 861 (2020): 113990.
62. D. Depla, S. Mahieu, and J. Greene, "Sputter deposition processes", Handbook of deposition technologies for films and coatings (2010): 253-296.
63. X. Ke, S. Bals, A.R. Negreira, T. Hantschel, H. Bender, and G. Van Tendeloo, "TEM sample preparation by FIB for carbon nanotube interconnects", Ultramicroscopy 109 11(2009): 1353-1359.
64. V. Jourdain and C. Bichara, "Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition", Carbon 58 (2013): 2-39.
65. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier, "Root-growth mechanism for single-wall carbon nanotubes", Physical review letters 87 27(2001): 275504.
66. A. Sharma, I. Saito, H. Nakagawa, and K. Miura, "Effect of carbonization temperature on the nickel crystallite size of a Ni/C catalyst for catalytic hydrothermal gasification of organic compounds", Fuel 86 7-8(2007): 915-920.
67. A. Jorio and R. Saito, "Raman spectroscopy for carbon nanotube applications", Journal of applied physics 129 2(2021): 021102.
68. M. Ahmaruzzaman, D. Mohanta, and A. Nath, "Environmentally benign fabrication of SnO 2-CNT nanohybrids and their multifunctional efficiency as an adsorbent, catalyst and antimicrobial agent for water decontamination", Scientific reports 9 1(2019): 1-19.
69. A. Gohier, C. Ewels, T. Minea, and M. Djouadi, "Carbon nanotube growth mechanism switches from tip-to base-growth with decreasing catalyst particle size", Carbon 46 10(2008): 1331-1338.
70. S. Khairi, T. Hara, N. Ichikuni, and S. Shimazu, "Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts", Catalysis science & technology 2 10(2012): 2139-2145.
71. J. Kang, J. Li, X. Du, C. Shi, N. Zhao, L. Cui, and P. Nash, "Synthesis and growth mechanism of metal filled carbon nanostructures by CVD using Ni/Y catalyst supported on copper", Journal of alloys and compounds 456 1-2(2008): 290-296.
72. G. Madras and B.J. McCoy, "Temperature effects during Ostwald ripening", The journal of chemical physics 119 3(2003): 1683-1693.
73. J. Nugent, K. Santhanam, a.A. Rubio, and P. Ajayan, "Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes", Nano letters 1 2(2001): 87-91.
74. B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, and L. Pilon, "Physical interpretations of Nyquist plots for EDLC electrodes and devices", The journal of physical chemistry C 122 1(2018): 194-206.
75. E.F. de la Cruz, Y. Zheng, E. Torres, W. Li, W. Song, and K. Burugapalli, "Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel", International journal of molecular sciences (2012).
76. S. Basu, R.M. Venable, B. Rice, E. Ogharandukun, J.B. Klauda, R.W. Pastor, and P.L. Chandran, "Mannobiose‐grafting shifts PEI charge and biphasic dependence on pH", Macromolecular chemistry and physics 220 3(2019): 1800423.
77. H. Yang, C. Gong, L. Miao, and F. Xu, "A glucose biosensor based on horseradish peroxidase and glucose oxidase co-entrapped in carbon nanotubes modified electrode", Int. J. Electrochem. Sci 12 6(2017): 4958-4969.
78. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, and J.L. Dempsey, "A practical beginner’s guide to cyclic voltammetry", Journal of chemical education 95 2(2018): 197-206.
79. M. Banaei, A. Benvidi, Z. Abassi, M.D. Tezerjani, and A. Akbari, "Electocatalytic oxidation of hydroxylamine at an imidazole derivative-TiO2 nanoparticle carbon sensor: determination of hydroxylamine and phenol as pollutant agents", Analytical and bioanalytical chemistry (2019).
80. X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, and Y. Lin, "Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing", Biosensors and bioelectronics 25 4(2009): 901-905.
81. D.R. Weinberg, C.J. Gagliardi, J.F. Hull, C.F. Murphy, C.A. Kent, B.C. Westlake, A. Paul, D.H. Ess, D.G. McCafferty, and T.J. Meyer, "Proton-coupled electron transfer", Chemical reviews 112 7(2012): 4016-4093.
82. J. Li, Y. Liu, X. Tang, L. Xu, L. Min, Y. Xue, X. Hu, and Z. Yang, "Multiwalled carbon nanotubes coated with cobalt (II) sulfide nanoparticles for electrochemical sensing of glucose via direct electron transfer to glucose oxidase", Microchimica acta 187 1(2020): 1-9.
83. J.M. Berg, J.L. Tymoczko, and L. Stryer, "The Michaelis-Menten model accounts for the kinetic properties of many enzymes", Biochemistry 5 (2002).
84. H. Lineweaver and D. Burk, "The determination of enzyme dissociation constants", Journal of the American chemical society 56 3(1934): 658-666.
85. Z. Wang, S. Liu, P. Wu, and C. Cai, "Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes", Analytical chemistry 81 4(2009): 1638-1645.
86. D. Łysik, K. Niemirowicz-Laskowska, R. Bucki, G. Tokajuk, and J. Mystkowska, "Artificial saliva: Challenges and future perspectives for the treatment of xerostomia", International journal of molecular sciences 20 13(2019): 3199.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *