帳號:guest(18.119.134.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃冠凱
作者(外文):Huang, Guan-Kai
論文名稱(中文):以奈米碳管滴鑄經導電高分子修飾之FTO電極應用於唾液葡萄糖感測
論文名稱(外文):Carbon Nanotubes Drop-casted on Conductive Polymer Modified FTO Electrodes and Their Applications in Saliva Glucose Sensing
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):李紫原
黃禹堯
郭有迪
口試委員(外文):Lee, Chi-Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031519
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:105
中文關鍵詞:奈米碳管聚吡咯非侵入式感測器葡萄糖感測器
外文關鍵詞:Carbon nanotubesPolypyrroleNoninvasive sensorGlucose sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:56
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文聚焦於非侵入式唾液葡萄糖感測之研究,因應近年人類生活習慣、飲食風格的改變,現今全球糖尿病患者呈現逐漸增加的趨勢,另外當前扎針採血量測血糖對於病患及潛在病患造成不便,因此降低感測裝置量測時的不適感進而提升大眾對於量測的接受度,非侵入式感測裝置因而引發熱門的研究。本文將結合奈米碳管(Carbon nanotubes, CNTs)以及導電高分子聚吡咯(Polypyrrole, PPy)修飾氟摻雜氧化錫導電玻璃基板(Fluorine-doped tin oxide, FTO),並搭配葡萄糖氧化酶的使用以期製備出具有高靈敏度、高感測濃度範圍以及高度專一性之電極。
實驗使用化學聚合法沉積導電高分子polypyrrole於FTO基板(PPy/FTO),並利用滴鑄法修飾奈米碳材料於導電玻璃表面(acid-CNTs/PPy/FTO),搭配不同材料分析儀器探討不同修飾程度之電極表面形貌及微結構變化,使用電化學法之三電極系統分析電化學表現,隨後利用此檢測系統搭配葡萄糖氧化酶進行葡萄糖感測之研究。綜合材料分析、電化學表現及感測結果研究其關聯性。根據研究結果,隨著FTO基板經過不同材料的修飾後,其電子阻抗隨之降低,能夠有效提升其靈敏度。本實驗比較不同電極尺寸大小與不同奈米碳管酸處理時間對電極感測效能的影響,感測結果顯示2.5小時酸處理修飾電極具有最優異的感測表現,高靈敏度95.26 μA/mMcm2、線性區間10 – 700 μM,能夠在正常人及潛在病患的唾液葡萄糖的濃度中展現出優異線性表現,顯示此電極在唾液葡萄糖感測之發展潛力。
The work focuses on the study of noninvasive saliva glucose sensor. Recently, the diabetics continuously increase all over the world, which is caused by the change in human daily life. Nowadays, the sampling process through lancet for patients is an invasive method which causes pain and discomfort for human body. In order to alleviate the inconvenience for diabetics and those who are potentially at high risk of illness, the research for noninvasive sensing device is imperative. Combining the excellent electrochemical properties of carbon nanomaterials modified on conductive polymer, and glucose oxidase enzyme with high selectivity, we expect to fabricate an outstanding electrodes with high sensitivity and wide linear sensing range.
This study uses chemical polymerization method to deposit polypyrrole on fluorine-doped tin oxide conductive glass (FTO) substrate, and then modifies the electrode with carbon nanotubes (CNTs) by drop-casting method. The sensing electrodes are studied through SEM and TEM to investigate the morphology and microstructure, while electrochemical properties and glucose sensing test are performed by a three-electrodes system, including cyclic voltammetry and EIS test. The results show that with the modification layer by layer, the electron transfer resistance decreases, and the sensing performance is influenced by the size of electrodes and acid treatment time of CNTs. The sensing result shows that the CNTs, acid-treated for 2.5 hours, modified electrodes exhibit best sensing performance, with high sensitivity of 95.26 μA/mMcm2,wider linear range of 10 – 700 μM and high linearity of R2 value 0.9958. Based on the glucose sensing result, all electrodes present high potential toward noninvasive saliva glucose sensor for diabetic diagnosis.
摘要 I
Abstract II
致謝 III
目次 IV
表目次 VII
圖目次 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 糖尿病介紹 3
2.1.1 糖尿病種類 4
2.1.2 糖尿病檢測方法 5
2.1.3 唾液葡萄糖濃度及檢測 8
2.2 葡萄糖感測電極發展及機制 11
2.2.1 葡萄糖之光學感測法 12
2.2.2 葡萄糖之電化學感測法 12
2.2.3 葡萄糖之感測機制 13
2.2.3.1 第一世代葡萄糖感測器 14
2.2.3.2 第二世代葡萄糖感測器 14
2.2.3.3 第三世代葡萄糖感測器 16
2.2.3.4 第四世代葡萄糖感測器 18
2.3 奈米材料於葡萄糖感測之應用 19
2.3.1 奈米碳材料修飾電極 19
2.3.2 導電高分子修飾電極 22
2.4 葡萄糖感測電極之基材選擇 24
2.4.1 玻璃碳電極基材 24
2.4.1 金屬電極基材 27
2.4.2 導電玻璃基材 27
2.5 本實驗室於生醫感測領域之回顧 29
2.5.1 多巴胺感測 29
2.5.2 葡萄糖感測 29
第三章 實驗方法 31
3.1 實驗藥品 32
3.2 實驗製程設備 34
3.3 實驗製備流程 35
3.3.1 滴鑄法之電極製備 35
3.3.1.1 氟摻雜氧化錫玻璃基板之前處理 35
3.3.1.2 聚吡咯之合成 36
3.3.1.3 奈米碳管之酸處理 37
3.3.1.4 電極修飾之滴鑄方法 38
3.4 電極之材料分析及電化學感測效能 38
3.4.1 感測電極之材料分析 38
3.4.1.1 冷場發射掃描式電子顯微鏡 39
3.4.1.2 拉曼光譜儀 39
3.4.1.3 X射線光電子能譜儀 40
3.4.1.4 穿透式電子顯微鏡 40
3.4.1.5 原子力顯微鏡 41
3.4.1.6 流變儀 41
3.4.2 感測電極之電化學分析 42
3.4.2.1 三電極系統介紹 42
3.4.2.2 循環伏安法及阻抗測試頻譜分析 44
3.4.2.3 實驗待測液之配置 45
3.4.2.4 電極反應表現定義 47
第四章 結果與討論 48
4.1 化學法聚合聚吡咯於導電玻璃之影響分析 48
4.1.1 冷場發射掃描式電子顯微鏡 48
4.1.2 不同沉積時間之聚吡咯循環伏安圖分析 50
4.1.3 X射線光電子能譜儀 52
4.2 奈米碳管/聚吡咯/導電玻璃複合電極之特性分析 54
4.2.1 拉曼能譜儀 54
4.2.2 穿透式電子顯微鏡 55
4.2.3 冷場發射掃描式電子顯微鏡 57
4.2.4 不同碳管修飾層數之電化學性質分析 59
4.2.5 不同複合電極之電化學性質分析 62
4.2.6 原子力顯微鏡 64
4.2.7 電極之電化學反應探討 66
4.3 奈米碳管/聚吡咯/導電玻璃複合電極感測效能探討 69
4.3.1 葡萄糖感測機制 69
4.3.2 電極尺寸對於葡萄糖感測之影響 70
4.3.3 不同酸處理時間之碳管修飾電極對感測之影響 77
4.3.4 感測電極之酵素親和力探討 84
4.3.5 模擬唾液感測效能分析 85
4.3.6 電極之干擾性測試 90
4.3.7 電極之再現性與穩定性表現探討 92
第五章 結論 94
參考文獻 96
[1] Saeedi, Pouya, et al. "Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas." Diabetes research and clinical practice 162 (2020): 108086.
[2] Suseela, Sreekala, and Parveen Wahid. "Non Invasive Monitoring of Blood Glucose Using Saliva as a Diagnostic Fluid." SoutheastCon 2018. IEEE, 2018.
[3] Williams, Rhys, et al. "Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas." Diabetes research and clinical practice 162 (2020): 108072.
[4] Sotiropoulou, S., et al. "Novel carbon materials in biosensor systems." Biosensors and Bioelectronics 18.2-3 (2003): 211-215.
[5] Nambiar, Shruti, and John TW Yeow. "Conductive polymer-based sensors for biomedical applications." Biosensors and Bioelectronics 26.5 (2011): 1825-1832.
[6] P. Abikshyeet, V. Ramesh, N. Oza, Glucose estimation in the salivary secretion of diabetes mellitus patients, Diabetes, metabolic syndrome and obesity: targets and therapy 5 (2012) 149.
[7] Beckman, J.A., Creager, M.A., 2016. Vascular complications of diabetes. Circulation Research 118(11):1771e1785.
[8] A. D. Association, Diagnosis and classification of diabetes mellitus, Diabetes care 37(Supplement 1) (2014) S81-S90.
[9] Hostalek, Ulrike. "Global epidemiology of prediabetes-present and future perspectives." Clinical diabetes and endocrinology 5.1 (2019): 1-5.
[10] M. Novotna, S. Podzimek, Z. Broukal, E. Lencova, J. Duskova, Periodontal diseases and dental caries in children with type 1 diabetes mellitus, Mediators of inflammation (2015) 379626.
[11] Association AD. "Standards of medical care in diabetes mellitus. 2016." Diabetes Care 39 (2015): S13-S22.
[12] Mishra, Surabhi, Chythra R. Rao, and Avinash Shetty. "Trends in the diagnosis of gestational diabetes mellitus." Scientifica 2016 (2016).
[13] Donovan, Peter J., and H. David McIntyre. "Drugs for gestational diabetes." (2010).
[14] American Diabetes Association. "Standards of Medical Care in Diabetes—2020 abridged for primary care providers." Clinical diabetes: a publication of the American Diabetes Association 38.1 (2020): 10.
[15] Freckmann, Guido, et al. "Analytical performance requirements for systems for self-monitoring of blood glucose with focus on system accuracy: relevant differences among ISO 15197: 2003, ISO 15197: 2013, and current FDA recommendations." Journal of diabetes science and technology 9.4 (2015): 885-894.
[16] 黃莉棋, 陳瑜忻, 李治中, 林慶齡, 由最新的國際標準規格看血糖機精準的必要性與影響檢測準確的因素, 內科學誌 27(5) (2016) 239-247.
[17] Sagana, M., and Sreedevi Dharman. "Estimation of Salivary and Blood Glucose Level among Patients with Diabetes Mellitus–A Comparative Study." Journal of Pharmaceutical Research International (2020): 20-27.
[18] Gupta, Shreya, et al. "Correlation of salivary glucose level with blood glucose level in diabetes mellitus." Journal of oral and maxillofacial pathology: JOMFP 21.3 (2017): 334.
[19] Satish, B. N. V. S., et al. "Saliva: A tool in assessing glucose levels in Diabetes Mellitus." Journal of international oral health: JIOH 6.2 (2014): 114.
[20] Dhanya, M., and S. Hegde. "Salivary glucose as a diagnostic tool in Type II diabetes mellitus: A case-control study." Nigerian journal of clinical practice 19.4 (2016): 486-490.
[21] Mohammadnejad, Parvin, et al. "A new sensitive spectrophotometric method for determination of saliva and blood glucose." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 229 (2020): 117897.
[22] Puttaswamy, Kavitha A., Jaishankar H. Puttabudhi, and Shashidara Raju. "Correlation between salivary glucose and blood glucose and the implications of salivary factors on the oral health status in type 2 diabetes mellitus patients." Journal of International Society of Preventive & Community Dentistry 7.1 (2017): 28.
[23] Clark Jr, Leland C., and Champ Lyons. "Electrode systems for continuous monitoring in cardiovascular surgery." Annals of the New York Academy of sciences 102.1 (1962): 29-45.
[24] Steiner, Mark-Steven, Axel Duerkop, and Otto S. Wolfbeis. "Optical methods for sensing glucose." Chemical Society Reviews 40.9 (2011): 4805-4839.
[25] Tarr, Randall Vincent. The non-invasive measure of D-glucose in the ocular aqueous humor using stimulated Raman spectroscopy. Diss. Georgia Institute of Technology, 1991.
[26] Tura, Andrea, Alberto Maran, and Giovanni Pacini. "Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria." Diabetes research and clinical practice 77.1 (2007): 16-40.
[27] Prasad, Paras N. Introduction to biophotonics. John Wiley & Sons, 2003.
[28] Langhus, David L. "Analytical Electrochemistry, (Wang, Joseph)." (2001): 457.
[29] Holade, Yaovi, et al. "Nanostructured inorganic materials at work in electrochemical sensing and biofuel cells." Catalysts 7.1 (2017): 31.
[30] Yoo, Eun-Hyung, and Soo-Youn Lee. "Glucose biosensors: an overview of use in clinical practice." Sensors 10.5 (2010): 4558-4576.
[31] Martinkova, Pavla, and Miroslav Pohanka. "Biosensors for blood glucose and diabetes diagnosis: evolution, construction, and current status." Analytical Letters 48.16 (2015): 2509-2532.
[32] Scheller, Frieder W., et al. "Second generation biosensors." Biosensors and Bioelectronics 6.3 (1991): 245-253.
[33] Cass, Anthony EG, et al. "Ferrocene-mediated enzyme electrode for amperometric determination of glucose." Analytical chemistry 56.4 (1984): 667-671.
[34] Chaubey, Asha, and BlD Malhotra. "Mediated biosensors." Biosensors and bioelectronics 17.6-7 (2002): 441-456.
[35] Reuillard, Bertrand, et al. "High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix." Physical Chemistry Chemical Physics 15.14 (2013): 4892-4896.
[36] Milton, Ross D., et al. "Rational design of quinones for high power density biofuel cells." Chemical science 6.8 (2015): 4867-4875.
[37] Kakehi, Noriko, et al. "A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell." Biosensors and Bioelectronics 22.9-10 (2007): 2250-2255.
[38] Lojou, Elisabeth. "Hydrogenases as catalysts for fuel cells: strategies for efficient immobilization at electrode interfaces." Electrochimica Acta 56.28 (2011): 10385-10397.
[39] Liu, Yuxiang, et al. "Effect of carbon nanotubes on direct electron transfer and electrocatalytic activity of immobilized glucose oxidase." ACS omega 3.1 (2018): 667-676.
[40] Hwang, Dae-Woong, et al. "Recent advances in electrochemical non-enzymatic glucose sensors–a review." Analytica chimica acta 1033 (2018): 1-34.
[41] Xu, Ting, et al. "Electrospun CuO-nanoparticles-modified polycaprolactone@ polypyrrole fibers: An application to sensing glucose in saliva." Nanomaterials 8.3 (2018): 133.
[42] Ahmad, Rafiq, et al. "Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode." Scientific reports 7.1 (2017): 1-10.
[43] Kangkamano, Tawatchai, et al. "Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor." Sensors and Actuators B: Chemical 246 (2017): 854-863.
[44] Shen, Zongxu, et al. "Highly sensitive nonenzymatic glucose sensor based on Nickel nanoparticle–attapulgite-reduced graphene oxide-modified glassy carbon electrode." Talanta 159 (2016): 194-199.
[45] Huang, Zhicheng, et al. "Electrochemical biosensor based on dewdrop-like platinum nanoparticles-decorated silver nanoflowers nanocomposites for H2O2 and glucose detection." Journal of The Electrochemical Society 166.13 (2019): B1138.
[46] Zhu, Zhigang, et al. "A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene." Sensors 12.5 (2012): 5996-6022.
[47] Wang, Qiyu, et al. "Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor." RSC advances 2.15 (2012): 6245-6249.
[48] Thostenson, Erik T., Zhifeng Ren, and Tsu-Wei Chou. "Advances in the science and technology of carbon nanotubes and their composites: a review." Composites science and technology 61.13 (2001): 1899-1912.
[49] Odom, Teri Wang, et al. "Atomic structure and electronic properties of single-walled carbon nanotubes." Nature 391.6662 (1998): 62-64.
[50] Kang, Byeong-Cheol, Ban-Suk Park, and Tae-Jun Ha. "Highly sensitive wearable glucose sensor systems based on functionalized single-wall carbon nanotubes with glucose oxidase-nafion composites." Applied Surface Science 470 (2019): 13-18.
[51] Tian, Kun, Megan Prestgard, and Ashutosh Tiwari. "A review of recent advances in nonenzymatic glucose sensors." Materials Science and Engineering: C 41 (2014): 100-118.
[52] Zhang, Bao Li, et al. "A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing." Electrochimica Acta 358 (2020): 136917.
[53] Shaolin, Mu, Xue Huaiguo, and Qian Bidong. "Bioelectrochemical responses of the polyaniline glucose oxidase electrode." Journal of electroanalytical chemistry and interfacial electrochemistry 304.1-2 (1991): 7-16.
[54] Pandey, Pratibha, et al. "Polythiophene gold nanoparticles composite film for application to glucose sensor." Journal of applied polymer science 110.2 (2008): 988-994.
[55] Rahman, M. D., et al. "Electrochemical sensors based on organic conjugated polymers." Sensors 8.1 (2008): 118-141.
[56] German, Natalija, Arunas Ramanavicius, and Almira Ramanaviciene. "Amperometric glucose biosensor based on electrochemically deposited gold nanoparticles covered by polypyrrole." Electroanalysis 29.5 (2017): 1267-1277.
[57] Zhuang, Zhenjing, et al. "An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode." Analyst 133.1 (2008): 126-132.
[58] Lee, Kian Keat, et al. "CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor." Electrochemistry communications 20 (2012): 128-132.
[59] Li, Xin, et al. "Ni/Al layered double hydroxide nanosheet film grown directly on Ti substrate and its application for a nonenzymatic glucose sensor." Sensors and Actuators B: Chemical 147.1 (2010): 241-247.
[60] J. Reedijk, K. Poeppelmeier, Comprehensive inorganic chemistry II: from elements to applications, V1 Main-Group Elem., Incl. Noble Gases V2 Transition Elem., Lanthanides and Actinides V3 Bioinorganic Fundam. and Appl.: Metals in Nat. Living Syst. and Metals in Toxicology and Med. V4 Solid-State Mater., Incl. Ceramics and Minerals V5 Porous Mater. and Nanomaterials V6 Homogeneous Catal. Appl. V7 Surf. Inorganic Chem. and Heterog. Catal. V8 Coord. and Organometallic Chem. V9 Theory and Methods, Elsevier Ltd. (2013) 1-7196.
[61] De Benedetto, G. E., F. Palmisano, and P. G. Zambonin. "One-step fabrication of a bienzyme glucose sensor based on glucose oxidase and peroxidase immobilized onto a poly (pyrrole) modified glassy carbon electrode." Biosensors and Bioelectronics 11.10 (1996): 1001-1008.
[62] Ma, Min, et al. "Highly sensitive and reproducible non-enzymatic glucose sensor fabricated by drop-casting novel nanocomposite with 3D architecture and tailorable properties prepared in controllable way." Talanta 180 (2018): 133-143.
[63] Coyle, Victoria E., et al. "Co3O4 needles on Au honeycomb as a non-invasive electrochemical biosensor for glucose in saliva." Biosensors and Bioelectronics 141 (2019): 111479.
[64] Coyle, Victoria E., et al. "Au Nanospikes as a Non‐enzymatic Glucose Sensor: Exploring Morphological Changes with the Elaborated Chronoamperometric Method." Electroanalysis 29.1 (2017): 294-304.
[65] Dumore, Nilesh S., and Mausumi Mukhopadhyay. "Sensitivity enhanced SeNPs-FTO electrochemical sensor for hydrogen peroxide detection." Journal of Electroanalytical Chemistry 878 (2020): 114544.
[66] Sajadpour, Maryam, et al. "A non-enzymatic glucose sensor based on the hybrid thin films of Cu on acetanilide/ITO." Journal of The Electrochemical Society 166.13 (2019): B1116.
[67] Esmaeeli, Ali, et al. "Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor." Sensors and Actuators B: Chemical 266 (2018): 294-301.
[68] Tang, Li, et al. "Glucose sensor based on Pd nanosheets deposited on Cu/Cu2O nanocomposites by galvanic replacement." Colloids and Surfaces B: Biointerfaces 188 (2020): 110797.
[69] 江佩玲,導電性超奈米微晶鑽石薄膜之製備與用於多巴胺感測之研究,國立清華大學材料科學工程學系,臺灣新竹(2016)
[70] 林家穎,奈米碳材料複合奈米金顆粒修飾FTO電極於唾液葡萄糖感測之應用,國立清華大學材料科學工程學系,臺灣新竹(2020)
[71] Shinde, Sujata S., et al. "Novel chemical synthesis of polypyrrole thin film electrodes for supercapacitor application." European polymer journal 49.11 (2013): 3734-3739.
[72] Schmeiβer, D., et al. "Electronic and magnetic properties of polypyrrole films depending on their one-dimensional and two-dimensional microstructures." Synthetic metals 93.1 (1998): 43-58.
[73] Elkashef, M., K. Wang, and M. N. Abou-Zeid. "Acid-treated carbon nanotubes and their effects on mortar strength." Frontiers of Structural and Civil Engineering 10.2 (2016): 180-188.
[74] Zhang, Renyun, Magnus Hummelgård, and Håkan Olin. "Simple and efficient gold nanoparticles deposition on carbon nanotubes with controllable particle sizes." Materials Science and Engineering: B 158.1-3 (2009): 48-52.
[75] Barnes, Howard A., John Fletcher Hutton, and Kenneth Walters. An introduction to rheology. Vol. 3. Elsevier, 1989.
[76] Goodwin, James William, and Roy W. Hughes. Rheology for chemists: an introduction. Royal Society of Chemistry, 2008.
[77] Nonomura, Kazuteru, et al. "Blocking the charge recombination with diiodide radicals by TiO2 compact layer in dye-sensitized solar cells." Journal of The Electrochemical Society 166.9 (2019): B3203.
[78] Esmaeili, Chakavak, et al. "Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells." Carbohydrate polymers 114 (2014): 253-259.
[79] Šetka, Milena, et al. "Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles." Scientific reports 9.1 (2019): 1-10.
[80] Morozan, Adina, et al. "Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction." Chemical Communications 48.38 (2012): 4627-4629.
[81] Zanello, Piero, Carlo Nervi, and Fabrizia Fabrizi De Biani. Inorganic electrochemistry: theory, practice and application. Royal Society of Chemistry, 2019.
[82] Rao, Apparao M., et al. "Diameter-selective Raman scattering from vibrational modes in carbon nanotubes." Science 275.5297 (1997): 187-191.
[83] Dresselhaus, M. S., A. Jorio, and R. Saito. "Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy." Annu. Rev. Condens. Matter Phys. 1.1 (2010): 89-108.
[84] Wang, Jun, et al. "The influence of surfactants on the electron-transfer reaction at self-assembled thiol monolayers modifying a gold electrode." Journal of Electroanalytical Chemistry 484.1 (2000): 88-92.
[85] A. J. Bard, L. R. Faulkner, Fundamentals and applications, Electrochemical Methods 2(482) (2001) 580-632.
[86] Perenlei, Ganchimeg, et al. "Voltammetric detection of potassium ferricyanide mediated by multi-walled carbon nanotube/titanium dioxide composite modified glassy carbon electrode." Int. J. Electrochem. Sci 6.2 (2011): 520-531.
[87] Pujadó, Mercè Pacios. Carbon nanotubes as platforms for biosensors with electrochemical and electronic transduction. Springer Science & Business Media, 2012.
[88] Zhang, Wenjun, Yunqing Du, and Ming L. Wang. "On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase." Sensing and Bio-Sensing Research 4 (2015): 96-102.
[89] Dowd, John E., and Douglas S. Riggs. "A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations." Journal of Biological Chemistry 240.2 (1965): 863-869.
[90] Paik, Eun-Sook, Yang-Rae Kim, and Hun-Gi Hong. "Amperometric glucose biosensor utilizing zinc oxide-chitosan-glucose oxidase hybrid composite films on electrodeposited Pt-Fe (III)." Analytical Sciences 34.11 (2018): 1271-1276..
[91] Benchabane, Adel, and Karim Bekkour. "Rheological properties of carboxymethyl cellulose (CMC) solutions." Colloid and Polymer Science 286.10 (2008): 1173-1180.
[92] Lee, Junqiao, et al. "Towards improving the robustness of electrochemical gas sensors: impact of PMMA addition on the sensing of oxygen in an ionic liquid." Analytical Methods 7.17 (2015): 7327-7335.
[93] Olejnik, Adrian, et al. "Novel approach to interference analysis of glucose sensing materials coated with Nafion." Bioelectrochemistry 135 (2020): 107575.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *