帳號:guest(3.23.103.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李仁傑
作者(外文):Lee , Ren-Jie
論文名稱(中文):四吋晶圓大面積硒化後對整體氣體感測器的初始品質影響
論文名稱(外文):Influence on Initial Quality of Sensors on 4-Inch Wafer after Selenization
指導教授(中文):闕郁倫
指導教授(外文):Chueh, Yu-Lun
口試委員(中文):沈昌宏
蔡淑如
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031518
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:37
中文關鍵詞:電漿輔助硒化四吋晶圓提高產量二維材料氣體感測器
外文關鍵詞:PACVRselenazation4-inch waferproductivity2D material gas sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
氣體感測器是用於檢測和量化周圍環境中各種氣體存在的重要設備。它們在許多產業中扮演及其關鍵的角色,包含了環境汙染氣體的監測、工業安全、交通工具廢氣排出控制、室內空氣品質評估和醫療保健。氣體感測器提供氣體濃度的即時數據,從而能夠及時採取行動以減輕潛在危險並確保安全並符合氣體監控標準。氣體感測器依據不同的感測方式及技術又分類成不同種類,包括化學電阻、紅外線、光學等等。
  在化學電阻感測器中,有一類被稱作是金屬氧化物半導體感測器,其為透過金屬氧化物與測量的目標氣體結合時所產生的電阻變化率來檢測周遭環境的特定目標氣體濃度大小。因金屬氧化半導體感測器雖然對特定氣體的反應時間較為迅速以及較高靈敏度,不過其仍舊極度容易受到周圍環境的溼度、溫度等等影響,且其需要定期校準才能夠維持此標準。本次研究即是以二氧化錫為前驅物感測材料,將其以硒化機與硒粒進行反應後,檢測層主要以硒化錫為材料,檢測其在四吋晶圓上初期的電阻值、四個象限的電阻分布、及其在不同溫度硒化的情況下初始電阻值的差異,以展示本論文整合半導體製程技術與在製程可控之硒化溫度區間內,所大量且低成本的製備氣體感測器元件陣列,在室溫下於晶圓上的初始電阻值的均一性極佳,提供新穎二維材料感測器商業化的解決方案。
Gas sensors are important devices used to detect and quantify the presence of various gases in the surrounding environment. They play a vital role in many industries and applications, including environmental monitoring, industrial safety, vehicle exhaust emission control, indoor air quality assessment and healthcare. Gas sensors provide instant data on gas concentrations, allowing timely action to be taken to mitigate potential hazards and ensure safety and compliance with gas monitoring standards. Among gas sensors, a specific type is called a metal oxide semiconductor sensor, which detects the specific target gas concentration in the surrounding environment through the resistance change rate generated when the metal oxide combines with the measured target gas concentration. Although metal oxide semiconductor sensors have fast response time and high sensitivity, they are still easily affected by the humidity, temperature, etc. of the surrounding environment, and they require regular calibration to maintain this standard. This research is based on tin dioxide. After reacting it with selenium particles using a selenization machine, the detection layer is mainly composed of tin diselenide, and check its initial resistance value, the resistance distribution of the four quadrants, and the difference in the initial resistance value under different temperature of selenization process. It is expected to reduce the initial resistance value and the normality of the gas sensor to extend its using durability, and break the struggle of commercializing production.
Abstract (Chinese)………………………………………………Ⅰ
Abstract (English)…………………………………………...…..Ⅱ
Contents…………………………………………………………Ⅲ
Figure Caption……………………………………………….….Ⅳ
Chapter 1 Introduction…………………………………………1
1.1 Gas sensors……………………………………………………………………...1
1.1.1 Physical characteristics of gas sensors……………………………...…...3
1.2 Optical gas sensors…………………………………………………...…......9
1.3 Electrochemical gas sensors…………………………………………………...11
1.4 MOS (metal oxide semiconductor) sensors…………………………………...13
1.5 2D material gas sensors……………………………………………………...15
1.5.1 Traditional manufacturing method of 2D gas sensors.………………...…...17
Chapter 2 Motivation…………………………………………...20
Chapter 3 Experimental Design………………………………...22
3.1 Structure of devices………………………………………………………...22
3.2 Fabrication of SnSe2 …………………………………………………………23
Chapter 4 Results and Discussion………………………………26
4.1 Whole 4” wafer resistance mapping………………………….…………….26
4.2 Comparison of different temperature selenization…………………….……29
Chapter 5 Conclusion and Future Work……………………..32
Chapter 6 Reference…………………………………………….34
Figure caption
Figure 1-1 Types of gases that require continuous monitoring for safety and health reasons1…………………………………………………………………3
Figure 1-2 Schematic diagram of response curve a MOS sensor1……………4
Figure 1-3 Gas response of the SnO2 nanofibers to 100 ppm VOCs (a) at several process temperatures (b) under 260°C29….………...….……………………6
Figure 1-4 Stability of SnO2 gas sensors in 50 days28…………………..………7
Figure 1-5 Various types of gas sensors1…………………………………8
Figure 1-6 A schematic representation of the NDIR sensor1...…………………9
Figure 1-7 Schematic representation of NDIR gas sensing of a specific gas concentration32……………………………………………………………10
Figure 1-8 Schematic of a typical electrochemical gas sensor1……………11
Figure 1-9 Schematic diagram of electrochemical cell34.………………….12
Figure 1-10 The mechanism of the adsorption of the oxygen molecules on the MOS surface1.…………………………………………………………..14
Figure 1-11 Top: schematic of the MoS2 gas-sensing device; bottom: charge transfer vs adsorption energy profile for NO2, NH3, H2 and CO2 gases on MoS2.34, 35, 36.……………………………………………………………16
Figure 1-12 Charge density of the pristine monolayer SnSe2 with NO2 (a, c) and NH3 (b, d) molecules, with c-axis and b-axis views23….………………….17
Figure 1-13 Schematic of CVD growth setup23.…………………………….18
Figure 1-14 Schematic of the synthesis process of WS2 nanowalls by the horizontal furnace38…………………………………………………………..…19
Figure 2-1 Schematic of plasma-assisted selenization process and the SnSe2 layered film for NO2 gas detection22…………………………….………………21
Figure 3-1 Flow chart of structure of a sensor on the wafer. (a) clean the wafer (b) e-beam deposition of SnO2 as precursor (c) e-beam deposition of Au interdigitated electrodes (d) PACVR (selenization machine) transformation of SnSe2…………………………………………………………………22
Figure 3-2 Schematic illustration of plasma assisted vertical furnace for selenization…………………………………………………………24
Figure 3-3 Temperature curves and the timing of applying plasma……25
Figure 4-1 Gas measuring response for six gases with 40nm SnSe2 sensing film under 250°C selenization process………………………………………...…27
Figure 4-2 Whole wafer mapping for (a) 225°C (b) 250°C (c) 275°C………28

Table caption
Table 4-1 Normality, consistency, and mode value res. of three wafer under different process temperature…………………………………..……29
1. Digambar Y. Nadargi, Ahmad Uma, Jyoti D. Nadargi, Smita A. Lokare, Sheikh Akbar, Imtiaz S. Mulla, Sharad S. Suryavanshi, Nagesh L. Bhandari, and Manohar G. Chaskar (2023) Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors. J Mater Sci (2023) 58:559–582
2. Zheng M, Bao WANG (2009) One-step synthesis of antimony-doped tin dioxide nanocrystallites and their property. Trans Nonferrous Met Soc China 19(2):404–409
3. Brinzari V, Korotcenkov G, Golovanov V, Schwank J, Lantto V, Saukko S (2002) Morphological rank of nanoscale tin dioxide films deposited by spray pyrolysis from SnCl4_ 5H2O water solution. Thin Solid Films 408(1–2):51–58
4. Cabot A, Arbiol J, Morante JR, Weimar U, Barsan N, Go¨pel W (2000) Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sens Actuators B Chem 70(1–3):87–100
5. Mosquera A, Rodrı´guez-Pa´ez JE, Varela JA, Bueno PR (2007) Synthesis of SnO2 by chemical routes and its use in varistors production. J Eur Ceram Soc 27(13–15):3893–3896
6. Hunter GW, Akbar S, Bhansali S, Daniele M, Erb PD, Johnson K, Vander Wal RL (2020) Editors’ choice—critical review—a critical review of solid state gas sensors. J Electrochem Soc 167(3):037570
7. Walker J, Karnati P, Akbar SA, Morris PA (2021) Selectivity mechanisms in resistive-type metal oxide heterostructural gas sensors. Sens Actuators B Chem 131242
8. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B Chem 121(1):18–35
9. Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem 204:250–272
10. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: What determines our choice? Mater Sci Eng B 139(1):1–23
11. Walker JM, Akbar SA, Morris PA (2019) Synergistic effects in gas sensing semiconducting oxide nanoheterostructures: a review. Sens Actuators B Chem 286:624–640
12. Karnati P, Akbar S, Morris PA (2019) Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review. Sens Actuators B Chem 295:127–143
13. Moseley PT, Tofield BC (eds) (1987) Solid-state gas sensors. Hilger, Bristol, pp 12–31
14. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Taurino AM (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5(5):1335–1348
15. Schierbaum KD (1995) Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors: recent trends. Sens Actuators B Chem 24(1–3):239–247
16. Sahm T, Gurlo A, Barsan N, Weimar U, Ma¨dler L (2005) Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements. Thin Solid Films 490(1):43–47
17. Hahn SH, Barsan N, Weimar U, Ejakov SG, Visser JH, Soltis RE (2003) CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films 436(1):17–24
18. Rothschild A, Edelman F, Komem Y, Cosandey F (2000) Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sens Actuators B Chem 67(3):282–289
19. Kohl D (1989) Surface processes in the detection of reducing gases with SnO2-based devices. Sens Actuators 18(1):71–113
20. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7:63–75
21. Arafat MM, Dinan B, Akbar SA, Haseeb ASMA (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6):7207–7258
22. Kuangye Wang, Tzu-Wen Kuo, Tzu-Yi Yang, Ruei-Hong Cyu, Chen-Wei Hsu, Yu-Chieh Hsu, Yi-Jen Yu, Yu-Ze Chen, and Yu-Lun Chueh (2024) Controllable Oxygen-Incorporated 2D-SnSe2 Layered Thin Film by Plasma-Assisted Selenization Process with Enhanced NO2 Gas Sensitivity and Improved Humidity Stability. Adv. Mater. Technol. 2024, 9, 2301507
23. Óscar Leonardo Camargo Moreira, Wei-Ying Cheng, Huei-Ru Fuh, Wei-Chen Chien, Wenjie Yan, Haifeng Fei, Hongjun Xu, Duan Zhang, Yanhui Chen, Yanfeng Zhao, Yanhui Lv, Gang Wu, Chengzhai Lv, Sunil K. Arora, Cormac Ó Coileáin, Chenglin Heng, Ching-Ray Chang, and Han-Chun Wu (2019) High Selectivity Gas Sensing and Charge Transfer of SnSe2. ACS Sens. 2019, 4, 2546−2552
24. Vipin Kumar, Yogendra K Gautam, Ravikant Adalati, Ashwani Kumar, Beer Pal Singh, Satyendra Kumar Mourya, Harish Verma & Mukesh Jangir (2023) Annealing-assisted SnO2 Thin Film for Selective Hydrogen Gas Sensor. Indian Journal of Pure & Applied Physics Vol. 61, 2023, 823-829
25. Subramanian, B.; Mahalingam, T.; Sanjeeviraja, C.; Jayachandran, M.; Chockalingam, M. J. Electrodeposition of Sn, Se, SnSe and the material properties of SnSe films. Thin Solid Films 1999, 357, 119−124.
26. Mukhokosi, E. P.; Krupanidhi, S. B.; Nanda, K. K. Band Gap Engineering of Hexagonal SnSe2 Nanostructured Thin Films for Infra-Red Photodetection. Sci. Rep. 2017, 7, No. 15215.
27. Su, Y.; Ebrish, M. A.; Olson, E. J.; Koester, S. J. SnSe2 fieldeffect transistors with high drive current. Appl. Phys. Lett. 2013, 103, No. 263104.
28. Jie Hu, Ying Wang, Wenda Wang, Yan Xue, Pengwei Li, Kun Lian, Lin Chen, Wendong Zhang , and Serge Zhuiykov (2017) Enhancement of the acetone sensing capabilities to ppb detection level by Fe-doped three-dimensional SnO2 hierarchical microstructures fabricated via a hydrothermal method. J Mater Sci (2017) 52:11554–11568
29. Rongjun Zhao, Zhezhe Wang, Tong Zou, Zidong Wang, Xinixn Xing, Yue Yang, Yude Wang (2019) ‘Green’ prepare SnO2 nanofibers by shaddock peels: application for detection of volatile organic compound gases. Journal of Materials Science: Materials in Electronics (2019) 30:3032–3044
30. Hu¨bert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors—a review. Sens Actuators B Chem 157(2):329–352
31. Garcia-Romeo D, Fuentes H, Medrano N, Calvo B, Martinez PA, Azcona C (2012) A NDIR-based CO2 monitor system for wireless sensor networks. In 2012 IEEE 3rd Latin American symposium on circuits and systems (LASCAS). IEEE, pp 1–4
32. Bakhram Gaynullin, Christine Hummelgård, Claes Mattson, Göran Thungström, Henrik Rödjegård (2023) Implementation of NDIR technology for selective sensing of gases with common absorption spectra. I2MTC
33. Chou J (2000) Hazardous gas monitors: a practical guide to selection, operation and applications. McGraw-Hill
34. R. Sathiyamoorthi, R. Chandrasekaran, T. Mathanmohan, B. Muralidharan, T. Vasudevan (2004) Study of electrochemical based gas sensors for fluorine and chlorine. Sensors and Actuators B 99 (2004) 336–339
35. Cho B et al 2015 Charge-transfer-based gas sensing using atomic-layer MoS2 Sci. Rep. 5 8052
36. Agrawal A V, Kumar R, Venkatesan S, Zakhidov A, Yang G, Bao J, Kumar M and Kumar M 2018 Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature ACS Sensors 3 998–1004
37. David J Buckley, Nicola C G Black, Eli G Castanon, Christos Melios, Melanie Hardman and Olga Kazakova (2020) Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Mater. 7 (2020) 032002
38. Shin-Yi Tang, Chun-Chuan Yang, Teng-Yu Su, Tzu-Yi Yang, Shu-Chi Wu, Yu-Chieh Hsu, Yu-Ze Chen, Tzu-Neng Lin, Ji-Lin Shen, Heh-Nan Lin, Po-Wen Chiu, Hao-Chung Kuo, and Yu-Lun Chueh (2020) Design of Core−Shell Quantum Dots−3D WS2 Nanowall Hybrid Nanostructures with High-Performance Bifunctional Sensing Applications. ACS Nano 2020, 14, 12668−12678
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *