|
1. P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, and K. Ogurtsova, "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas", Diabetes research and clinical practice 157 (2019): 107843. 2. W. Zhang, Y. Du, and M.L. Wang, "On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase", Sensing and Bio-Sensing Research 4 (2015): 96-102. 3. S. Malik, H. Parikh, N. Shah, S. Anand, and S. Gupta, "Non-invasive platform to estimate fasting blood glucose levels from salivary electrochemical parameters", Healthcare technology letters 6 4(2019): 87-91. 4. J.M. Baena-Díez, J. Peñafiel, I. Subirana, R. Ramos, R. Elosua, A. Marín-Ibañez, M.J. Guembe, F. Rigo, M.J. Tormo-Díaz, and C. Moreno-Iribas, "Risk of cause-specific death in individuals with diabetes: a competing risks analysis", Diabetes care 39 11(2016): 1987-1995. 5. N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, "IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045", Diabetes research and clinical practice 138 (2018): 271-281. 6. M.A. Pfeifer, J.B. Halter, and D. Porte Jr, "Insulin secretion in diabetes mellitus", The American journal of medicine 70 3(1981): 579-588. 7. W.H. Organization, "Classification of diabetes mellitus", (2019). 8. Z. Punthakee, R. Goldenberg, and P. Katz, "Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome", Canadian journal of diabetes 42 (2018): S10-S15. 9. T. Sato, K. Katayama, T. Arai, T. Sako, and H. Tazaki, "Simultaneous determination of serum mannose and glucose concentrations in dog serum using high performance liquid chromatography", Research in veterinary science 84 1(2008): 26-29. 10. S. Chen, X. Hai, X.-W. Chen, and J.-H. Wang, "In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose", Analytical chemistry 86 13(2014): 6689-6694. 11. J.-W. Liu, Y. Luo, Y.-M. Wang, L.-Y. Duan, J.-H. Jiang, and R.-Q. Yu, "Graphitic carbon nitride nanosheets-based ratiometric fluorescent probe for highly sensitive detection of H2O2 and glucose", ACS applied materials & interfaces 8 49(2016): 33439-33445. 12. P.-C. Lee, N.-S. Li, Y.-P. Hsu, C. Peng, and H.-W. Yang, "Direct glucose detection in whole blood by colorimetric assay based on glucose oxidase-conjugated graphene oxide/MnO 2 nanozymes", Analyst 144 9(2019): 3038-3044. 13. M. Hao, N. Liu, and Z. Ma, "A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide", Analyst 138 15(2013): 4393-4397. 14. 黃莉棋, 陳瑜忻, 李治中, and 林慶齡, "由最新的國際標準規格看血糖機精準的必要性與影響檢測準確的因素", 內科學誌 27 5(2016): 239-247. 15. R. Agrawal, N. Sharma, M. Rathore, V. Gupta, S. Jain, V. Agarwal, and S. Goyal, "Noninvasive method for glucose level estimation by saliva", J Diabetes metab 4 5(2013): 2-5. 16. V. Kadashetti, R. Baad, N. Malik, K. Shivakumar, N. Vibhute, U. Belgaumi, S. Gugawad, and R. Pramod, "Glucose level estimation in diabetes mellitus by saliva: a bloodless revolution", Romanian journal of internal medicine 53 3(2015): 248-252. 17. S. Kumar, S. Padmashree, and R. Jayalekshmi, "Correlation of salivary glucose, blood glucose and oral candidal carriage in the saliva of type 2 diabetics: A case-control study", Contemporary clinical dentistry 5 3(2014): 312. 18. B. Satish, P. Srikala, B. Maharudrappa, S.M. Awanti, P. Kumar, and D. Hugar, "Saliva: A tool in assessing glucose levels in Diabetes Mellitus", Journal of international oral health: JIOH 6 2(2014): 114. 19. M. Dhanya and S. Hegde, "Salivary glucose as a diagnostic tool in Type II diabetes mellitus: A case-control study", Nigerian journal of clinical practice 19 4(2016): 486-490. 20. R. Sashikumar and R. Kannan, "Salivary glucose levels and oral candidal carriage in type II diabetics", Oral surgery, oral medicine, oral pathology, oral radiology, and endodontology 109 5(2010): 706-711. 21. M. Adeel, M.M. Rahman, I. Caligiuri, V. Canzonieri, F. Rizzolio, and S. Daniele, "Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions", Biosensors and bioelectronics (2020): 112331. 22. H. Chen, O. Simoska, K. Lim, M. Grattieri, M. Yuan, F. Dong, Y.S. Lee, K. Beaver, S. Weliwatte, and E.M. Gaffney, "Fundamentals, applications, and future directions of bioelectrocatalysis", Chemical reviews 120 23(2020): 12903-12993. 23. Y. Holade, S. Tingry, K. Servat, T.W. Napporn, D. Cornu, and K.B. Kokoh, "Nanostructured inorganic materials at work in electrochemical sensing and biofuel cells", Catalysts 7 1(2017): 31. 24. H. Lee, Y.J. Hong, S. Baik, T. Hyeon, and D.H. Kim, "Enzyme‐based glucose sensor: from invasive to wearable device", Advanced healthcare materials 7 8(2018): 1701150. 25. L.C. Clark Jr and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery", Annals of the New York Academy of sciences 102 1(1962): 29-45. 26. J. Wang, "Electrochemical glucose biosensors", Chemical reviews 108 2(2008): 814-825. 27. Y. Lin, M. Bariya, H.Y.Y. Nyein, L. Kivimäki, S. Uusitalo, E. Jansson, W. Ji, Z. Yuan, T. Happonen, and C. Liedert, "Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring", Advanced functional materials 29 33(2019): 1902521. 28. A. Olejnik, K. Siuzdak, J. Karczewski, and K. Grochowska, "A flexible nafion coated enzyme‐free glucose sensor based on Au‐dimpled Ti Structures", Electroanalysis 32 2(2020): 323-332. 29. K.E. Toghill and R.G. Compton, "Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation", Int. J. Electrochem. Sci 5 9(2010): 1246-1301. 30. B. Dinesh, K. Shalini Devi, and U.M. Krishnan, "Achieving a stable high surface excess of glucose oxidase on pristine multiwalled carbon nanotubes for glucose quantification", ACS applied bio materials 2 4(2019): 1740-1750. 31. F. Mao, N. Mano, and A. Heller, "Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme “wiring” hydrogels", Journal of the American Chemical Society 125 16(2003): 4951-4957. 32. J. Morshed, R. Nakagawa, M.M. Hossain, Y. Nishina, and S. Tsujimura, "Disposable electrochemical glucose sensor based on water-soluble quinone-based mediators with flavin adenine dinucleotide-dependent glucose dehydrogenase", Biosensors and bioelectronics (2021): 113357. 33. Y. Degani and A. Heller, "Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme", Journal of physical chemistry 91 6(1987): 1285-1289. 34. T. Terse-Thakoor, K. Komori, P. Ramnani, I. Lee, and A. Mulchandani, "Electrochemically functionalized seamless three-dimensional graphene-carbon nanotube hybrid for direct electron transfer of glucose oxidase and bioelectrocatalysis", Langmuir 31 47(2015): 13054-13061. 35. J. Chen, X. Zheng, Y. Li, H. Zheng, Y. Liu, and S.-i. Suye, "A glucose biosensor based on direct electron transfer of glucose oxidase on PEDOT modified microelectrode", Journal of the electrochemical society 167 6(2020): 067502. 36. C. Cai and J. Chen, "Direct electron transfer of glucose oxidase promoted by carbon nanotubes", Analytical biochemistry 332 1(2004): 75-83. 37. A. Lambrianou, S. Demin, and E.A. Hall, "Protein engineering and electrochemical biosensors", Biosensing for the 21st Century (2007): 65-96. 38. D.-W. Hwang, S. Lee, M. Seo, and T.D. Chung, "Recent advances in electrochemical non-enzymatic glucose sensors–a review", Analytica chimica acta 1033 (2018): 1-34. 39. L. Burke, "Premonolayer oxidation and its role in electrocatalysis", Electrochimica acta 39 11-12(1994): 1841-1848. 40. K. Tian, M. Prestgard, and A. Tiwari, "A review of recent advances in nonenzymatic glucose sensors", Materials science and engineering: C 41 (2014): 100-118. 41. A. Şavk, H. Aydın, K. Cellat, and F. Şen, "A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite", Journal of molecular liquids 300 (2020): 112355. 42. Y. Dilmac and M. Guler, "Fabrication of non-enzymatic glucose sensor dependent upon Au nanoparticles deposited on carboxylated graphene oxide", Journal of electroanalytical chemistry 864 (2020): 114091. 43. C. Heyser, R. Schrebler, and P. Grez, "New route for the synthesis of nickel (II) oxide nanostructures and its application as non-enzymatic glucose sensor", Journal of electroanalytical chemistry 832 (2019): 189-195. 44. S. Marini, N. Ben Mansour, M. Hjiri, R. Dhahri, L. El Mir, C. Espro, A. Bonavita, S. Galvagno, G. Neri, and S.G. Leonardi, "Non‐enzymatic glucose sensor based on nickel/carbon composite", Electroanalysis 30 4(2018): 727-733. 45. T. Sridara, J. Upan, G. Saianand, A. Tuantranont, C. Karuwan, and J. Jakmunee, "Non-enzymatic amperometric glucose sensor based on carbon nanodots and copper oxide nanocomposites electrode", Sensors 20 3(2020): 808. 46. M. Reibold, P. Paufler, A. Levin, W. Kochmann, N. Pätzke, and D. Meyer, "Carbon nanotubes in an ancient Damascus sabre", Nature 444 7117(2006): 286-286. 47. S. Iijima, "Helical microtubules of graphitic carbon", Nature 354 6348(1991): 56-58. 48. R. Shoukat and M.I. Khan, "Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology", Microsystem technologies (2021): 1-10. 49. D. Vairavapandian, P. Vichchulada, and M.D. Lay, "Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing", Analytica chimica acta 626 2(2008): 119-129. 50. M. Kumar, "Carbon nanotube synthesis and growth mechanism", Carbon nanotubes-synthesis, characterization, applications (2011): 147-170. 51. N. Arora and N. Sharma, "Arc discharge synthesis of carbon nanotubes: Comprehensive review", Diamond and related materials 50 (2014): 135-150. 52. R.L. Vander Wal, G. Berger, and T. Ticich, "Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation", Applied physics A 77 7(2003): 885-889. 53. M.D. Yadav and K. Dasgupta, "Kinetics of carbon nanotube aerogel synthesis using floating catalyst chemical vapor deposition", Industrial & engineering chemistry research 60 5(2021): 2187-2196. 54. N. Tai, H. Chen, Y. Chen, P. Hsieh, J. Liang, and T. Chou, "Optimization of processing parameters of the chemical vapor deposition process for synthesizing high-quality single-walled carbon nanotube fluff and roving", Composites science and technology 72 15(2012): 1855-1862. 55. X.-D. Wang, K. Vinodgopal, and G.-P. Dai, "Synthesis of carbon nanotubes by catalytic chemical vapor deposition", Perspective of carbon nanotubes (2019). 56. M. Tehrani and P. Khanbolouki, ""Carbon nanotubes: synthesis, characterization, and applications"", Advances in nanomaterials (2018): 3-35. 57. G.D. Nessim, "Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition", Nanoscale 2 8(2010): 1306-1323. 58. V. Choudhary and A. Gupta, "Polymer/carbon nanotube nanocomposites", Carbon nanotubes-polymer nanocomposites 2011 (2011): 65-90. 59. K. Hyun, S.W. Han, W.-G. Koh, and Y. Kwon, "Direct electrochemistry of glucose oxidase immobilized on carbon nanotube for improving glucose sensing", International journal of hydrogen energy 40 5(2015): 2199-2206. 60. J. Lee, K. Hyun, and Y. Kwon, "A study on the stability and sensitivity of mediator-based enzymatic glucose sensor measured by catalyst consisting of multilayer stacked via layer-by-layer", Journal of industrial and engineering chemistry 93 (2021): 383-387. 61. M. Hossain and G. Slaughter, "PtNPs decorated chemically derived graphene and carbon nanotubes for sensitive and selective glucose biosensing", Journal of electroanalytical chemistry 861 (2020): 113990. 62. D. Depla, S. Mahieu, and J. Greene, "Sputter deposition processes", Handbook of deposition technologies for films and coatings (2010): 253-296. 63. X. Ke, S. Bals, A.R. Negreira, T. Hantschel, H. Bender, and G. Van Tendeloo, "TEM sample preparation by FIB for carbon nanotube interconnects", Ultramicroscopy 109 11(2009): 1353-1359. 64. V. Jourdain and C. Bichara, "Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition", Carbon 58 (2013): 2-39. 65. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier, "Root-growth mechanism for single-wall carbon nanotubes", Physical review letters 87 27(2001): 275504. 66. A. Sharma, I. Saito, H. Nakagawa, and K. Miura, "Effect of carbonization temperature on the nickel crystallite size of a Ni/C catalyst for catalytic hydrothermal gasification of organic compounds", Fuel 86 7-8(2007): 915-920. 67. A. Jorio and R. Saito, "Raman spectroscopy for carbon nanotube applications", Journal of applied physics 129 2(2021): 021102. 68. M. Ahmaruzzaman, D. Mohanta, and A. Nath, "Environmentally benign fabrication of SnO 2-CNT nanohybrids and their multifunctional efficiency as an adsorbent, catalyst and antimicrobial agent for water decontamination", Scientific reports 9 1(2019): 1-19. 69. A. Gohier, C. Ewels, T. Minea, and M. Djouadi, "Carbon nanotube growth mechanism switches from tip-to base-growth with decreasing catalyst particle size", Carbon 46 10(2008): 1331-1338. 70. S. Khairi, T. Hara, N. Ichikuni, and S. Shimazu, "Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts", Catalysis science & technology 2 10(2012): 2139-2145. 71. J. Kang, J. Li, X. Du, C. Shi, N. Zhao, L. Cui, and P. Nash, "Synthesis and growth mechanism of metal filled carbon nanostructures by CVD using Ni/Y catalyst supported on copper", Journal of alloys and compounds 456 1-2(2008): 290-296. 72. G. Madras and B.J. McCoy, "Temperature effects during Ostwald ripening", The journal of chemical physics 119 3(2003): 1683-1693. 73. J. Nugent, K. Santhanam, a.A. Rubio, and P. Ajayan, "Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes", Nano letters 1 2(2001): 87-91. 74. B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, and L. Pilon, "Physical interpretations of Nyquist plots for EDLC electrodes and devices", The journal of physical chemistry C 122 1(2018): 194-206. 75. E.F. de la Cruz, Y. Zheng, E. Torres, W. Li, W. Song, and K. Burugapalli, "Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel", International journal of molecular sciences (2012). 76. S. Basu, R.M. Venable, B. Rice, E. Ogharandukun, J.B. Klauda, R.W. Pastor, and P.L. Chandran, "Mannobiose‐grafting shifts PEI charge and biphasic dependence on pH", Macromolecular chemistry and physics 220 3(2019): 1800423. 77. H. Yang, C. Gong, L. Miao, and F. Xu, "A glucose biosensor based on horseradish peroxidase and glucose oxidase co-entrapped in carbon nanotubes modified electrode", Int. J. Electrochem. Sci 12 6(2017): 4958-4969. 78. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, and J.L. Dempsey, "A practical beginner’s guide to cyclic voltammetry", Journal of chemical education 95 2(2018): 197-206. 79. M. Banaei, A. Benvidi, Z. Abassi, M.D. Tezerjani, and A. Akbari, "Electocatalytic oxidation of hydroxylamine at an imidazole derivative-TiO2 nanoparticle carbon sensor: determination of hydroxylamine and phenol as pollutant agents", Analytical and bioanalytical chemistry (2019). 80. X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, and Y. Lin, "Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing", Biosensors and bioelectronics 25 4(2009): 901-905. 81. D.R. Weinberg, C.J. Gagliardi, J.F. Hull, C.F. Murphy, C.A. Kent, B.C. Westlake, A. Paul, D.H. Ess, D.G. McCafferty, and T.J. Meyer, "Proton-coupled electron transfer", Chemical reviews 112 7(2012): 4016-4093. 82. J. Li, Y. Liu, X. Tang, L. Xu, L. Min, Y. Xue, X. Hu, and Z. Yang, "Multiwalled carbon nanotubes coated with cobalt (II) sulfide nanoparticles for electrochemical sensing of glucose via direct electron transfer to glucose oxidase", Microchimica acta 187 1(2020): 1-9. 83. J.M. Berg, J.L. Tymoczko, and L. Stryer, "The Michaelis-Menten model accounts for the kinetic properties of many enzymes", Biochemistry 5 (2002). 84. H. Lineweaver and D. Burk, "The determination of enzyme dissociation constants", Journal of the American chemical society 56 3(1934): 658-666. 85. Z. Wang, S. Liu, P. Wu, and C. Cai, "Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes", Analytical chemistry 81 4(2009): 1638-1645. 86. D. Łysik, K. Niemirowicz-Laskowska, R. Bucki, G. Tokajuk, and J. Mystkowska, "Artificial saliva: Challenges and future perspectives for the treatment of xerostomia", International journal of molecular sciences 20 13(2019): 3199.
|