帳號:guest(18.118.95.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃彥文
作者(外文):Huang, Yen-Wen
論文名稱(中文):以奈米碳管作為支撐層於正滲透複合膜之應用
論文名稱(外文):Free Standing Carbon Nanotube Thin-film Composite Membrane for Forward Osmosis Applications
指導教授(中文):李紫原
戴念華
指導教授(外文):Lee, Chi-Young
Tai, Nyan-Hwa
口試委員(中文):洪仁陽
林冠佑
口試委員(外文):Horng, Ren-Yang
Lin, Guan-You
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031517
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:106
中文關鍵詞:正滲透奈米碳管複合薄膜碳複合膜水處理
外文關鍵詞:forward osmosiscarbon nanotubethin-film composite membranecarbon membranewater treatment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:213
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的乃在於開發具有高通量及低逆溶質擴散量之碳複合薄膜,並應用於正滲透分離系統 (Forward osmosis, FO) 之中,期望能為全球水資源短缺問題做出貢獻。目前正滲透複合膜多以不織布或是高分子作為支撐膜材,本研究移除傳統支撐層材料,而以奈米碳管 (Carbon nanotubes, CNTs) 抽濾成薄膜作為支撐層,製備更薄且擁有更高水通表現之碳管薄膜。研究中透過聚多巴胺 (Polydopamine, PDA) 與聚乙烯醇 (Polyvinyl alcohol, PVA) 之協助,加強了CNT支撐層之親水性質與機械強度,接著使用傳統界面聚合法合成聚醯胺阻鹽層 (Polyamide, PA) ,完成薄膜的製備。研究內容包含表面形貌探討、表面官能基分析、親水性質、元素鍵結、粗糙度分析以及FO性能等測試。
研究結果顯示,PDA與PVA的聚合能使碳管更緊密黏著,加強薄膜在FO系統中之水流承受度,同時提升親水性質;不同抽濾含量可對薄膜厚度進行控制,厚度的降低能有效提升水通量;PVA濃度影響薄膜內部孔洞率,儘管濃度提升有助於機械性質的增加,卻會降低水通表現。本研究開發之碳管複合薄膜中,PVA0.25pCNT3-PA有最佳FO效能,在1M氯化鈉水溶液作為提取液與去離子水作為進流液的FO系統中,水通量為30.16 Lm-2h-1,逆溶質擴散量僅為9.34 gm-2h-1。此水通表現相較於較厚且未改質之碳複合薄膜高出近350%,再加上相對簡單的製程,說明了此研究在正滲透薄膜領域極具發展潛力。
This study aims to fabricate a thin-film composite (TFC) membrane with high water flux and low reverse solute flux in the application of forward osmosis (FO), hoping to make contribution to the global water crisis. Instead of using the traditional non-woven fabric or polymer material, carbon nanotube (CNT) is adopted as the substitutional support layer by the vacuum filtration method. Polydopamine (PDA) and polyvinyl alcohol (PVA) are used not only to increase the mechanical strength but also the hydrophilicity of the CNT membrane. Finally, a polyamide (PA) layer is fabricated by the interfacial polymerization method as the active layer. The characteristics of the membrane include surface morphology, surface functional groups, hydrophilicity, element bonding, surface roughness, and FO performance tests. Results show that PDA and PVA utilization sticks the CNT together, strengthening the tolerance of the membrane under FO testing system, meanwhile increasing the hydrophilicity. Membrane thickness can be controlled by using different CNT suspension filtration amount, and thinner membranes lead to higher water fluxes. The concentration of PVA influences the pores within the membrane and also plays an important role in the FO performance. The best FO properties are performed by PVA0.25pCNT3-PA, with a water flux of 30.16 Lm-2h-1 and reverse solute flux as low as 9.34 gm-2h-1. This water flux is almost 350% higher than that of the thicker CNT composite membrane. Therefore, the good FO performance and the relatively simple process of this study indicate great potential of this work in the application of FO field.
摘要----------------------------------------I
Abstract-----------------------------------II
致謝----------------------------------------III
目錄-----------------------------------------V
表目錄---------------------------------------X
圖目錄---------------------------------------XII
第一章 緒論----------------------------------1
1.1 前言--------------------------------------1
1.2 研究動機----------------------------------2
第二章 文獻回顧-------------------------------3
2.1 薄膜技術簡介-------------------------------3
2.1.1 薄膜技術發展-----------------------------3
2.1.2 薄膜種類---------------------------------4
(1) 對稱型薄膜、非對稱型薄膜--------------------5
(2) 微過濾、超過濾、奈米過濾、逆滲透薄膜----------5
(3) 有機薄膜、無機薄膜、有機/無機混合薄膜----------6
2.1.3 薄膜分離程序-------------------------------7
2.2 複合薄膜簡介與其製備----------------------------12
2.2.1 多孔支撐層之製備----------------------------12
(1) 拉伸法 (Stretching)----------------------------12
(2) 軌跡蝕刻 (Track etching)----------------------------13
(3) 電氣紡織 (Electrospinning)----------------------------13
(3) 相轉換法 (Phase inversion)----------------------------14
2.2.2 緻密選擇層之製備----------------------------14
(1) 界面聚合法------------------------------------------15
(2) 逐層堆疊法------------------------------------------16
2.3 正向滲透技術簡介---------------------------------------20
2.3.1 正向滲透技術發展與歷史-------------------------------20
2.3.2 正向滲透分離原理與應用----------------------------21
2.3.3 正向滲透技術之關鍵與瓶頸----------------------------22
(1) 濃度極化效應------------------------------------------23
(2) 逆溶質擴散------------------------------------------24
(3) 薄膜積垢------------------------------------------25
2.4 奈米碳管簡介------------------------------------------30
2.4.1 奈米碳管之結構與性質---------------------------------30
2.4.2 奈米碳管之製備方式------------------------------31
(1) 電弧放電法------------------------------------------32
(2) 雷射蒸發法------------------------------------------32
(3) 化學氣相沉積法------------------------------------------32
2.4.3 奈米碳管在水處理薄膜領域之應用----------------------------33
2.5 本實驗室水處理主題研究回顧---------------------------------39
第三章 實驗方法與分析------------------------------------------42
3.1 實驗用化學藥品、設備與分析儀器----------------------------42
3.1.1 超音波震盪機------------------------------------------43
3.1.2 電磁加熱攪拌機------------------------------------------43
3.1.3 場發射掃描式電子顯微鏡-----------------------------------43
3.1.4 穿透式電子顯微鏡------------------------------------------44
3.1.5 拉曼光譜儀------------------------------------------44
3.1.6 傅立葉轉換紅外光譜儀-------------------------------------45
3.1.7 X射線光電子能譜儀------------------------------------------45
3.1.8 水接觸角量測儀------------------------------------------46
3.1.9 原子力顯微鏡------------------------------------------47
3.1.10 正滲透效能測試裝置-------------------------------------47
3.2 實驗方法與步驟------------------------------------------55
3.2.1 支撐層製備---------------------------------------------55
(1) TCNT/PVA支撐層------------------------------------------55
(2) pCNT/PVA支撐層------------------------------------------56
(3) PVApCNT支撐層------------------------------------------57
3.2.2 聚醯胺阻鹽層製備------------------------------------------57
第四章 結果與討論------------------------------------------62
4.1 以奈米碳管作為支撐層之可行性探討----------------------------62
4.2 TCNT/PVA、pCNT/PVA、PVApCNT支撐層之分析與比較--------------63
4.2.1 SEM形貌分析------------------------------------------63
4.2.1.1 表面形貌------------------------------------------63
4.2.1.2 截面形貌------------------------------------------64
4.2.2 TEM分析------------------------------------------65
4.2.3 拉曼光譜分析------------------------------------------65
4.2.4 FTIR光譜分析------------------------------------------66
4.2.5 水接觸角分析------------------------------------------66
4.2.6 XPS元素分析------------------------------------------67
4.2.7 AFM表面粗糙度分析---------------------------------------68
4.3 聚醯胺阻鹽層之分析------------------------------------------81
4.3.1 SEM形貌分析------------------------------------------81
4.3.2 FTIR光譜分析------------------------------------------81
4.3.3 AFM表面粗糙度分析------------------------------------------82
4.4 CNT碳複合膜正向滲透效能探討----------------------------85
4.4.1 溫度對於FO效能之影響---------------------------------------85
4.4.2 不同CNT支撐層對FO效能之影響與比較----------------------------85
4.4.3 提取液濃度與FO、PRO模式對於效能之影響--------------88
4.4.4 A、B、S數值------------------------------------------89
4.4.5 本研究製備之正滲透薄膜與商用及其他研究成果之效能比較---------89
4.4.6 有機溶液濃縮測試------------------------------------------90
第五章 結論--------------------------------------------------98
第六章 參考文獻------------------------------------------100

[1] W. A. P. Menachem Elimelech, The Future of Seawater. SCIENCE 333, 712-717 (August 5, 2011).
[2] 虞國興, 貯蓄防洪 兩全其美—水庫與水資源. 科學月刊 479, (2009).
[3] K. Lutchmiah, A. R. Verliefde, K. Roest, L. C. Rietveld, E. R. Cornelissen, Forward osmosis for application in wastewater treatment: a review. Water Res 58, 179-197 (2014).
[4] W. C. L. Lay et al., Factors affecting flux performance of forward osmosis systems. Journal of Membrane Science 394-395, 151-168 (2012).
[5] M. Mulder, J. Mulder, Basic principles of membrane technology. (Springer Science & Business Media, 1996).
[6] T. L. Sourkes, Moritz Traube, 1826-1894: his contribution to biochemistry. Journal of the history of medicine and allied sciences, 379-391 (1955).
[7] C. Reid, E. Breton, Water and ion flow across cellulosic membranes. Journal of Applied Polymer Science 1, 133-143 (1959).
[8] 楊承道、鄭廖平, 薄膜科技 解密. 科學月刊 565, (2016).
[9] C. J. Ulloa, Remediation of Cellulose Acetate Gas Separation Membranes Contaminated by Heavy Hydrocarbons. (2012).
[10] M. W. Hakami et al., Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. Membranes (Basel) 10, (2020).
[11] C. Y. T. A.G. Fane, R. Wang, Membrane Technology for Water: Microfiltration,
Ultrafiltration, Nanofiltration, and Reverse Osmosis. Treatise on Water Science, Elsevier Science, 301-335 (2011).
[12] 吳家樂、陳怡真、朱仁佑, 奈米過濾膜應用與濾膜截留量分析技術. 工業材料雜誌 401, (2020).
[13] 鄭東文、林智偉, 薄膜過濾家族. 科學發展 500, (2014).
[14] K. Li, Ceramic membranes for separation and reaction. (John Wiley & Sons, 2007).
[15] J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment. Journal of Membrane Science 479, 256-275 (2015).
[16] S. Yadav et al., Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination 482, (2020).
[17] 王大銘, 薄膜分離技術於廢水處理之應用概述. 經濟部工業局 工安環保報導, (2004).
[18] D. De Meis, Overview on porous inorganic membranes for gas separation. (2017).
[19] I.Pinnau, MEMBRANE SEPARATIONS | Membrane Preparation. Encyclopedia of Separation Science, 1755-1764 (2000).
[20] 李昱劭, The study of guided bone regeneration membrane fabricated by
electrospinning process. 國立交通大學, 機械工程學系, (2008).
[21] B. S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326, 77-95 (2013).
[22] X. Z. Wei Zhu, Chuntian Zhao, Wei Wu, Jianan Hou and Mao Xu, A novel polypropylene microporous film. Polymers for Advanced Technologies 7, 743-748 (1996).
[23] M. E. Toimil-Molares, Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein J Nanotechnol 3, 860-883 (2012).
[24] N. Bhardwaj, S. C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28, 325-347 (2010).
[25] 簡明紳, 具蕾絲結構與底表面阻鹽層的聚丙烯腈複合膜在正滲透之應用. 材料科學工程學系, 國立清華大學, 台灣新竹, (2018).
[26] J. W. S. R. E. Kesting, Synthetic Polymeric Membranes: A Structural Perspective, Second Edition. AIChE Journal 33, (1985).
[27] C. Klaysom, T. Y. Cath, T. Depuydt, I. F. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chem Soc Rev 42, 6959-6989 (2013).
[28] B. Khorshidi, T. Thundat, B. A. Fleck, M. Sadrzadeh, A novel approach toward fabrication of high performance thin film composite polyamide membranes. Scientific reports 6, 1-10 (2016).
[29] S.-J. Park et al., Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization. Journal of Membrane Science 526, 52-59 (2017).
[30] M. Rastgar, A. Shakeri, H. Salehi, Study of polyamide thin film characteristics impact on permeability/selectivity performance and fouling behavior of forward osmosis membrane. Environ Sci Pollut Res Int 26, 1181-1191 (2019).
[31] W. B. K. Guo-Yong Chai, Formation and characterization of polyamide membranes via interfacial polymerization. Journal of Membrane Science 92, 175-192 (1994).
[32] B. Khorshidi, I. Biswas, T. Ghosh, T. Thundat, M. Sadrzadeh, Robust fabrication of thin film polyamide-TiO 2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Scientific reports 8, 1-10 (2018).
[33] L. Shen, S. Xiong, Y. Wang, Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chemical Engineering Science 143, 194-205 (2016).
[34] S.-B. Kwon et al., Molecular layer-by-layer assembled forward osmosis membranes. Journal of membrane science 488, 111-120 (2015).
[35] P. M. Johnson, J. Yoon, J. Y. Kelly, J. A. Howarter, C. M. Stafford, Molecular layer‐by‐layer deposition of highly crosslinked polyamide films. Journal of Polymer Science Part B: Polymer Physics 50, 168-173 (2012).
[36] G.-R. Xu et al., Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes. Journal of membrane science 493, 428-443 (2015).
[37] 蔡孟庭, 奈米碳管-聚丙烯腈-分子級逐層堆疊聚醯胺選擇層複合膜於正向滲透之應用. 材料科學工程學系, 國立清華大學, 台灣新竹, (2018).
[38] 馬少陽, 聚丙烯腈/氧化石墨烯改良基材膜於正滲透複合膜之應用. 材料科學工程學系, 國立清華大學, 台灣新竹, (2020).
[39] 林佶峰, 聚多巴胺/氧化石墨烯改良分子及逐層堆疊法於正滲透複合薄膜之應用. 材料科學工程學系, 國立清華大學, 台灣新竹, (2018).
[40] S. Zhao, L. Zou, C. Y. Tang, D. Mulcahy, Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science 396, 1-21 (2012).
[41] 張浩銘、陳孝行, 正滲透薄膜程序的現況與挑戰. 中華民國環境工程學會電子報 108.4, (2019).
[42] A. Achilli, K. L. Hickenbottom, in Sustainable Energy from Salinity Gradients. (2016), pp. 55-75.
[43] R. W. B. a. H. K. L. K.L. LEE, MEMBRANES FOR POWER GENERATION BY PRESSURE-RETARDED. Journal of Membrane Science 8, 141-171 (1981).
[44] H. T. H. P. F. Scholander, Osmosis and Tensile Solvent. (1976).
[45] History of HTI, HTI Website. www.htiwater.com.
[46] S. S. M. Jason T Arena, Kevin Reimund, Pavel A Brodskiy, and Jeffrey McCutcheon, Characterization and performance relationships for a commercial thin film composite membrane in forward osmosis desalination and pressure retarded osmosis. Industrial & Engineering Chemistry Research 54, 11393-11403 (2015).
[47] T. Cath, A. Childress, M. Elimelech, Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science 281, 70-87 (2006).
[48] H. V. M. H. JAN W. POST, CEES J. N. BUISMAN, Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System. Environmental Science & Technology 42, 5785–5790 (2008).
[49] J. R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of membrane science 284, 237-247 (2006).
[50] N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, M. Elimelech, High performance thin-film composite forward osmosis membrane. Environmental science & technology 44, 3812-3818 (2010).
[51] J. S. Yong, W. A. Phillip, M. Elimelech, Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. Journal of Membrane Science 392, 9-17 (2012).
[52] N. T. Hancock, T. Y. Cath, Solute coupled diffusion in osmotically driven membrane processes. Environmental science & technology 43, 6769-6775 (2009).
[53] A. Nguyen, L. Zou, C. Priest, Evaluating the antifouling effects of silver nanoparticles regenerated by TiO2 on forward osmosis membrane. Journal of membrane science 454, 264-271 (2014).
[54] D. Wang, J. Li, B. Gao, Y. Chen, Z. Wang, Triple-layered thin film nanocomposite membrane toward enhanced forward osmosis performance. Journal of Membrane Science 620, (2021).
[55] S. Iijima, Helical microtubules of graphitic carbon. nature 354, 56-58 (1991).
[56] M. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33, 883-891 (1995).
[57] J. Prasek et al., Methods for carbon nanotubes synthesis—review. Journal of Materials Chemistry 21, (2011).
[58] E. T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology 61, 1899-1912 (2001).
[59] M. Fujii et al., Measuring the thermal conductivity of a single carbon nanotube. Physical review letters 95, 065502 (2005).
[60] C. T. Kingston, B. Simard, Fabrication of Carbon Nanotubes. Analytical Letters 36, 3119-3145 (2003).
[61] Y. Saito, S. Uemura, Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169-182 (2000).
[62] 陳鑫錨, 以流動觸媒法於直立管爐中製作單壁奈米碳管之最佳化分析及機
制探討. 材料科學工程學系, 國立清華大學, 台灣新竹, 103 (2009).
[63] M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Applied Physics Letters 77, 3468-3470 (2000).
[64] N. Wan et al., Synthesis of graphene–CNT hybrids via joule heating: Structural characterization and electrical transport. Carbon 53, 260-268 (2013).
[65] X. Song, L. Wang, L. Mao, Z. Wang, Nanocomposite Membrane with Different Carbon Nanotubes Location for Nanofiltration and Forward Osmosis Applications. ACS Sustainable Chemistry & Engineering 4, 2990-2997 (2016).
[66] N. Akther, S. Phuntsho, Y. Chen, N. Ghaffour, H. K. Shon, Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. Journal of Membrane Science 584, 20-45 (2019).
[67] M. Tian, Y.-N. Wang, R. Wang, Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination 370, 79-86 (2015).
[68] F.-Y. Zhao et al., High-flux positively charged nanocomposite nanofiltration membranes filled with poly (dopamine) modified multiwall carbon nanotubes. ACS applied materials & interfaces 8, 6693-6700 (2016).
[69] J. Li et al., Fabrication and characterization of carbon nanotubes-based porous composite forward osmosis membrane: Flux performance, separation mechanism, and potential application. Journal of Membrane Science 604, (2020).
[70] S. Sheshmani, A. Ashori, M. A. Fashapoyeh, Wood plastic composite using graphene nanoplatelets. Int J Biol Macromol 58, 1-6 (2013).
[71] B. Ribeiro, E. C. Botelho, M. L. Costa, C. F. Bandeira, Carbon nanotube buckypaper reinforced polymer composites: a review. Polímeros 27, 247-255 (2017).
[72] 姜如芸, 聚多巴胺/氧化石墨烯複合膜應用於正滲透之可行性研究. 材料科學工程學系, 國立清華大學, 台灣新竹, (2017).
[73] 李欣樺, 高耐化學性碳複合薄膜於正滲透系統之應用. 材料科學工程學系, 國立清華大學, 台灣新竹, (2019).
[74] 黃瑋軒, 還原氧化石墨烯碳複合薄膜於正滲透系統之應用. 材料科學工程學系, 國立清華大學, 台灣新竹, (2020).
[75] 汪建民, 材料分析. 材料科學學會, (1998).
[76] T. Young, An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 95(0), 65-87 (December 20, 1804).
[77] T. Y. Cath et al., Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes. Desalination 312, 31-38 (2013).
[78] H.-g. Choi, A. A. Shah, S.-E. Nam, Y.-I. Park, H. Park, Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis. Desalination 449, 41-49 (2019).
[79] A. Tiraferri, N. Y. Yip, A. P. Straub, S. Romero-Vargas Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. Journal of Membrane Science 444, 523-538 (2013).
[80] J. Martín, E. J. Díaz-Montaña, A. G. Asuero, Recovery of anthocyanins using membrane technologies: A review. Critical reviews in analytical chemistry 48, 143-175 (2018).
[81] J. Long, A. V. Nand, C. Bunt, A. Seyfoddin, Controlled release of dexamethasone from poly(vinyl alcohol) hydrogel. Pharm Dev Technol 24, 839-848 (2019).
[82] Q. Wei, F. Zhang, J. Li, B. Li, C. Zhao, Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry 1, (2010).
[83] A. K. Ghosh, E. M. V. Hoek, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. Journal of Membrane Science 336, 140-148 (2009).
[84] J. L. Wang et al., Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes. Phys Chem Chem Phys 16, 2936-2943 (2014).
[85] M. Sianipar, S. H. Kim, C. Min, L. D. Tijing, H. K. Shon, Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application. Journal of Industrial and Engineering Chemistry 34, 364-373 (2016).
[86] P.-C. Ma, N. A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing 41, 1345-1367 (2010).
[87] M. J. Park, R. R. Gonzales, A. Abdel-Wahab, S. Phuntsho, H. K. Shon, Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination 426, 50-59 (2018).
[88] A. S. Subramanian et al., Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids. Polymer 82, 285-294 (2016).
[89] H. M. Hegab et al., Effective in-situ chemical surface modification of forward osmosis membranes with polydopamine-induced graphene oxide for biofouling mitigation. Desalination 385, 126-137 (2016).
[90] M. Qiu, J. Wang, C. He, A stable and hydrophilic substrate for thin-film composite forward osmosis membrane revealed by in-situ cross-linked polymerization. Desalination 433, 1-9 (2018).
[91] Y.-N. K. Chuyang Y. Tanga, James O. Leckiea, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS. Desalination 242, 149-167 (2008).
[92] M. Xie, W. E. Price, L. D. Nghiem, M. Elimelech, Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis. Journal of Membrane Science 438, 57-64 (2013).
[93] S. Phuntsho et al., Influence of temperature and temperature difference in the performance of forward osmosis desalination process. Journal of Membrane Science 415-416, 734-744 (2012).
[94] Y. Chun, D. Mulcahy, L. Zou, I. S. Kim, A Short Review of Membrane Fouling in Forward Osmosis Processes. Membranes (Basel) 7, (2017).
[95] W. A. Phillip, J. S. Yong, M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments. Environmental science & technology 44, 5170-5176 (2010).
[96] X. Zhao, J. Li, C. Liu, A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance. Desalination 413, 176-183 (2017).
[97] M.-N. Li et al., Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties. Desalination 436, 107-113 (2018).
[98] R. C. Ong, T.-S. Chung, J. S. de Wit, B. J. Helmer, Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science 473, 63-71 (2015).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *