帳號:guest(3.21.21.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張馨方
作者(外文):Chang, Hsin-Fang
論文名稱(中文):鹼金屬後處理於一階段濺鍍法製備銅銦鎵硒太陽能電池之效應
論文名稱(外文):Effects of CsF Post-Deposition Treatment on Cu(In,Ga)Se2 Solar Cell by One-Step Process
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):黃瑜
林姿瑩
口試委員(外文):Huang, Yu
Lin, Tzu-Ying
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031530
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:銅銦鎵硒氟化銫後處理一階段濺鍍製程
外文關鍵詞:CIGSCsF-PDTOne-step sputtering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:336
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
銅銦鎵硒太陽能電池發展許久,如今在實驗室端的效率已可媲美多晶矽太陽能電池。其中一階段製程由於保有濺鍍的優點且無需額外硒化的特性,已被證實具有大面積的均勻性且可避免有毒氣氛H2Se的使用,在商業化上具有極大的潛力。
目前銅銦鎵硒太陽能電池效率的突破除了仰賴製程條件的優化外,更重要的還有鹼金屬後處理,其在共蒸鍍製程及合金後硒化製程已被許多文獻探討。然而在一階段濺鍍法中卻少有研究。本實驗在本實驗室已成功的氟化鉀後處理的基礎上,更進一步進行更重鹼金屬-氟化銫後處理的研究。藉由調控氟化銫與氟化鈉的比例加上多種分析方式來分別探討氟化銫在吸收層內及介面的效應。最後,在鹼金屬鈍化內部缺陷並提升吸收層品質的效應下,成功使效率由11.8%提升至13.17%。
The research of Cu(In, Ga)Se2 (CIGSe) thin film solar cells have been proposed for decades. Nowadays, the efficiency of CIGSe solar cell is comparable to that of amorphous silicon solar cell on laboratory scale. Among the processes of absorber fabrication, CIGSe prepared by one-step sputtering process without post-selenization has been demonstrated to be a way to avoid toxic H2Se and with advantage of large-area uniformity. It is potential for commercialization.
Reviewing the recent research of CIGSe solar cells, the most important breakthrough is from heavy alkalis post-deposition treatment, which is widely studied in co-evaporation process and two-step process. However, there is few investigation on the topic in one-step process. Based on the success of Na and K doping in our lab, the effects of CsF-PDT are investigated in the thesis. By changing the amount of NaF and CsF ratio with numerous analysis methods, we investigate the effects in CIGSe bulk and at CdS/CIGSe interface respectively. Solar cells with improved conversion efficiency from 11.8% to 13.17% can be obtained with a better absorber quality by the defect passivation in bulk. Further understanding of the CsF effects and NaF effects respectively can be a potential way to achieve better performance.
Abstract 1
摘要 2
目錄 3
圖目錄 5
表目錄 9
第一章 緒論 10
1.1研究動機 10
1.2銅銦鎵硒(CIGSe)太陽能電池 10
第二章 文獻回顧 12
2.1太陽能元件原理 12
2.2電壓-電流特性 13
2.2.1短路電流(short circuit current, ISC) 14
2.2.2開路電壓(open circuit voltage, VOC) 14
2.2.3填充因子(fill factor, FF) 15
2.2.4寄生電阻(parasitic resistance) 16
2.2.5光電轉換效率(efficiency) 16
2.2.6量子轉換效率(quantum efficiency) 17
2.3銅銦鎵硒太陽能元件 18
2.3.1元件結構介紹 18
2.3.2基板 18
2.3.3背電極 19
2.3.4吸收層 20
2.3.5緩衝層 22
2.3.6窗口層 23
2.4製程發展 23
2.4.1共蒸鍍製程 23
2.4.2連續製程(硒化/硒硫化) 25
2.4.3一階段濺鍍製程(one step process) 26
2.5 鹼金屬摻雜 33
2.5.1輕鹼金屬後處理 33
2.5.2重鹼金屬後處理 39
第三章 實驗方法與分析技術 49
3.1 主要實驗設備、試片製備與實驗設計 49
3.1.1主要實驗設備 49
3.1.2 試片製備與實驗設計 49
3.2 分析儀器與原理 51
第四章 實驗結果與討論 57
4.1 CsF-PDT在一階段濺鍍法製備CIGSe太陽能電池之效應 57
4.2結合 CsF-&NaF-PDT在一階段濺鍍法製備CIGSe太陽能電池CdS/CIGSe介面之效應 60
4.3結合 CsF-&NaF-PDT在一階段濺鍍法製備CIGSe太陽能電池吸收層內部之效應 67
第五章 結論 72
參考文獻 73

1. https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian?fbclid=IwAR3kG2NRi5WX9NIcp2bGrPiFCF12JHbqAGQjR4XFXl45yfuvi_FE_rUXwhs.
2. https://www.pveducation.org/?fbclid=IwAR1PscQnTdrR7PM6HjSlxVs7XCJwtxUy0lUdEYAn22t8nROO8nkaAHFKrfo.
3. Ramanujam, J. and U.P. Singh, Copper indium gallium selenide based solar cells–a review. Energy & Environmental Science, 2017. 10(6): p. 1306-1319.
4. Scofield, J.H., et al., Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin solid films, 1995. 260(1): p. 26-31.
5. Park, J.S., et al., CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction. Journal of Applied Physics, 2000. 87(8): p. 3683-3690.
6. Rau, U. and H.-W. Schock, Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A, 1999. 69(2): p. 131-147.
7. Romeo, A., et al., Development of thin‐film Cu (In, Ga) Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(2‐3): p. 93-111.
8. Niki, S., et al., CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications, 2010. 18(6): p. 453-466.
9. Nakamura, M., et al., Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019. 9(6): p. 1863-1867.
10. Frantz, J.A., et al., Quaternary sputtered Cu (In, Ga) Se 2 absorbers for photovoltaics: a review. IEEE Journal of Photovoltaics, 2016. 6(4): p. 1036-1050.
11. Chen, C.-H., et al., A promising sputtering route for one-step fabrication of chalcopyrite phase Cu (In, Ga)Se2 absorbers without extra Se supply. Solar Energy Materials and Solar Cells, 2012. 103: p. 25-29.
12. Piekoszewski, J., et al., RF-sputtered CuInSe2 thin films. Solar Energy Materials, 1980. 2(3): p. 363-372.
13. Shi, J., et al., Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Progress in Photovoltaics: Research and Applications, 2011. 19(2): p. 160-164.
14. Ouyang, L., et al., Cu (In, Ga)Se2 solar cell with 16.7% active‐area efficiency achieved by sputtering from a quaternary target. physica status solidi (a), 2015. 212(8): p. 1774-1778.
15. Chen, C.-H., et al., Comprehensive characterization of Cu-rich Cu (In, Ga) Se2 absorbers prepared by one-step sputtering process. Thin Solid Films, 2013. 535: p. 122-126.
16. Hsu, C.H., et al., Na‐induced efficiency boost for Se‐deficient Cu(In, Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2015. 23(11): p. 1621-1629.
17. Hsu, C.H., et al., Over 14% efficiency of directly sputtered Cu (In, Ga) Se2 absorbers without postselenization by post‐treatment of alkali metals. Advanced Energy Materials, 2017. 7(13): p. 1602571.
18. Wang, Y.-H., et al., Engineering a Ga-Gradient by One-Step Sputtering to Achieve Over 15% Efficiency of Cu (In, Ga) Se2 Flexible Solar Cells without Post-selenization. ACS Applied Materials & Interfaces, 2020. 12(25): p. 28320-28328.
19. Chirilă, A., et al., Highly efficient Cu (In, Ga) Se 2 solar cells grown on flexible polymer films. Nature materials, 2011. 10(11): p. 857-861.
20. Ård, M.B., K. Granath, and L. Stolt, Growth of Cu (In, Ga) Se2 thin films by coevaporation using alkaline precursors. Thin Solid Films, 2000. 361: p. 9-16.
21. Rudmann, D., et al., Effects of NaF coevaporation on structural properties of Cu (In, Ga) Se2 thin films. Thin Solid Films, 2003. 431: p. 37-40.
22. Song, X., et al., Na incorporation into Cu (In, Ga) Se2 thin-film solar cell absorbers deposited on polyimide: Impact on the chemical and electronic surface structure. Journal of Applied Physics, 2012. 111(3): p. 034903.
23. Jeong, Y., et al., Field modulation in Na-incorporated Cu (In, Ga) Se 2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities. Nanoscale research letters, 2011. 6(1): p. 1-6.
24. Güttler, D., et al. Influence of NaF incorporation during Cu (In, Ga) Se 2 growth on microstructure and photovoltaic performance. in 2010 35th IEEE Photovoltaic Specialists Conference. 2010. IEEE.
25. Laemmle, A., R. Wuerz, and M. Powalla, Efficiency enhancement of Cu(In, Ga)Se2 thin‐film solar cells by a post‐deposition treatment with potassium fluoride. physica status solidi (RRL)–Rapid Research Letters, 2013. 7(9): p. 631-634.
26. Nakada, T., et al., Effects of sodium on Cu (In, Ga) Se2-based thin films and solar cells. Japanese journal of applied physics, 1997. 36(2R): p. 732.
27. Lammer, M., U. Klemm, and M. Powalla, Sodium co-evaporation for low temperature Cu (In, Ga) Se2 deposition. Thin Solid Films, 2001. 387(1-2): p. 33-36.
28. Salomé, P.M., et al., Cu(In, Ga)Se2 Solar Cells With Varying Na Content Prepared on Nominally Alkali-Free Glass Substrates. IEEE Journal of Photovoltaics, 2013. 3(2): p. 852-858.
29. Niles, D.W., et al., Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997. 15(6): p. 3044-3049.
30. Wei, S.-H., S. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe 2. Journal of Applied Physics, 1999. 85(10): p. 7214-7218.
31. Kronik, L., D. Cahen, and H.W. Schock, Effects of sodium on polycrystalline Cu (In, Ga) Se2 and its solar cell performance. Advanced Materials, 1998. 10(1): p. 31-36.
32. Mungan, E.S., X. Wang, and M.A. Alam, Modeling the effects of Na incorporation on CIGS solar cells. IEEE journal of photovoltaics, 2012. 3(1): p. 451-456.
33. Rockett, A., et al., Na in selenized Cu (In, Ga) Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances. Thin Solid Films, 2000. 372(1-2): p. 212-217.
34. Wuerz, R., et al., Alternative sodium sources for Cu (In, Ga) Se2 thin-film solar cells on flexible substrates. Thin Solid Films, 2011. 519(21): p. 7268-7271.
35. Blösch, P., et al., Sodium-doped molybdenum back contacts for flexible Cu (In, Ga) Se2 solar cells. Thin Solid Films, 2013. 535: p. 214-219.
36. Yun, J.H., et al., Fabrication of CIGS solar cells with a Na-doped Molayer on a Na-free substrate. Thin Solid Films, 2007. 515(15): p. 5876-5879.
37. Caballero, R., et al., Influence of Na on Cu (In, Ga) Se 2 solar cells grown on polyimide substrates at low temperature: Impact on the Cu (In, Ga) Se 2/Mo interface. Applied Physics Letters, 2010. 96(9): p. 092104.
38. Rudmann, D., et al., Efficiency enhancement of Cu (In, Ga) Se 2 solar cells due to post-deposition Na incorporation. Applied Physics Letters, 2004. 84(7): p. 1129-1131.
39. Wuerz, R., et al., CIGS thin-film solar cells and modules on enamelled steel substrates. Solar Energy Materials and Solar Cells, 2012. 100: p. 132-137.
40. Lundberg, O., et al., Diffusion of indium and gallium in Cu (In, Ga) Se2 thin film solar cells. Journal of Physics and Chemistry of Solids, 2003. 64(9-10): p. 1499-1504.
41. Caballero, R., et al., The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates. Thin Solid Films, 2009. 517(7): p. 2187-2190.
42. Stange, H., et al., Effect of Na presence during CuInSe2 growth on stacking fault annihilation and electronic properties. Applied Physics Letters, 2015. 107(15): p. 152103.
43. Rudmann, D., et al., Sodium incorporation strategies for CIGS growth at different temperatures. Thin Solid Films, 2005. 480: p. 55-60.
44. Contreras, M.A., et al., Se activity and its effect on Cu (In, Ga) Se2 photovoltaic thin films. physica status solidi (a), 2009. 206(5): p. 1042-1048.
45. Islam, M., et al., Effect of Se/(Ga+ In) ratio on MBE grown Cu (In, Ga) Se2 thin film solar cell. Journal of Crystal Growth, 2009. 311(7): p. 2212-2214.
46. Cao, Q., et al., Defects in Cu (In, Ga) Se2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance. Advanced Energy Materials, 2011. 1(5): p. 845-853.
47. Zhu, X., et al., Determining factor of MoSe2 formation in Cu (In, Ga) Se2 solar cells. Solar Energy Materials and Solar Cells, 2012. 101: p. 57-61.
48. Frantz, J.A., et al., Cu(In,Ga)Se2 thin films and devices sputtered from a single target without additional selenization. Thin Solid Films, 2011. 519(22): p. 7763-7765.
49. Pohl, J. and K. Albe, Intrinsic point defects in CuInSe2and CuGaSe2as seen via screened-exchange hybrid density functional theory. Physical Review B, 2013. 87(24).
50. Hsu, C.-H., et al., Na-induced efficiency boost for Se-deficient Cu(In,Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2015. 23(11): p. 1621-1629.
51. Chirila, A., et al., Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater, 2013. 12(12): p. 1107-11.
52. Jackson, P., et al., Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) - Rapid Research Letters, 2015. 9(1): p. 28-31.
53. Jackson, P., et al., Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. physica status solidi (RRL) – Rapid Research Letters, 2016. 10(8): p. 583-586.
54. Kato, T., et al., Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)2. IEEE Journal of Photovoltaics, 2019. 9(1): p. 325-330.
55. Nakamura, M., et al., Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019. 9(6): p. 1863-1867.
56. Jackson, P., et al., High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2007. 15(6): p. 507-519.
57. Ishizuka, S., et al., Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material. Journal of Renewable and Sustainable Energy, 2009. 1(1).
58. Cojocaru-Mirédin, O., et al., Characterization of Grain Boundaries in Cu(In,Ga)Se$_{\bf 2}$ Films Using Atom-Probe Tomography. IEEE Journal of Photovoltaics, 2011. 1(2): p. 207-212.
59. Abou-Ras, D., et al., Confined and Chemically Flexible Grain Boundaries in Polycrystalline Compound Semiconductors. Advanced Energy Materials, 2012. 2(8): p. 992-998.
60. Reinhard, P., et al. Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2. 2012. IEEE.
61. Oikkonen, L.E., et al., Effect of sodium incorporation into CuInSe2 from first principles. Journal of Applied Physics, 2013. 114(8).
62. Sakurai, T., et al., Temperature dependence of photocapacitance spectrum of CIGS thin-film solar cell. Thin Solid Films, 2009. 517(7): p. 2403-2406.
63. Heath, J.T., et al., Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices. Applied Physics Letters, 2002. 80(24): p. 4540-4542.
64. Pianezzi, F., et al., Defect formation in Cu (In, Ga) Se2 thin films due to the presence of potassium during growth by low temperature co-evaporation process. Journal of Applied Physics, 2013. 114(19): p. 194508.
65. Laemmle, A., R. Wuerz, and M. Powalla, Efficiency enhancement of Cu(In,Ga)Se2 thin-film solar cells by a post-deposition treatment with potassium fluoride. physica status solidi (RRL) - Rapid Research Letters, 2013. 7(9): p. 631-634.
66. Mansfield, L.M., et al., Enhanced Performance in Cu(In,Ga)Se2 Solar Cells Fabricated by the Two-Step Selenization Process With a Potassium Fluoride Postdeposition Treatment. IEEE Journal of Photovoltaics, 2014. 4(6): p. 1650-1654.
67. Pianezzi, F., et al., Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Phys Chem Chem Phys, 2014. 16(19): p. 8843-51.
68. Raguse, J.M., et al., Effects of Sodium and Potassium on the Photovoltaic Performance of CIGS Solar Cells. IEEE Journal of Photovoltaics, 2017. 7(1): p. 303-306.
69. Khatri, I., et al., Effect of potassium fluoride post-deposition treatment on Cu (In, Ga) Se2 thin films and solar cells fabricated onto sodalime glass substrates. Solar Energy Materials and Solar Cells, 2016. 155: p. 280-287.
70. Jensen, S.A., et al., Beneficial effect of post-deposition treatment in high-efficiency Cu (In, Ga) Se2 solar cells through reduced potential fluctuations. Journal of Applied Physics, 2016. 120(6): p. 063106.
71. Hsu, C.-H., et al., Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se2 Absorbers without Postselenization by Post-Treatment of Alkali Metals. Advanced Energy Materials, 2017. 7(13).
72. Kato, T., Cu(In,Ga)(Se,S)2solar cell research in Solar Frontier: Progress and current status. Japanese Journal of Applied Physics, 2017. 56(4S).
73. Khatri, I., M. Sugiyama, and T. Nakada, Effects of combined additional indium deposition and potassium fluoride post-deposition treatments on Cu(In,Ga)Se2 thin film solar cells. Progress in Photovoltaics: Research and Applications, 2017. 25(10): p. 871-877.
74. Jeong, G.S., et al., Effect of KF treatment of Cu (In, Ga) Se 2 thin films on the photovoltaic properties of CIGS solar cells. Current Photovoltaic Research, 2015. 3(2): p. 65-70.
75. Son, Y.-S., et al., KF post deposition treatment process of Cu (In, Ga) Se 2 thin film effect of the Na element present in the solar cell performance. Current Photovoltaic Research, 2015. 3(4): p. 130-134.
76. Yuan, Z.K., et al., Na‐diffusion enhanced p‐type conductivity in Cu (In, Ga) Se2: A new mechanism for efficient doping in semiconductors. Advanced Energy Materials, 2016. 6(24): p. 1601191.
77. Laemmle, A., R. Wuerz, and M. Powalla, Efficiency enhancement of Cu(In,Ga)Se2 thin-film solar cells by a post-deposition treatment with potassium fluoride. physica status solidi (RRL) - Rapid Research Letters, 2013. 7(9): p. 631-634.
78. Kamada, R., et al. New world record Cu (In, Ga)(Se, S) 2 thin film solar cell efficiency beyond 22%. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016. IEEE.
79. Shin, D., et al., Effects of the incorporation of alkali elements on Cu (In, Ga) Se2 thin film solar cells. Solar Energy Materials and Solar Cells, 2016. 157: p. 695-702.
80. Maeda, T., A. Kawabata, and T. Wada, First-principles study on alkali-metal effect of Li, Na, and K in CuInSe2 and CuGaSe2. Japanese Journal of Applied Physics, 2015. 54(8S1): p. 08KC20.
81. Jiang, C.S., To, B., Glynn, S., Mahabaduge, H., Barnes, T., & Al-Jassim, M. M., Recent progress in nanoelectrical characterizations of CdTe and Cu(In,Ga)Se2. IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016. (pp. 3675-3680).
82. Nicoara, N., et al., Effect of the KF post-deposition treatment on grain boundary properties in Cu(In, Ga)Se2 thin films. Sci Rep, 2017. 7: p. 41361.
83. Friedlmeier, T.M., et al., Improved photocurrent in Cu (In, Ga) Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE Journal of Photovoltaics, 2015. 5(5): p. 1487-1491.
84. Jiang, C.-S., et al. Recent progress in nanoelectrical characterizations of CdTe and Cu (In, Ga) Se 2. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016. IEEE.
85. Karki, S., et al., In situ and ex situ investigations of KF postdeposition treatment effects on CIGS solar cells. IEEE Journal of Photovoltaics, 2016. 7(2): p. 665-669.
86. Chirilă, A., et al., Potassium-induced surface modification of Cu (In, Ga) Se 2 thin films for high-efficiency solar cells. Nature materials, 2013. 12(12): p. 1107-1111.
87. Contreras, M.A., et al., Optimization of CBD CdS process in high-efficiency Cu(In, Ga)Se2-based solar cells. Thin Solid Films, 2002. 403: p. 204-211.
88. Handick, E., et al., Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se(2) Surfaces--Reason for Performance Leap? ACS Appl Mater Interfaces, 2015. 7(49): p. 27414-20.
89. Handick, E., et al., Formation of a K-In-Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers. ACS Appl Mater Interfaces, 2017. 9(4): p. 3581-3589.
90. Lepetit, T., et al., KF post deposition treatment in co-evaporated Cu(In,Ga)Se2 thin film solar cells: Beneficial or detrimental effect induced by the absorber characteristics. Progress in Photovoltaics: Research and Applications, 2017. 25(12): p. 1068-1076.
91. Nicoara, N., et al., Direct evidence for grain boundary passivation in Cu(In,Ga)Se2 solar cells through alkali-fluoride post-deposition treatments. Nat Commun, 2019. 10(1): p. 3980.
92. Vilalta-Clemente, A., et al., Rubidium distribution at atomic scale in high efficient Cu (In, Ga) Se2 thin-film solar cells. Applied Physics Letters, 2018. 112(10): p. 103105.
93. Schoppe, P., et al., Overall Distribution of Rubidium in Highly Efficient Cu(In,Ga)Se2 Solar Cells. ACS Appl Mater Interfaces, 2018. 10(47): p. 40592-40598.
94. Stokes, A., et al., Impact of wide-ranging nanoscale chemistry on band structure at Cu (In, Ga) Se 2 grain boundaries. Scientific reports, 2017. 7(1): p. 1-11.
95. Wuerz, R., W. Hempel, and P. Jackson, Diffusion of Rb in polycrystalline Cu (In, Ga) Se2 layers and effect of Rb on solar cell parameters of Cu (In, Ga) Se2 thin-film solar cells. Journal of Applied Physics, 2018. 124(16): p. 165305.
96. Ishizuka, S., et al., Group III Elemental Composition Dependence of RbF Postdeposition Treatment Effects on Cu(In,Ga)Se2 Thin Films and Solar Cells. The Journal of Physical Chemistry C, 2018. 122(7): p. 3809-3817.
97. Hauschild, D., et al., Impact of a RbF Postdeposition Treatment on the Electronic Structure of the CdS/Cu(In,Ga)Se2 Heterojunction in High-Efficiency Thin-Film Solar Cells. ACS Energy Letters, 2017. 2(10): p. 2383-2387.
98. Taguchi, N., S. Tanaka, and S. Ishizuka, Direct insights into RbInSe2 formation at Cu(In,Ga)Se2 thin film surface with RbF postdeposition treatment. Applied Physics Letters, 2018. 113(11).
99. Maticiuc, N., et al., In vacuo XPS investigation of Cu(In,Ga)Se2 surface after RbF post-deposition treatment. Thin Solid Films, 2018. 665: p. 143-147.
100. Malitckaya, M., et al., Effect of Alkali Metal Atom Doping on the CuInSe2-Based Solar Cell Absorber. The Journal of Physical Chemistry C, 2017. 121(29): p. 15516-15528.
101. Lin, T.-Y., et al., Alkali-induced grain boundary reconstruction on Cu(In,Ga)Se2 thin film solar cells using cesium fluoride post deposition treatment. Nano Energy, 2020. 68.
102. Carron, R., et al., Advanced Alkali Treatments for High‐Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates. Advanced Energy Materials, 2019. 9(24).
103. Jackson, P., et al., Compositional investigation of potassium doped Cu(In,Ga)Se2solar cells with efficiencies up to 20.8%. physica status solidi (RRL) - Rapid Research Letters, 2014. 8(3): p. 219-222.
104. Jackson, P., et al., Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) - Rapid Research Letters, 2015. 9(1): p. 28-31.
105. Siebentritt, S., et al., Why do we make Cu (In, Ga) Se2 solar cells non-stoichiometric? Solar Energy Materials and Solar Cells, 2013. 119: p. 18-25.
106. Avancini, E., et al., Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In, Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2017. 25(3): p. 233-241.
107. Carron, R., et al., Refractive indices of layers and optical simulations of Cu (In, Ga) Se2 solar cells. Science and Technology of advanced MaTerialS, 2018. 19(1): p. 396-410.
108. Witte, W., R. Kniese, and M. Powalla, Raman investigations of Cu (In, Ga) Se2 thin films with various copper contents. Thin Solid Films, 2008. 517(2): p. 867-869.
109. Aida, Y., et al., Cu‐rich CuInSe2 solar cells with a Cu‐poor surface. Progress in photovoltaics: Research and Applications, 2015. 23(6): p. 754-764.
110. Kushiya, K., et al. The role of Cu (InGa)(SeS)/sub 2/surface layer on a graded band-gap Cu (InGa) Se/sub 2/thin-film solar cell prepared by two-stage method. in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996. 1996. IEEE.
111. Chantana, J., et al., Transparent Electrode and Buffer Layer Combination for Reducing Carrier Recombination and Optical Loss Realizing over a 22%-Efficient Cd-Free Alkaline-Treated Cu(In,Ga)(S,Se)2 Solar Cell by the All-Dry Process. ACS Appl Mater Interfaces, 2020. 12(19): p. 22298-22307.
112. Gabor, A.M., et al., High‐efficiency CuIn x Ga1− x Se2 solar cells made from (In x, Ga1− x) 2Se3 precursor films. Applied physics letters, 1994. 65(2): p. 198-200.
113. Contreras, M.A., et al., Optimization of CBD CdS process in high-efficiency Cu (In, Ga) Se2-based solar cells. Thin Solid Films, 2002. 403: p. 204-211.
114. Contreras, M.A., et al., Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thin‐film solar cells. Progress in Photovoltaics: Research and applications, 1999. 7(4): p. 311-316.
115. Maeda, T., A. Kawabata, and T. Wada, First-principles study on alkali-metal effect of Li, Na, and K in CuInSe2and CuGaSe2. Japanese Journal of Applied Physics, 2015. 54(8S1).
116. Kiskinova, M., L. Surnev., and G. Bliznakov., Oxygen adsorption on an alkali metal-covered Ni(100) surface. Surface Science 1981. 104.1: p. 240-252.
117. https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/146/01460390.pdf.
118. http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *