|
1. https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian?fbclid=IwAR3kG2NRi5WX9NIcp2bGrPiFCF12JHbqAGQjR4XFXl45yfuvi_FE_rUXwhs. 2. https://www.pveducation.org/?fbclid=IwAR1PscQnTdrR7PM6HjSlxVs7XCJwtxUy0lUdEYAn22t8nROO8nkaAHFKrfo. 3. Ramanujam, J. and U.P. Singh, Copper indium gallium selenide based solar cells–a review. Energy & Environmental Science, 2017. 10(6): p. 1306-1319. 4. Scofield, J.H., et al., Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin solid films, 1995. 260(1): p. 26-31. 5. Park, J.S., et al., CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction. Journal of Applied Physics, 2000. 87(8): p. 3683-3690. 6. Rau, U. and H.-W. Schock, Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A, 1999. 69(2): p. 131-147. 7. Romeo, A., et al., Development of thin‐film Cu (In, Ga) Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(2‐3): p. 93-111. 8. Niki, S., et al., CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications, 2010. 18(6): p. 453-466. 9. Nakamura, M., et al., Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019. 9(6): p. 1863-1867. 10. Frantz, J.A., et al., Quaternary sputtered Cu (In, Ga) Se 2 absorbers for photovoltaics: a review. IEEE Journal of Photovoltaics, 2016. 6(4): p. 1036-1050. 11. Chen, C.-H., et al., A promising sputtering route for one-step fabrication of chalcopyrite phase Cu (In, Ga)Se2 absorbers without extra Se supply. Solar Energy Materials and Solar Cells, 2012. 103: p. 25-29. 12. Piekoszewski, J., et al., RF-sputtered CuInSe2 thin films. Solar Energy Materials, 1980. 2(3): p. 363-372. 13. Shi, J., et al., Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Progress in Photovoltaics: Research and Applications, 2011. 19(2): p. 160-164. 14. Ouyang, L., et al., Cu (In, Ga)Se2 solar cell with 16.7% active‐area efficiency achieved by sputtering from a quaternary target. physica status solidi (a), 2015. 212(8): p. 1774-1778. 15. Chen, C.-H., et al., Comprehensive characterization of Cu-rich Cu (In, Ga) Se2 absorbers prepared by one-step sputtering process. Thin Solid Films, 2013. 535: p. 122-126. 16. Hsu, C.H., et al., Na‐induced efficiency boost for Se‐deficient Cu(In, Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2015. 23(11): p. 1621-1629. 17. Hsu, C.H., et al., Over 14% efficiency of directly sputtered Cu (In, Ga) Se2 absorbers without postselenization by post‐treatment of alkali metals. Advanced Energy Materials, 2017. 7(13): p. 1602571. 18. Wang, Y.-H., et al., Engineering a Ga-Gradient by One-Step Sputtering to Achieve Over 15% Efficiency of Cu (In, Ga) Se2 Flexible Solar Cells without Post-selenization. ACS Applied Materials & Interfaces, 2020. 12(25): p. 28320-28328. 19. Chirilă, A., et al., Highly efficient Cu (In, Ga) Se 2 solar cells grown on flexible polymer films. Nature materials, 2011. 10(11): p. 857-861. 20. Ård, M.B., K. Granath, and L. Stolt, Growth of Cu (In, Ga) Se2 thin films by coevaporation using alkaline precursors. Thin Solid Films, 2000. 361: p. 9-16. 21. Rudmann, D., et al., Effects of NaF coevaporation on structural properties of Cu (In, Ga) Se2 thin films. Thin Solid Films, 2003. 431: p. 37-40. 22. Song, X., et al., Na incorporation into Cu (In, Ga) Se2 thin-film solar cell absorbers deposited on polyimide: Impact on the chemical and electronic surface structure. Journal of Applied Physics, 2012. 111(3): p. 034903. 23. Jeong, Y., et al., Field modulation in Na-incorporated Cu (In, Ga) Se 2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities. Nanoscale research letters, 2011. 6(1): p. 1-6. 24. Güttler, D., et al. Influence of NaF incorporation during Cu (In, Ga) Se 2 growth on microstructure and photovoltaic performance. in 2010 35th IEEE Photovoltaic Specialists Conference. 2010. IEEE. 25. Laemmle, A., R. Wuerz, and M. Powalla, Efficiency enhancement of Cu(In, Ga)Se2 thin‐film solar cells by a post‐deposition treatment with potassium fluoride. physica status solidi (RRL)–Rapid Research Letters, 2013. 7(9): p. 631-634. 26. Nakada, T., et al., Effects of sodium on Cu (In, Ga) Se2-based thin films and solar cells. Japanese journal of applied physics, 1997. 36(2R): p. 732. 27. Lammer, M., U. Klemm, and M. Powalla, Sodium co-evaporation for low temperature Cu (In, Ga) Se2 deposition. Thin Solid Films, 2001. 387(1-2): p. 33-36. 28. Salomé, P.M., et al., Cu(In, Ga)Se2 Solar Cells With Varying Na Content Prepared on Nominally Alkali-Free Glass Substrates. IEEE Journal of Photovoltaics, 2013. 3(2): p. 852-858. 29. Niles, D.W., et al., Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997. 15(6): p. 3044-3049. 30. Wei, S.-H., S. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe 2. Journal of Applied Physics, 1999. 85(10): p. 7214-7218. 31. Kronik, L., D. Cahen, and H.W. Schock, Effects of sodium on polycrystalline Cu (In, Ga) Se2 and its solar cell performance. Advanced Materials, 1998. 10(1): p. 31-36. 32. Mungan, E.S., X. Wang, and M.A. Alam, Modeling the effects of Na incorporation on CIGS solar cells. IEEE journal of photovoltaics, 2012. 3(1): p. 451-456. 33. Rockett, A., et al., Na in selenized Cu (In, Ga) Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances. Thin Solid Films, 2000. 372(1-2): p. 212-217. 34. Wuerz, R., et al., Alternative sodium sources for Cu (In, Ga) Se2 thin-film solar cells on flexible substrates. Thin Solid Films, 2011. 519(21): p. 7268-7271. 35. Blösch, P., et al., Sodium-doped molybdenum back contacts for flexible Cu (In, Ga) Se2 solar cells. Thin Solid Films, 2013. 535: p. 214-219. 36. Yun, J.H., et al., Fabrication of CIGS solar cells with a Na-doped Molayer on a Na-free substrate. Thin Solid Films, 2007. 515(15): p. 5876-5879. 37. Caballero, R., et al., Influence of Na on Cu (In, Ga) Se 2 solar cells grown on polyimide substrates at low temperature: Impact on the Cu (In, Ga) Se 2/Mo interface. Applied Physics Letters, 2010. 96(9): p. 092104. 38. Rudmann, D., et al., Efficiency enhancement of Cu (In, Ga) Se 2 solar cells due to post-deposition Na incorporation. Applied Physics Letters, 2004. 84(7): p. 1129-1131. 39. Wuerz, R., et al., CIGS thin-film solar cells and modules on enamelled steel substrates. Solar Energy Materials and Solar Cells, 2012. 100: p. 132-137. 40. Lundberg, O., et al., Diffusion of indium and gallium in Cu (In, Ga) Se2 thin film solar cells. Journal of Physics and Chemistry of Solids, 2003. 64(9-10): p. 1499-1504. 41. Caballero, R., et al., The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates. Thin Solid Films, 2009. 517(7): p. 2187-2190. 42. Stange, H., et al., Effect of Na presence during CuInSe2 growth on stacking fault annihilation and electronic properties. Applied Physics Letters, 2015. 107(15): p. 152103. 43. Rudmann, D., et al., Sodium incorporation strategies for CIGS growth at different temperatures. Thin Solid Films, 2005. 480: p. 55-60. 44. Contreras, M.A., et al., Se activity and its effect on Cu (In, Ga) Se2 photovoltaic thin films. physica status solidi (a), 2009. 206(5): p. 1042-1048. 45. Islam, M., et al., Effect of Se/(Ga+ In) ratio on MBE grown Cu (In, Ga) Se2 thin film solar cell. Journal of Crystal Growth, 2009. 311(7): p. 2212-2214. 46. Cao, Q., et al., Defects in Cu (In, Ga) Se2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance. Advanced Energy Materials, 2011. 1(5): p. 845-853. 47. Zhu, X., et al., Determining factor of MoSe2 formation in Cu (In, Ga) Se2 solar cells. Solar Energy Materials and Solar Cells, 2012. 101: p. 57-61. 48. Frantz, J.A., et al., Cu(In,Ga)Se2 thin films and devices sputtered from a single target without additional selenization. Thin Solid Films, 2011. 519(22): p. 7763-7765. 49. Pohl, J. and K. Albe, Intrinsic point defects in CuInSe2and CuGaSe2as seen via screened-exchange hybrid density functional theory. Physical Review B, 2013. 87(24). 50. Hsu, C.-H., et al., Na-induced efficiency boost for Se-deficient Cu(In,Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2015. 23(11): p. 1621-1629. 51. Chirila, A., et al., Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater, 2013. 12(12): p. 1107-11. 52. Jackson, P., et al., Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) - Rapid Research Letters, 2015. 9(1): p. 28-31. 53. Jackson, P., et al., Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. physica status solidi (RRL) – Rapid Research Letters, 2016. 10(8): p. 583-586. 54. Kato, T., et al., Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)2. IEEE Journal of Photovoltaics, 2019. 9(1): p. 325-330. 55. Nakamura, M., et al., Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019. 9(6): p. 1863-1867. 56. Jackson, P., et al., High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2007. 15(6): p. 507-519. 57. Ishizuka, S., et al., Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material. Journal of Renewable and Sustainable Energy, 2009. 1(1). 58. Cojocaru-Mirédin, O., et al., Characterization of Grain Boundaries in Cu(In,Ga)Se$_{\bf 2}$ Films Using Atom-Probe Tomography. IEEE Journal of Photovoltaics, 2011. 1(2): p. 207-212. 59. Abou-Ras, D., et al., Confined and Chemically Flexible Grain Boundaries in Polycrystalline Compound Semiconductors. Advanced Energy Materials, 2012. 2(8): p. 992-998. 60. Reinhard, P., et al. Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2. 2012. IEEE. 61. Oikkonen, L.E., et al., Effect of sodium incorporation into CuInSe2 from first principles. Journal of Applied Physics, 2013. 114(8). 62. Sakurai, T., et al., Temperature dependence of photocapacitance spectrum of CIGS thin-film solar cell. Thin Solid Films, 2009. 517(7): p. 2403-2406. 63. Heath, J.T., et al., Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices. Applied Physics Letters, 2002. 80(24): p. 4540-4542. 64. Pianezzi, F., et al., Defect formation in Cu (In, Ga) Se2 thin films due to the presence of potassium during growth by low temperature co-evaporation process. Journal of Applied Physics, 2013. 114(19): p. 194508. 65. Laemmle, A., R. Wuerz, and M. Powalla, Efficiency enhancement of Cu(In,Ga)Se2 thin-film solar cells by a post-deposition treatment with potassium fluoride. physica status solidi (RRL) - Rapid Research Letters, 2013. 7(9): p. 631-634. 66. Mansfield, L.M., et al., Enhanced Performance in Cu(In,Ga)Se2 Solar Cells Fabricated by the Two-Step Selenization Process With a Potassium Fluoride Postdeposition Treatment. IEEE Journal of Photovoltaics, 2014. 4(6): p. 1650-1654. 67. Pianezzi, F., et al., Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Phys Chem Chem Phys, 2014. 16(19): p. 8843-51. 68. Raguse, J.M., et al., Effects of Sodium and Potassium on the Photovoltaic Performance of CIGS Solar Cells. IEEE Journal of Photovoltaics, 2017. 7(1): p. 303-306. 69. Khatri, I., et al., Effect of potassium fluoride post-deposition treatment on Cu (In, Ga) Se2 thin films and solar cells fabricated onto sodalime glass substrates. Solar Energy Materials and Solar Cells, 2016. 155: p. 280-287. 70. Jensen, S.A., et al., Beneficial effect of post-deposition treatment in high-efficiency Cu (In, Ga) Se2 solar cells through reduced potential fluctuations. Journal of Applied Physics, 2016. 120(6): p. 063106. 71. Hsu, C.-H., et al., Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se2 Absorbers without Postselenization by Post-Treatment of Alkali Metals. Advanced Energy Materials, 2017. 7(13). 72. Kato, T., Cu(In,Ga)(Se,S)2solar cell research in Solar Frontier: Progress and current status. Japanese Journal of Applied Physics, 2017. 56(4S). 73. Khatri, I., M. Sugiyama, and T. Nakada, Effects of combined additional indium deposition and potassium fluoride post-deposition treatments on Cu(In,Ga)Se2 thin film solar cells. Progress in Photovoltaics: Research and Applications, 2017. 25(10): p. 871-877. 74. Jeong, G.S., et al., Effect of KF treatment of Cu (In, Ga) Se 2 thin films on the photovoltaic properties of CIGS solar cells. Current Photovoltaic Research, 2015. 3(2): p. 65-70. 75. Son, Y.-S., et al., KF post deposition treatment process of Cu (In, Ga) Se 2 thin film effect of the Na element present in the solar cell performance. Current Photovoltaic Research, 2015. 3(4): p. 130-134. 76. Yuan, Z.K., et al., Na‐diffusion enhanced p‐type conductivity in Cu (In, Ga) Se2: A new mechanism for efficient doping in semiconductors. Advanced Energy Materials, 2016. 6(24): p. 1601191. 77. Laemmle, A., R. Wuerz, and M. Powalla, Efficiency enhancement of Cu(In,Ga)Se2 thin-film solar cells by a post-deposition treatment with potassium fluoride. physica status solidi (RRL) - Rapid Research Letters, 2013. 7(9): p. 631-634. 78. Kamada, R., et al. New world record Cu (In, Ga)(Se, S) 2 thin film solar cell efficiency beyond 22%. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016. IEEE. 79. Shin, D., et al., Effects of the incorporation of alkali elements on Cu (In, Ga) Se2 thin film solar cells. Solar Energy Materials and Solar Cells, 2016. 157: p. 695-702. 80. Maeda, T., A. Kawabata, and T. Wada, First-principles study on alkali-metal effect of Li, Na, and K in CuInSe2 and CuGaSe2. Japanese Journal of Applied Physics, 2015. 54(8S1): p. 08KC20. 81. Jiang, C.S., To, B., Glynn, S., Mahabaduge, H., Barnes, T., & Al-Jassim, M. M., Recent progress in nanoelectrical characterizations of CdTe and Cu(In,Ga)Se2. IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016. (pp. 3675-3680). 82. Nicoara, N., et al., Effect of the KF post-deposition treatment on grain boundary properties in Cu(In, Ga)Se2 thin films. Sci Rep, 2017. 7: p. 41361. 83. Friedlmeier, T.M., et al., Improved photocurrent in Cu (In, Ga) Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE Journal of Photovoltaics, 2015. 5(5): p. 1487-1491. 84. Jiang, C.-S., et al. Recent progress in nanoelectrical characterizations of CdTe and Cu (In, Ga) Se 2. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016. IEEE. 85. Karki, S., et al., In situ and ex situ investigations of KF postdeposition treatment effects on CIGS solar cells. IEEE Journal of Photovoltaics, 2016. 7(2): p. 665-669. 86. Chirilă, A., et al., Potassium-induced surface modification of Cu (In, Ga) Se 2 thin films for high-efficiency solar cells. Nature materials, 2013. 12(12): p. 1107-1111. 87. Contreras, M.A., et al., Optimization of CBD CdS process in high-efficiency Cu(In, Ga)Se2-based solar cells. Thin Solid Films, 2002. 403: p. 204-211. 88. Handick, E., et al., Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se(2) Surfaces--Reason for Performance Leap? ACS Appl Mater Interfaces, 2015. 7(49): p. 27414-20. 89. Handick, E., et al., Formation of a K-In-Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers. ACS Appl Mater Interfaces, 2017. 9(4): p. 3581-3589. 90. Lepetit, T., et al., KF post deposition treatment in co-evaporated Cu(In,Ga)Se2 thin film solar cells: Beneficial or detrimental effect induced by the absorber characteristics. Progress in Photovoltaics: Research and Applications, 2017. 25(12): p. 1068-1076. 91. Nicoara, N., et al., Direct evidence for grain boundary passivation in Cu(In,Ga)Se2 solar cells through alkali-fluoride post-deposition treatments. Nat Commun, 2019. 10(1): p. 3980. 92. Vilalta-Clemente, A., et al., Rubidium distribution at atomic scale in high efficient Cu (In, Ga) Se2 thin-film solar cells. Applied Physics Letters, 2018. 112(10): p. 103105. 93. Schoppe, P., et al., Overall Distribution of Rubidium in Highly Efficient Cu(In,Ga)Se2 Solar Cells. ACS Appl Mater Interfaces, 2018. 10(47): p. 40592-40598. 94. Stokes, A., et al., Impact of wide-ranging nanoscale chemistry on band structure at Cu (In, Ga) Se 2 grain boundaries. Scientific reports, 2017. 7(1): p. 1-11. 95. Wuerz, R., W. Hempel, and P. Jackson, Diffusion of Rb in polycrystalline Cu (In, Ga) Se2 layers and effect of Rb on solar cell parameters of Cu (In, Ga) Se2 thin-film solar cells. Journal of Applied Physics, 2018. 124(16): p. 165305. 96. Ishizuka, S., et al., Group III Elemental Composition Dependence of RbF Postdeposition Treatment Effects on Cu(In,Ga)Se2 Thin Films and Solar Cells. The Journal of Physical Chemistry C, 2018. 122(7): p. 3809-3817. 97. Hauschild, D., et al., Impact of a RbF Postdeposition Treatment on the Electronic Structure of the CdS/Cu(In,Ga)Se2 Heterojunction in High-Efficiency Thin-Film Solar Cells. ACS Energy Letters, 2017. 2(10): p. 2383-2387. 98. Taguchi, N., S. Tanaka, and S. Ishizuka, Direct insights into RbInSe2 formation at Cu(In,Ga)Se2 thin film surface with RbF postdeposition treatment. Applied Physics Letters, 2018. 113(11). 99. Maticiuc, N., et al., In vacuo XPS investigation of Cu(In,Ga)Se2 surface after RbF post-deposition treatment. Thin Solid Films, 2018. 665: p. 143-147. 100. Malitckaya, M., et al., Effect of Alkali Metal Atom Doping on the CuInSe2-Based Solar Cell Absorber. The Journal of Physical Chemistry C, 2017. 121(29): p. 15516-15528. 101. Lin, T.-Y., et al., Alkali-induced grain boundary reconstruction on Cu(In,Ga)Se2 thin film solar cells using cesium fluoride post deposition treatment. Nano Energy, 2020. 68. 102. Carron, R., et al., Advanced Alkali Treatments for High‐Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates. Advanced Energy Materials, 2019. 9(24). 103. Jackson, P., et al., Compositional investigation of potassium doped Cu(In,Ga)Se2solar cells with efficiencies up to 20.8%. physica status solidi (RRL) - Rapid Research Letters, 2014. 8(3): p. 219-222. 104. Jackson, P., et al., Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) - Rapid Research Letters, 2015. 9(1): p. 28-31. 105. Siebentritt, S., et al., Why do we make Cu (In, Ga) Se2 solar cells non-stoichiometric? Solar Energy Materials and Solar Cells, 2013. 119: p. 18-25. 106. Avancini, E., et al., Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In, Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2017. 25(3): p. 233-241. 107. Carron, R., et al., Refractive indices of layers and optical simulations of Cu (In, Ga) Se2 solar cells. Science and Technology of advanced MaTerialS, 2018. 19(1): p. 396-410. 108. Witte, W., R. Kniese, and M. Powalla, Raman investigations of Cu (In, Ga) Se2 thin films with various copper contents. Thin Solid Films, 2008. 517(2): p. 867-869. 109. Aida, Y., et al., Cu‐rich CuInSe2 solar cells with a Cu‐poor surface. Progress in photovoltaics: Research and Applications, 2015. 23(6): p. 754-764. 110. Kushiya, K., et al. The role of Cu (InGa)(SeS)/sub 2/surface layer on a graded band-gap Cu (InGa) Se/sub 2/thin-film solar cell prepared by two-stage method. in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996. 1996. IEEE. 111. Chantana, J., et al., Transparent Electrode and Buffer Layer Combination for Reducing Carrier Recombination and Optical Loss Realizing over a 22%-Efficient Cd-Free Alkaline-Treated Cu(In,Ga)(S,Se)2 Solar Cell by the All-Dry Process. ACS Appl Mater Interfaces, 2020. 12(19): p. 22298-22307. 112. Gabor, A.M., et al., High‐efficiency CuIn x Ga1− x Se2 solar cells made from (In x, Ga1− x) 2Se3 precursor films. Applied physics letters, 1994. 65(2): p. 198-200. 113. Contreras, M.A., et al., Optimization of CBD CdS process in high-efficiency Cu (In, Ga) Se2-based solar cells. Thin Solid Films, 2002. 403: p. 204-211. 114. Contreras, M.A., et al., Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thin‐film solar cells. Progress in Photovoltaics: Research and applications, 1999. 7(4): p. 311-316. 115. Maeda, T., A. Kawabata, and T. Wada, First-principles study on alkali-metal effect of Li, Na, and K in CuInSe2and CuGaSe2. Japanese Journal of Applied Physics, 2015. 54(8S1). 116. Kiskinova, M., L. Surnev., and G. Bliznakov., Oxygen adsorption on an alkali metal-covered Ni(100) surface. Surface Science 1981. 104.1: p. 240-252. 117. https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/146/01460390.pdf. 118. http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html.
|