帳號:guest(3.15.144.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林承毅
作者(外文):Lin, Cheng-Yi
論文名稱(中文):探討氧化鋅奈米結構長寬比和氧缺陷對壓電產氫的影響
論文名稱(外文):Probing the effects of aspect ratios and oxygen vacancies of ZnO nanostructures on piezocatalytic hydrogen production
指導教授(中文):呂明諺
指導教授(外文):Lu, Ming-Yen
口試委員(中文):郭俊宏
呂明霈
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031511
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:67
中文關鍵詞:產氫反應氧化鋅長寬比氧缺陷有限元素模擬
外文關鍵詞:hydrogenproductionZnOaspectratiooxygenvacancyfiniteelementmethod
相關次數:
  • 推薦推薦:0
  • 點閱點閱:534
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技的進步,能源的使用已變成日常生活不可劃分的一部分,但目前碳循環能源的使用除有存量限制之外,還伴隨溫室效應等隱憂,為了更乾淨的能源,氫循環能源的發展是必要的,其中的問題包含如何以再生能源生產氫氣以及如何儲存氫氣。在產氫的發展中,催化產氫反應是主要的研究方向。本研究將以氧化鋅調控長寬比及氧缺陷量探討壓電產氫機制。
本研究藉由調控前驅物的成份以及氫化反應得到不同長寬比及氧缺陷的氧化鋅,氫化時間最長的氧化鋅在不同長寬比,0.21、0.74及15.84下皆有最高的壓電產氫量,分別為378.25、557.55、857.4 μmol h-1 g-1,約比無氫化反應多2.5倍,影響的機制為氫化時間增加會提高氧缺陷量,而氧缺陷除能降低活化能外,還是反應點。此外,壓電產氫量變化隨著氫化時間的增加,維持與長寬比成正比的趨勢,最低與最高長寬比的產量維持約2倍的差異,由有限元素法模擬可知越高長寬比的氧化鋅有更高的壓電場,因此能推論壓電場大小是影響壓電產氫機制的重要因素。
Energy issue becomes extremely important in our life. Owing to the development of technology. Since the carbon cycle energy induces the global warming, the demands for clear energy, such as hydrogen energy are increasing. However, the key challenges of hydrogen energy are the production and storage of hydrogen. Among the production methods, catalytic reaction is one of the promising approaches. This study utilized zinc oxide nanostructures with different aspect ratio and oxygen vacancies for piezo-catalytic hydrogen production.
In this research, we tuned the synthesis parameters, such as the amounts of the precursors for hydrothermal method and hydrogenation time to obtain ZnO with different aspect ratio and oxygen vacancies. ZnO nanostructures with aspect ratios of 0.21, 0.74 and 15.84 have the optimized hydrogen production, 378.25, 557.55 and 857.4 μmol h-1 g-1, respectively after 6 hour hydrogenation. The hydrogen production after 6 hours hydrogenation is 2.5 times higher than the pristine ones, implying that the increasing amount of oxygen vacancies can improve the hydrogen production. Moreover, hydrogen production is corelated to aspect ratios. Finite element calculation was carried out, which proves that aspect ratios and piezoelectric potential are positive related.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論與文獻回顧 1
1.1. 氫能源及水分解產氫反應 1
1.2. 壓電催化產氫機制 3
1.3. 犧牲劑在壓電催化水分解產氫反應扮演的角色 6
1.4. 長寬比對催化特性的影響 7
1.5. 陰離子缺陷對催化反應的影響 10
1.6. 壓電材料 12
1.6.1. 氧化鋅 12
1.6.2. 鈣鈦礦(Perovskites) 13
1.6.3. 二維材料 13
1.7. 氧化鋅奈米材料基本性質與合成 15
1.7.1. 氧化鋅合成方法 15
1.7.2. 氧化鋅結構氧缺陷調控 20
1.7.3. 氫化反應 21
1.8. 研究動機 22
第二章 實驗步驟 23
2.1. 實驗架構與步驟 23
2.1.1. 實驗架構 23
2.1.2. 水熱法合成氧化鋅奈米結構 24
2.1.3. 真空爐管進行氫化反應 25
2.1.4. 壓電催化水分解產氫反應 26
2.1.5. 有限元素法壓電場模擬 27
2.2. 儀器介紹 28
2.2.1. 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 28
2.2.2. X光繞射分析(X-Ray diffraction spectroscopy, XRD) 29
2.2.3. 穿透式電子顯微鏡(Transmission electron microscopy, TEM) 30
2.2.4. 光致螢光 (Photoluminescence spectroscopy, PL) 光譜 31
2.2.5. X光電子能譜(X-ray photoelectron spectroscopy, XPS) 32
2.2.6. 氣相層析儀(Gas chromatography, GC) 33
第三章 結果與討論 34
3.1. 氧化鋅奈米結構分析 34
3.1.1. SEM影像分析 34
3.1.2. 氫化前後氧化鋅形貌比較 35
3.1.3. XRD光譜分析 36
3.1.4. TEM影像分析 37
3.2. 氧化鋅奈米結構缺陷分析 44
3.2.1. PL光譜分析 44
3.2.2. XPS能譜分析 46
3.3. 壓電產氫反應 49
3.4. 壓電場有限元素法模擬 53
3.5. 產氫反應比較 58
第四章 結論 59
第五章 未來展望 60
參考文獻 62

1. Abe JO, Popoola API, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy 44, 15072-15086 (2019).

2. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews 44, 5148-5180 (2015).

3. Turner JA. A realizable renewable energy future. Science 285, 687-689 (1999).

4. Hong K-S, Xu H, Konishi H, Li X. Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water. The Journal of Physical Chemistry Letters 1, 997-1002 (2010).

5. Fajrina N, Tahir M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy 44, 540-577 (2019).

6. You H, et al. Harvesting the Vibration Energy of BiFeO3 Nanosheets for Hydrogen Evolution. Angewandte Chemie International Edition in English 58, 11779-11784 (2019).

7. Kumaravel V, et al. Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts 9, 276 (2019).

8. McLaren A, Valdes-Solis T, Li GQ, Tsang SC. Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity. Journal of the American Chemical Society 131, 12540-+ (2009).

9. Noh HW, Jeong SM, Cho J, Hong JI. Ultrahigh photosensitivity of the polar surfaces of single crystalline ZnO nanoplates. Nanoscale 10, 6801-6805 (2018).

10. Ning X, Hao A, Cao Y, Hu J, Xie J, Jia D. Effective promoting piezocatalytic property of zinc oxide for degradation of organic pollutants and insight into piezocatalytic mechanism. Journal of Colloid and Interface Science 577, 290-299 (2020).

11. Gao D, et al. Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction. Small 14, e1704150 (2018).

12. Badreldin A, Abdel-Wahab A, Balbuena PB. Local Surface Modulation Activates Metal Oxide Electrocatalyst for Hydrogen Evolution: Synthesis, Characterization, and DFT Study of Novel Black ZnO. ACS Applied Energy Materials 3, 10590-10599 (2020).

13. Mantini G, Gao Y, D’Amico A, Falconi C, Wang ZL. Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Research 2, 624-629 (2009).

14. Tu S, et al. Piezocatalysis and Piezo‐Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Advanced Functional Materials 30, 2005158 (2020).

15. Wang ZL, Wu W, Falconi C. Piezotronics and piezo-phototronics with third-generation semiconductors. MRS Bulletin 43, 922-927 (2018).

16. Peng F, et al. A discovery of field-controlling selective adsorption for micro ZnO rods with unexpected piezoelectric catalytic performance. Applied Surface Science 545, 149032 (2021).

17. Reddy AJ, et al. Synthesis, luminescence properties and EPR investigation of hydrothermally derived uniform ZnO hexagonal rods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 139, 262-270 (2015).

18. Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews 81, 536-551 (2018).

19. Yin M, Liu M, Liu S. Diameter regulated ZnO nanorod synthesis and its application in gas sensor optimization. Journal of Alloys and Compounds 586, 436-440 (2014).

20. Wang Z, et al. Enhanced H2 Production of TiO2/ZnO Nanowires Co-Using Solar and Mechanical Energy through Piezo-Photocatalytic Effect. ACS Sustainable Chemistry & Engineering 6, 10162-10172 (2018).

21. Lu H, Wang S, Zhao L, Li J, Dong B, Xu Z. Hierarchical ZnO microarchitectures assembled by ultrathin nanosheets: hydrothermal synthesis and enhanced photocatalytic activity. Journal of Materials Chemistry 21, 4228 (2011).

22. Movsesyan L, et al. ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications. Nanomaterials (Basel) 8, 693 (2018).

23. Gerbreders V, et al. Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm 22, 1346-1358 (2020).

24. Zhou F, Jing W, Shi J, Jiang Z, Cheng Y, Gao K. Effects of etching parameters on ZnO nanotubes evolved from hydrothermally synthesized ZnO nanorods. Ceramics International 42, 4788-4796 (2016).

25. Alshehri NA, Lewis AR, Pleydell-Pearce C, Maffeis TGG. Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. Journal of Saudi Chemical Society 22, 538-545 (2018).

26. Huang MH, et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897-1899 (2001).

27. Park WI, Kim DH, Jung SW, Yi GC. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters 80, 4232-4234 (2002).

28. Lu X, et al. Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chemical Communications 48, 7717-7719 (2012).

29. Gonzalez-Valls I, Lira-Cantu M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy & Environmental Science 2, 19-34 (2009).

30. Yin X, et al. Massive Vacancy Concentration Yields Strong Room-Temperature Ferromagnetism in Two-Dimensional ZnO. Nano Letters 19, 7085-7092 (2019).

31. Yin X, et al. Unit Cell Level Thickness Control of Single-Crystalline Zinc Oxide Nanosheets Enabled by Electrical Double-Layer Confinement. Langmuir 33, 7708-7714 (2017).

32. Wang F, et al. Nanometre-thick single-crystalline nanosheets grown at the water-air interface. Nature Communications 7, 10444 (2016).

33. Dai J, et al. Enhanced Piezocatalytic Activity of Sr0.5Ba0.5Nb2O6 Nanostructures by Engineering Surface Oxygen Vacancies and Self-Generated Heterojunctions. ACS Applied Materials & Interfaces 13, 7259-7267 (2021).

34. Akbari A, Firooz AA, Beheshtian J, Khodadadi AA. Experimental and theoretical study of CO adsorption on the surface of single phase hexagonally plate ZnO. Applied Surface Science 315, 8-15 (2014).

35. Li H, Liu H, Li Y, Liu Q. One-step hydrothermal fabrication and optical properties of ZnO nanoplate. Modern Physics Letters B 31, 1750205 (2017).

36. Ansari SA, Khan MM, Kalathil S, Nisar A, Lee J, Cho MH. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5, 9238-9246 (2013).

37. Xu Y, et al. Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance. Chemical Engineering Journal 379, 122295 (2020).

38. Archana B, Manjunath K, Nagaraju G, Chandra Sekhar KB, Kottam N. Enhanced photocatalytic hydrogen generation and photostability of ZnO nanoparticles obtained via green synthesis. International Journal of Hydrogen Energy 42, 5125-5131 (2017).

39. Chang FM, Brahma S, Huang JH, Wu ZZ, Lo KY. Strong correlation between optical properties and mechanism in deficiency of normalized self-assembly ZnO nanorods. Scientific Reports 9, 905 (2019).

40. Gurylev V, Su CY, Perng TP. Distribution pattern and allocation of defects in hydrogenated ZnO thin films. Physical Chemistry Chemical Physics 18, 16033-16038 (2016).

41. Gurylev V, Su C-Y, Perng T-P. Hydrogenated ZnO nanorods with defect-induced visible light-responsive photoelectrochemical performance. Applied Surface Science 411, 279-284 (2017).

42. Xia T, Wallenmeyer P, Anderson A, Murowchick J, Liu L, Chen X. Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance. RSC Advances 4, 41654-41658 (2014).

43. Li Z, et al. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. Journal of Hazardous Materials 415, 125757 (2021).

44. Liu F, et al. Effect of Plasma Treatment on Native Defects and Photocatalytic Activities of Zinc Oxide Tetrapods. The Journal of Physical Chemistry C 118, 22760-22767 (2014).

45. Yan Y, et al. Slightly hydrogenated TiO2 with enhanced photocatalytic performance. Journal of Materials Chemistry A 2, 12708-12716 (2014).

46. Chen XB, Liu L, Yu PY, Mao SS. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 331, 746-750 (2011).

47. Lv Y, Yao W, Ma X, Pan C, Zong R, Zhu Y. The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1−x photocatalyst. Catalysis Science & Technology 3, 3136 (2013).

48. Gurylev V, Perng TP. Defect engineering of ZnO: Review on oxygen and zinc vacancies. Journal of the European Ceramic Society 41, 4977-4996 (2021).

49. Lu Y, et al. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nature Communications 9, 2752 (2018).

50. Yao C, et al. Enhanced photoelectrochemical performance of hydrogenated ZnO hierarchical nanorod arrays. Journal of Power Sources 237, 295-299 (2013).

51. Gao Y, Liu C, Zhou W, Lu S, Zhang B. Anion Vacancy Engineering in Electrocatalytic Water Splitting. ChemNanoMat 7, 102-109 (2020).

52. Yao N, Meng R, Wu F, Fan Z, Cheng G, Luo W. Oxygen-Vacancy-Induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Applied Catalysis B: Environmental 277, 119282 (2020).

53. Zhang X, et al. Characterizing and Optimizing Piezoelectric Response of ZnO Nanowire/PMMA Composite-Based Sensor. Nanomaterials (Basel) 11, 1712 (2021).

54. Gao Y, Wang ZL. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Letters 7, 2499-2505 (2007).

55. Wu J, Qin N, Bao D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 45, 44-51 (2018).

56. Wang B, Zhang Q, He J, Huang F, Li C, Wang M. Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. Journal of Energy Chemistry 65, 304-311 (2022).

57. Tong W, et al. A highly sensitive hybridized soft piezophotocatalyst driven by gentle mechanical disturbances in water. Nano Energy 53, 513-523 (2018).

58. Wang YC, Wu JM. Effect of Controlled Oxygen Vacancy on H2‐Production through the Piezocatalysis and Piezophototronics of Ferroelectric R3C ZnSnO3 Nanowires. Advanced Functional Materials 30, 1907619 (2019).

59. Alenezi MR, Henley SJ, Emerson NG, Silva SR. From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235-247 (2014).

60. Li Y, Wang L, Liang J, Gao F, Yin K, Dai P. Hierarchical Heterostructure of ZnO@TiO2 Hollow Spheres for Highly Efficient Photocatalytic Hydrogen Evolution. Nanoscale Research Letters 12, 531 (2017).

61. Zhao Y, Fang Z-B, Feng W, Wang K, Huang X, Liu P. Hydrogen Production from Pure Water via Piezoelectric-assisted Visible-light Photocatalysis of CdS Nanorod Arrays. ChemCatChem 10, 3397-3401 (2018).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *