|
[1]史丹,王蕾. (2015).能源革命及其對經濟發展的作用[J].產業經濟研究,1. [2] Bhatt P. & Goe A. (2017). Carbon Fibres: Production, Properties and Potential Use. Mat.Sci.Res.India, 14(1). [3] 材料世界網https://www.materialsnet.com.tw/DocView.aspx?id=11183 [4] B.A. Newcomb. (2016). Processing, structure, and properties of carbon fibers. Compos. Appl. Sci. Manuf., 91, pp. 262-282. [5] Kai-Ping Wang and Hsisheng Teng. (2007). Structural Feature and Double-Layer Capacitive Performance of Porous Carbon Powder Derived from Polyacrylonitrile-Based Carbon Fiber. Electrochem., Soc. 154, A993. [6] 黃正瑋(2008)。碳纖維表面成長奈米碳管及含氧官能基以促進電容表現之研究。國立成功大學化學工程學系碩士論文。 [7] C. I. Su, C. T. Chiu. (2013-12). Effect of Carbonization Temperature and Activator on Conductive Properties of Carbon Nanofiber membrane. JHGT-20.4(178). [8] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature., 354(6348), p. 56-58. [9] 陳亞群(2007)。多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究。國立清華大學材料科學與工程研究所碩士論文。 [10] 張雅筑(2007)。常壓下以電暈方式製備奈米碳管或奈米結構。國立清華大學材料科學與工程研究所碩士論文。 [11] 李惠菁(2008)。多壁奈米碳管/聚乙烯醇之合成與其物理性質研究。國立清華大學材料科學與工程研究所碩士論文。 [12] Smalley, R.E., Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. (2003). Carbon nanotubes: synthesis, structure, properties, and applications. Springer Science & Business Media., Vol. 80. [13] Odom, T.W., et al. (2000). Structure and Electronic Properties of Carbon Nanotubes. The Journal of Physical Chemistry B. 104(13): p. 2794-2809 [14] Dresselhaus, M.S., et al. (2000). Carbon Nanotubes, in The Physics of Fullerene-Based and Fullerene-Related Materials. Springer Netherlands: Dordrecht. p. 331-379. [15] Saito, R., et al. (1992). Electronic structure of chiral graphene tubules. Applied Physics Letters. 60(18): p. 2204-2206. [16] E. T. Thostenson, Z. Ten, T. W. Chou. (2001). Compos. Sci. Technol., 61, 1899. [17] Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (1988). Physical properties of carbon nanotubes. World scientific. [18] Dresselhaus, M.S., Dresselhaus, G. & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Academic press. [19] Dresselhaus, M.S. and P.C. Eklund. (2000). Phonons in carbon nanotubes. Advances in Physics. 49(6): p. 705-814. [20] Hamada, N., S. Sawada, and A. Oshiyama. (1992). New one-dimensional conductors: Graphitic microtubules. Physical Review Letters. 68(10): p. 1579-1581. [21] Dresselhaus, M.S., G. Dresselhaus, and A. Jorio. (2004) UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES. Annual Review of Materials Research. 34(1): p. 247-278. [22] Dai, H. (2002). Carbon nanotubes: opportunities and challenges. Surface Science. 500(1): p. 218-241. [23] I. Langmuir. (1928). Proceedings of the National Academy of Sciences of the United States of America. 14. [24] Alfred Grill. (1994). Cold plasma in materials fabrication. IEEE. New York. [25] M. I. Boulos, P. Fauchais, and E. Pfender. Thermal plasmas : fundamentals and applications. [26] S. Tiwari, J. Bijwe. (2014). Surface Treatment of Carbon Fibers - A Review. Procedia Technology., Volume 14, Pages 505-512. [27] Sun M, Hu B, Wu Y, Tang Y, Huang W, Da Y. (1989). Surface of CFs continuously treated by cold plasma. Comp Sci Tech, 34: 353-64. [28] Jang J, Yang H. (2000). The effect of surface treatment on the performance improvement of CFs/polybenzoxazine composites. J Mater Sci., 35:2297–2303. [29] M. Winter and R. J. Brodd. (2004). "What Are Batteries, Fuel Cells, and Supercapacitors?" Chem. Rev., 104, 4245. [30] Ander González, Eider Goikolea, Jon Andoni Barrena, Roman Mysyk. (2016). Review on supercapacitors: Technologies and materials, Renewable and Sustainable Energy Reviews., Volume 58, Pages 1189-1206. [31]何嘉瑋(2012)。以中間相微碳球製備複合式電極應用於超級電容器之研究。國立中山大學電機工程學系碩士論文。 [32] C. H. Hamann, A. Hamnett and W. Vielstich. (1998). “Electrochemistry”, Wiley-Vch, New York. [33] J. S. Mattson, Jr. H. B. Mark. (1998). Activated Carbon: Surface Chemistry and Adsorption from Solution. Wiley-Vch: New York. [34] 擬電容儲電機制https://en.wikipedia.org/wiki/Pseudocapacitance [35] Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. (2016)., 58, 1189-1206. [36] Lei Zhou, Chunyang Li, Xiang Liu, Yusong Zhu, Yuping Wu, Teunis van Ree. (2018). Metal Oxides in Energy Technologies. Metal Oxides., Pages 169-203. [37] H. Shi. (1995). Electrochim. Acta., 41, 1633. [38] IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid and Surface Chemistry, Pure Appl. Chem, 31 (1972) 578. [39] D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara and A. Oya. (2003). Carbon. 41, 1765. [40] J. P. Zheng. (1999). Electrochem. Solid-State Lett, 2, 359. [41] A. J. Bard, L. R. Faulkner. (1980). Electrochemical Methods Fundamental and Application. John Wiley & Sons. Canada. [42] Electrochemical Methods Fundamentals and Applications, JOHN WILEY & SONS, INC, SECOND EDITION. (2001). [43] B. E. Conway. (1999). Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer Academic. New York. 105. [44] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen. (1996). Phys. Rev. Lett., 76, 971. [45] A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus and M. S. Dresselhaus. (2003). New Journal of Physics, 5 139,1 139,17. [46] X射線光電子能譜儀https://highscope.ch.ntu.edu.tw/wordpress/?p=72999 [47] Yanjing Liu, Jiawei He, Bing Zhang, Huacheng Zhu, Yang Yang, Li Wu, Wencong Zhang, Yanping Zhou and Kama Huanga. (2021). A self-boosting microwave plasma strategy tuned by air pressure for the highly efficient and controllable surface modification of carbon, RSC Adv.,11, 9955-9963. [48] M.A. Montes-Morán, D. Suárez, J.A. Menéndez, E. Fuente. (2004). On the nature of basic sites on carbon surfaces: an overview. Carbon, 42 (7), pp. 1219-1225. [49] S. Kabir, K. Artyushkova, A. Serov, B. Kiefer, P. Atanassov. (2016). Surf. Interface Anal., 48, pp. 293-300. [50] Chieh-Tsung Lo, Keng-Wei Lin, Tzu-Pei Wang, Sheng-Min Huang, Chien-Liang Lee. (2021). Differentiating between the effects of nitrogen plasma and hydrothermal treatment on electrospun carbon fibers used as supercapacitor electrodes. Electrochimica Acta, Volume 381,138255. [51] Yuxin Li and Ashley E. Ross. (2020). Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry. Analyst, 145, 805-815. [52] A.J. Bard, L.R. Faulkner. (1996). Electrochemical Principles, Methods and Applications, Oxford University, Britain. [53] Ya-Nan Liu, Jia-Nan Zhang, Hai-Tao Wang, Xiao-Hui Kanga and Shao-Wei Bian. (2019). Boosting the electrochemical performance of carbon cloth negative electrodes by constructing hierarchically porous nitrogen-doped carbon nanofiber layers for all-solid-state asymmetric supercapacitors, Mater. Chem. Front.3, 25-31. [54] M. A. Montes-Moran, D. Suarez, J. A. Menendez, E. Fuente. (2004). Carbon 42, 1219.
|