帳號:guest(13.58.243.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何傑豪
作者(外文):HO, KIT-HOU
論文名稱(中文):利用擴散製程摻雜銅對氧化鋅奈米線的擴散反應和電性特性之影響
論文名稱(外文):Doping of Cu in ZnO Nanowire by Diffusion Reaction
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):呂明諺
吳文偉
口試委員(外文):Lu, Ming-Yen
Wu, Wen Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108031402
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:73
中文關鍵詞:氧化鋅奈米線擴散反應摻雜
外文關鍵詞:ZnONanowireDiffusion ReactiondopingCu
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
氧化鋅由於具備獨特的光、電、磁以及壓電特性並且具有廣泛的應用性,因此是所有半導體材料中備受矚目的材料之一,因而在近幾年吸引了相當廣泛的研究。由於不同型態、維度及尺寸的氧化鋅具有其不同的性質及應用面,所以如何設計及控制氧化鋅奈米結構的成長便成了研究學者們的重點。
在本研究中,我們專注於通過擴散銅使氧化鋅奈米線會從n型轉化成p型。對於製作P型氧化鋅,以銅作為摻雜物。通過擴散的形式使銅均勻摻雜到氧化鋅奈米線中。因為其價電子數目比鋅原子的價電子數量少,等效上會帶來一個的空位,這個多出的空位即可視為電洞,從而轉化成p型材料。當中設計了兩種方法來實現材料的轉化,第一種是擴散源是銅薄膜,第二種為銅奈米顆粒。發現擴散的驅動力會受溫度和擴散源的多寡而影響其擴散行為。SEM、XRE、TEM和XPS會協助分析氧化鋅奈米線在實驗中的變化。
其實驗結果將為優化氧化鋅奈米線的電性提供一個良好的起點。我們也會利用電性量測的結果,去判斷氧化鋅奈米線是否因為銅的摻雜而從n型材料轉化成p型材料。
ZnO is one of the most important materials that has attracted much attention due to its unique optical, electrical, magnetic and piezoelectric properties as well as versatile applications. In the present research, we focus on modifying ZnO nanowires from n-type to p-type with Cu diffusion. For the fabrication of p-type ZnO nanowires, attempts were made to dope Cu uniformly into the ZnO nanowire by diffusion. It was based on the understanding that when Cu replaces zinc, a hole will be formed (one less electron), thus forming a p-type semiconductor. There are two methods designed to realize the transformation. For method 1, the source is Cu metal film. For method 2, Cu particles are used as the diffusion source. It was found that the driving force of diffusion is influenced by temperature and source amount. SEM, XRD, TEM and XPS were used to characterize the pristine and treated ZnO nanowires. Using electrical properties measurement, we can confirm that ZnO nanowire was transited from n-type to p-type by Cu. The result shall provide a good starting point for optimizing electrical properties of ZnO nanowires.
摘 要 i
Abstract ii
致 謝 iii
Acknowledgement iv
Contents 1
Chapter 1 Introduction 5
1.1 Nanotechnology 5
1.1.1 One-dimensional Materials 6
1.2 ZnO Nanowires 7
1.2.1 Properties of ZnO 7
1.2.2 Vapor-liquid-solid (VLS) Growth Mechanism 9
1.2.3 The Application of ZnO Nanowires 11
1.3 The Doping and Formation of p-type ZnO by Cu 13
1.4 In-situ TEM observation 15
1.4.1 In-situ TEM of the Nanowire Growth 15
1.4.2 In-situ TEM for heating process 17
1.5 The Principle of Diffusion 19
1.6 Motivation 21
Chapter 2 Experimental Section 22
2.1 Experimental Flowchart 22
2.2 Experimental Procedures 23
2.2.1 Synthesis of ZnO Nanowires 23
2.2.2 The Preparation of Silicon Substrate for the Growth ZnO Nanowires... 23
2.2.3 The Growth of ZnO Nanowires in Three Zone Furnace 23
2.2.4 The Preparation of Heating Chip for ZnO Nanowires and Cu Source……… 25
2.2.5 Heating Experiment with In-situ TEM 28
2.2.6 The Preparation of the Samples for XPS Analysis 29
2.2.7 Electrical Properties Measurement of ZnO Nanowires 29
2.3 Experimental Equipments 31
2.3.1 Three Zone Furnace 31
2.3.2 Optical Microscope (OM) 32
2.3.3 Scanning Electron Microscope (SEM) 33
2.3.4 X-Ray Diffractometer (XRD) 34
2.3.5 Transmission Electron Microscope (TEM) 35
2.3.6 The Heating Holder of In-situ TEM 37
2.3.7 Energy-Dispersive X-Ray Spectroscopy (EDS) 38
2.3.8 X-ray Photoelectron Spectroscopy (XPS) 39
2.3.9 Electrical Properties Measurement System 40
Chapter 3 Results and Discussion 41
3.1 Analysis of Characteristics for ZnO Nanowires 41
3.1.1 The Structure of ZnO Nanowires 41
3.2 Preparation of Patterned Chip with ZnO Nanowires in Contact with Cu Source 43
3.2.1 In-site TEM Investigation of Solid-state Diffusion Reaction upon Heating 44
3.2.2 The Analysis of Reaction Interface 48
3.2.3 Thermodynamic Analysis of Reactions 49
3.3 XPS Analysis 52
3.4 The Analysis of Heating Chip (at 600 °C for 1 hour) 54
3.5 Electrical Properties Measurement 57
3.6 Diffusion and Formation of p-type ZnO 61
3.7 Durability Test of p-type ZnO Nanowire 63
Chapter 4 Summary and Conclusions 64
Chapter 5 Future Prospects 66
References 68
1. W. House, National nanotechnology initiative: Leading to the next industrial revolution. The White House, Office of the Press Secretary, Washington, DC, 2000.

2. R.R. Schaller, Moore's law: past, present and future. IEEE spectrum, 1997. 34: 52-59.

3. M.M. Waldrop, The chips are down for Moore’s law. Nature News, 2016. 530: 144.

4. Y.C. Yeh, B. Creran, and V.M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012. 4: 1871-1880.

5. R.P. Feynman, Plenty of room at the bottom. APS annual meeting, 1959.

6. X. Zhao, C. Wei, L. Yang, and M. Chou, Quantum confinement and electronic properties of silicon nanowires. Phys. Rev. Lett., 2004. 92: 236805.

7. P.N. Prasad, Nanophotonics. 2004: John Wiley & Sons.

8. W. Kim, J.K. Ng, M.E. Kunitake, B.R. Conklin, and P. Yang, Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc., 2007. 129: 7228-7229.

9. Y. Li, F. Qian, J. Xiang, and C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today, 2006. 9: 18-27.

10. S.H. Jung, E. Oh, K.H. Lee, W. Park, and S.H. Jeong, A sonochemical method for fabricating aligned ZnO nanorods. Adv. Mater., 2007. 19: 749-753.

11. D.I. Suh, C.C. Byeon, and C.L. Lee, Synthesis and optical characterization of vertically grown ZnO nanowires in high crystallinity through vapor–liquid–solid growth mechanism. Appl. Surf. Sci., 2010. 257: 1454-1456.

12. Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, and C.J. Youn, Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett., 2006. 88: 241108.

13. Ü. Özgür, D. Hofstetter, and H. Morkoc, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE, 2010. 98: 1255-1268.

14. J. Cui, Zinc oxide nanowires. Mater. Charact., 2012. 64: 43-52.

15. M.A. Borysiewicz, ZnO as a Functional Material, a Review. Crystals, 2019. 9: 505.

16. D.S. Ginley and C. Bright, Transparent conducting oxides. MRS Bull., 2000. 25: 15-18.

17. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater., 2005. 4: 455-459.

18. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, Low‐temperature fabrication of light‐emitting zinc oxide micropatterns using self‐assembled monolayers. Adv. Mater., 2002. 14: 418-421.

19. J. Wang, X.W. Sun, A. Wei, Y. Lei, X. Cai, C.M. Li, and Z.L. Dong, Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett., 2006. 88: 233106.

20. C.B. Ong, L.Y. Ng, and A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sust. Energ. Rev., 2018. 81: 536-551.
21. J. Hu, T.W. Odom, and C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res., 1999. 32: 435-445.

22. X. Duan and C.M. Lieber, Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc., 2000. 122: 188-189.

23. M.S. Gudiksen and C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc., 2000. 122: 8801-8802.

24. G. Zhu, Y. Zhou, S. Wang, R. Yang, Y. Ding, X. Wang, Y. Bando, and Z. Wang, Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology, 2012. 23: 055604.

25. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater., 2001. 13: 113-116.

26. G.C. Yi, Semiconductor nanostructures for optoelectronic devices: Processing, characterization and applications. 2012, Springer Science & Business Media.

27. S. Hejazi and H.M. Hosseini, A diffusion-controlled kinetic model for growth of Au-catalyzed ZnO nanorods: Theory and experiment. J. Cryst. Growth, 2007. 309: 70-75.

28. L. Schubert, P. Werner, N. Zakharov, G. Gerth, F. Kolb, L. Long, U. Gösele, and T. Tan, Silicon nanowhiskers grown on< 111> Si substrates by molecular-beam epitaxy. Appl. Phys. Lett., 2004. 84: 4968-4970.

29. H.J. Choi, Vapor–liquid–solid growth of semiconductor nanowires, in semiconductor nanostructures for optoelectronic devices. 2012, Springer. 1-36.


30. N.S. Ramgir, K. Subannajui, Y. Yang, R. Grimm, R. Michiels, and M. Zacharias, Reactive VLS and the reversible switching between VS and VLS growth dodes for ZnO nanowire growth. J. Phys. Chem. C, 2010. 114: 10323-10329.

31. J. Bao, M.A. Zimmler, F. Capasso, X. Wang, and Z.F. Ren, Broadband ZnO single-nanowire light-emitting diode. Nano Lett, 2006. 6: 1719-1722.

32. J. Zhong, H. Chen, G. Saraf, Y. Lu, C.K. Choi, J.J. Song, D.M. Mackie, and H. Shen, Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency. Appl. Phys. Lett., 2007. 90: 203515.

33. X. Zhao, E. Liu, R.V. Ramanujan, and J. Chen, Effects of rapid thermal annealing on structural, magnetic and optical properties of Ni-doped ZnO thin films. Curr. Appl. Phys., 2012. 12: 834-840.

34. T.L. Phan, R. Vincent, D. Cherns, N.X. Nghia, and V.V. Ursaki, Raman scattering in Me-doped ZnO nanorods (Me = Mn, Co, Cu and Ni) prepared by thermal diffusion. Nanotechnology, 2008. 19: 475702.

35. M.B. Rahmani, S.H. Keshmiri, M. Shafiei, K. Latham, W. Wlodarski, J. du Plessis, and K. Kalantar Zadeh, Transition from n- to p-type of spray pyrolysis deposited Cu doped ZnO thin films for NO2 sensing. Sens. Lett., 2009. 7: 621-628.

36. C. Chen, W. Dai, Y. Lu, H. He, Q. Lu, T. Jin, and Z. Ye, Origin of p-type conduction in Cu-doped ZnO nano-films synthesized by hydrothermal method combined with post-annealing. Mater. Res. Bull., 2015. 70: 190-194.

37. P. Ferreira, K. Mitsuishi, and E. Stach, In situ transmission electron microscopy. MRS Bull., 2008. 33: 83-90.


38. K.E. Hajraoui, C. Zeiner, E. Robin, S. Kodjikian, A. Lugstein, J.L. Rouvière, and M.D. Hertog, In-situ propagation of a Cu phase in germanium nanowires observed by transmission electron microscopy, in European Microscopy Congress 2016: Proceedings. 2016. 642-643.

39. C. Kallesoe, C.Y. Wen, T.J. Booth, O. Hansen, P. Boggild, F.M. Ross, and K. Molhave, In situ TEM creation and electrical characterization of nanowire devices. Nano Lett, 2012. 12: 2965-2970.

40. K. El Hajraoui, M.A. Luong, E. Robin, F. Brunbauer, C. Zeiner, A. Lugstein, P. Gentile, J.L. Rouviere, and M. Den Hertog, In Situ Transmission Electron Microscopy Analysis of Aluminum-Germanium Nanowire Solid-State Reaction. Nano Lett, 2019. 19: 2897-2904.

41. B. Puchala and D. Morgan, Atomistic modeling of As diffusion in ZnO. Phys. Rev. B, 2012. 85: 099901.

42. S. Mori and P.B. Barker, Diffusion magnetic resonance imaging: its principle and applications. Anat. Rec., 1999. 257: 102-109.

43. S.C. Wang, M.Y. Lu, A. Manekkathodi, P.H. Liu, H.C. Lin, W.S. Li, T.C. Hou, S. Gwo, and L.J. Chen, Complete replacement of metal in metal oxide nanowires via atomic diffusion: In/ZnO case study. Nano Lett, 2014. 14: 3241-3246.

44. H. Mehrer, Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Vol. 155. 2007: Springer Science & Business Media.

45. J.L. Sun, J. Xu, and J.L. Zhu, Oxidized macroscopic-long Cu nanowire bundle photoconductor. Appl. Phys. Lett., 2007. 90: 201119.



46. Z. Chen, Y. Tang, C. Liu, Y. Leung, G. Yuan, L. Chen, Y. Wang, I. Bello, J. Zapien, and W. Zhang, Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. J. Phys. Chem. C, 2009. 113: 13433-13437.

47. M. Sakurai, Y.G. Wang, T. Uemura, and M. Aono, Electrical properties of individual ZnO nanowires. Nanotechnology, 2009. 20: 155203.

48. F. Maldonado and A. Stashans, Al-doped ZnO: Electronic, electrical and structural properties. J. Phys. Chem. Solids, 2010. 71: 784-787.

49. B.K. Singh and S. Tripathi, p-n homojunction based on Bi doped p-type ZnO and undoped n-type ZnO for optoelectronic application in yellow-red region of visible spectrum. J. Lumin, 2018. 198: 427-432.

50. C.L. Hsu, Y.D. Gao, Y.S. Chen, and T.J. Hsueh, Vertical p-type Cu-doped ZnO/n-type ZnO homojunction nanowire-based ultraviolet photodetector by the furnace system with hotwire assistance. ACS Appl. Mater. Interfaces, 2014. 6: 4277-4285.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *