|
1. Digambar Y. Nadargi, Ahmad Uma, Jyoti D. Nadargi, Smita A. Lokare, Sheikh Akbar, Imtiaz S. Mulla, Sharad S. Suryavanshi, Nagesh L. Bhandari, and Manohar G. Chaskar (2023) Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors. J Mater Sci (2023) 58:559–582 2. Zheng M, Bao WANG (2009) One-step synthesis of antimony-doped tin dioxide nanocrystallites and their property. Trans Nonferrous Met Soc China 19(2):404–409 3. Brinzari V, Korotcenkov G, Golovanov V, Schwank J, Lantto V, Saukko S (2002) Morphological rank of nanoscale tin dioxide films deposited by spray pyrolysis from SnCl4_ 5H2O water solution. Thin Solid Films 408(1–2):51–58 4. Cabot A, Arbiol J, Morante JR, Weimar U, Barsan N, Go¨pel W (2000) Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sens Actuators B Chem 70(1–3):87–100 5. Mosquera A, Rodrı´guez-Pa´ez JE, Varela JA, Bueno PR (2007) Synthesis of SnO2 by chemical routes and its use in varistors production. J Eur Ceram Soc 27(13–15):3893–3896 6. Hunter GW, Akbar S, Bhansali S, Daniele M, Erb PD, Johnson K, Vander Wal RL (2020) Editors’ choice—critical review—a critical review of solid state gas sensors. J Electrochem Soc 167(3):037570 7. Walker J, Karnati P, Akbar SA, Morris PA (2021) Selectivity mechanisms in resistive-type metal oxide heterostructural gas sensors. Sens Actuators B Chem 131242 8. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B Chem 121(1):18–35 9. Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem 204:250–272 10. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: What determines our choice? Mater Sci Eng B 139(1):1–23 11. Walker JM, Akbar SA, Morris PA (2019) Synergistic effects in gas sensing semiconducting oxide nanoheterostructures: a review. Sens Actuators B Chem 286:624–640 12. Karnati P, Akbar S, Morris PA (2019) Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review. Sens Actuators B Chem 295:127–143 13. Moseley PT, Tofield BC (eds) (1987) Solid-state gas sensors. Hilger, Bristol, pp 12–31 14. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Taurino AM (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5(5):1335–1348 15. Schierbaum KD (1995) Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors: recent trends. Sens Actuators B Chem 24(1–3):239–247 16. Sahm T, Gurlo A, Barsan N, Weimar U, Ma¨dler L (2005) Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements. Thin Solid Films 490(1):43–47 17. Hahn SH, Barsan N, Weimar U, Ejakov SG, Visser JH, Soltis RE (2003) CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films 436(1):17–24 18. Rothschild A, Edelman F, Komem Y, Cosandey F (2000) Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sens Actuators B Chem 67(3):282–289 19. Kohl D (1989) Surface processes in the detection of reducing gases with SnO2-based devices. Sens Actuators 18(1):71–113 20. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7:63–75 21. Arafat MM, Dinan B, Akbar SA, Haseeb ASMA (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6):7207–7258 22. Kuangye Wang, Tzu-Wen Kuo, Tzu-Yi Yang, Ruei-Hong Cyu, Chen-Wei Hsu, Yu-Chieh Hsu, Yi-Jen Yu, Yu-Ze Chen, and Yu-Lun Chueh (2024) Controllable Oxygen-Incorporated 2D-SnSe2 Layered Thin Film by Plasma-Assisted Selenization Process with Enhanced NO2 Gas Sensitivity and Improved Humidity Stability. Adv. Mater. Technol. 2024, 9, 2301507 23. Óscar Leonardo Camargo Moreira, Wei-Ying Cheng, Huei-Ru Fuh, Wei-Chen Chien, Wenjie Yan, Haifeng Fei, Hongjun Xu, Duan Zhang, Yanhui Chen, Yanfeng Zhao, Yanhui Lv, Gang Wu, Chengzhai Lv, Sunil K. Arora, Cormac Ó Coileáin, Chenglin Heng, Ching-Ray Chang, and Han-Chun Wu (2019) High Selectivity Gas Sensing and Charge Transfer of SnSe2. ACS Sens. 2019, 4, 2546−2552 24. Vipin Kumar, Yogendra K Gautam, Ravikant Adalati, Ashwani Kumar, Beer Pal Singh, Satyendra Kumar Mourya, Harish Verma & Mukesh Jangir (2023) Annealing-assisted SnO2 Thin Film for Selective Hydrogen Gas Sensor. Indian Journal of Pure & Applied Physics Vol. 61, 2023, 823-829 25. Subramanian, B.; Mahalingam, T.; Sanjeeviraja, C.; Jayachandran, M.; Chockalingam, M. J. Electrodeposition of Sn, Se, SnSe and the material properties of SnSe films. Thin Solid Films 1999, 357, 119−124. 26. Mukhokosi, E. P.; Krupanidhi, S. B.; Nanda, K. K. Band Gap Engineering of Hexagonal SnSe2 Nanostructured Thin Films for Infra-Red Photodetection. Sci. Rep. 2017, 7, No. 15215. 27. Su, Y.; Ebrish, M. A.; Olson, E. J.; Koester, S. J. SnSe2 fieldeffect transistors with high drive current. Appl. Phys. Lett. 2013, 103, No. 263104. 28. Jie Hu, Ying Wang, Wenda Wang, Yan Xue, Pengwei Li, Kun Lian, Lin Chen, Wendong Zhang , and Serge Zhuiykov (2017) Enhancement of the acetone sensing capabilities to ppb detection level by Fe-doped three-dimensional SnO2 hierarchical microstructures fabricated via a hydrothermal method. J Mater Sci (2017) 52:11554–11568 29. Rongjun Zhao, Zhezhe Wang, Tong Zou, Zidong Wang, Xinixn Xing, Yue Yang, Yude Wang (2019) ‘Green’ prepare SnO2 nanofibers by shaddock peels: application for detection of volatile organic compound gases. Journal of Materials Science: Materials in Electronics (2019) 30:3032–3044 30. Hu¨bert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors—a review. Sens Actuators B Chem 157(2):329–352 31. Garcia-Romeo D, Fuentes H, Medrano N, Calvo B, Martinez PA, Azcona C (2012) A NDIR-based CO2 monitor system for wireless sensor networks. In 2012 IEEE 3rd Latin American symposium on circuits and systems (LASCAS). IEEE, pp 1–4 32. Bakhram Gaynullin, Christine Hummelgård, Claes Mattson, Göran Thungström, Henrik Rödjegård (2023) Implementation of NDIR technology for selective sensing of gases with common absorption spectra. I2MTC 33. Chou J (2000) Hazardous gas monitors: a practical guide to selection, operation and applications. McGraw-Hill 34. R. Sathiyamoorthi, R. Chandrasekaran, T. Mathanmohan, B. Muralidharan, T. Vasudevan (2004) Study of electrochemical based gas sensors for fluorine and chlorine. Sensors and Actuators B 99 (2004) 336–339 35. Cho B et al 2015 Charge-transfer-based gas sensing using atomic-layer MoS2 Sci. Rep. 5 8052 36. Agrawal A V, Kumar R, Venkatesan S, Zakhidov A, Yang G, Bao J, Kumar M and Kumar M 2018 Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature ACS Sensors 3 998–1004 37. David J Buckley, Nicola C G Black, Eli G Castanon, Christos Melios, Melanie Hardman and Olga Kazakova (2020) Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Mater. 7 (2020) 032002 38. Shin-Yi Tang, Chun-Chuan Yang, Teng-Yu Su, Tzu-Yi Yang, Shu-Chi Wu, Yu-Chieh Hsu, Yu-Ze Chen, Tzu-Neng Lin, Ji-Lin Shen, Heh-Nan Lin, Po-Wen Chiu, Hao-Chung Kuo, and Yu-Lun Chueh (2020) Design of Core−Shell Quantum Dots−3D WS2 Nanowall Hybrid Nanostructures with High-Performance Bifunctional Sensing Applications. ACS Nano 2020, 14, 12668−12678
|