|
1. W. House, National nanotechnology initiative: Leading to the next industrial revolution. The White House, Office of the Press Secretary, Washington, DC, 2000.
2. R.R. Schaller, Moore's law: past, present and future. IEEE spectrum, 1997. 34: 52-59.
3. M.M. Waldrop, The chips are down for Moore’s law. Nature News, 2016. 530: 144.
4. Y.C. Yeh, B. Creran, and V.M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012. 4: 1871-1880.
5. R.P. Feynman, Plenty of room at the bottom. APS annual meeting, 1959.
6. X. Zhao, C. Wei, L. Yang, and M. Chou, Quantum confinement and electronic properties of silicon nanowires. Phys. Rev. Lett., 2004. 92: 236805.
7. P.N. Prasad, Nanophotonics. 2004: John Wiley & Sons.
8. W. Kim, J.K. Ng, M.E. Kunitake, B.R. Conklin, and P. Yang, Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc., 2007. 129: 7228-7229.
9. Y. Li, F. Qian, J. Xiang, and C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today, 2006. 9: 18-27.
10. S.H. Jung, E. Oh, K.H. Lee, W. Park, and S.H. Jeong, A sonochemical method for fabricating aligned ZnO nanorods. Adv. Mater., 2007. 19: 749-753.
11. D.I. Suh, C.C. Byeon, and C.L. Lee, Synthesis and optical characterization of vertically grown ZnO nanowires in high crystallinity through vapor–liquid–solid growth mechanism. Appl. Surf. Sci., 2010. 257: 1454-1456.
12. Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, and C.J. Youn, Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett., 2006. 88: 241108.
13. Ü. Özgür, D. Hofstetter, and H. Morkoc, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE, 2010. 98: 1255-1268.
14. J. Cui, Zinc oxide nanowires. Mater. Charact., 2012. 64: 43-52.
15. M.A. Borysiewicz, ZnO as a Functional Material, a Review. Crystals, 2019. 9: 505.
16. D.S. Ginley and C. Bright, Transparent conducting oxides. MRS Bull., 2000. 25: 15-18.
17. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater., 2005. 4: 455-459.
18. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, Low‐temperature fabrication of light‐emitting zinc oxide micropatterns using self‐assembled monolayers. Adv. Mater., 2002. 14: 418-421.
19. J. Wang, X.W. Sun, A. Wei, Y. Lei, X. Cai, C.M. Li, and Z.L. Dong, Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett., 2006. 88: 233106.
20. C.B. Ong, L.Y. Ng, and A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sust. Energ. Rev., 2018. 81: 536-551. 21. J. Hu, T.W. Odom, and C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res., 1999. 32: 435-445.
22. X. Duan and C.M. Lieber, Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc., 2000. 122: 188-189.
23. M.S. Gudiksen and C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc., 2000. 122: 8801-8802.
24. G. Zhu, Y. Zhou, S. Wang, R. Yang, Y. Ding, X. Wang, Y. Bando, and Z. Wang, Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology, 2012. 23: 055604.
25. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater., 2001. 13: 113-116.
26. G.C. Yi, Semiconductor nanostructures for optoelectronic devices: Processing, characterization and applications. 2012, Springer Science & Business Media.
27. S. Hejazi and H.M. Hosseini, A diffusion-controlled kinetic model for growth of Au-catalyzed ZnO nanorods: Theory and experiment. J. Cryst. Growth, 2007. 309: 70-75.
28. L. Schubert, P. Werner, N. Zakharov, G. Gerth, F. Kolb, L. Long, U. Gösele, and T. Tan, Silicon nanowhiskers grown on< 111> Si substrates by molecular-beam epitaxy. Appl. Phys. Lett., 2004. 84: 4968-4970.
29. H.J. Choi, Vapor–liquid–solid growth of semiconductor nanowires, in semiconductor nanostructures for optoelectronic devices. 2012, Springer. 1-36.
30. N.S. Ramgir, K. Subannajui, Y. Yang, R. Grimm, R. Michiels, and M. Zacharias, Reactive VLS and the reversible switching between VS and VLS growth dodes for ZnO nanowire growth. J. Phys. Chem. C, 2010. 114: 10323-10329.
31. J. Bao, M.A. Zimmler, F. Capasso, X. Wang, and Z.F. Ren, Broadband ZnO single-nanowire light-emitting diode. Nano Lett, 2006. 6: 1719-1722.
32. J. Zhong, H. Chen, G. Saraf, Y. Lu, C.K. Choi, J.J. Song, D.M. Mackie, and H. Shen, Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency. Appl. Phys. Lett., 2007. 90: 203515.
33. X. Zhao, E. Liu, R.V. Ramanujan, and J. Chen, Effects of rapid thermal annealing on structural, magnetic and optical properties of Ni-doped ZnO thin films. Curr. Appl. Phys., 2012. 12: 834-840.
34. T.L. Phan, R. Vincent, D. Cherns, N.X. Nghia, and V.V. Ursaki, Raman scattering in Me-doped ZnO nanorods (Me = Mn, Co, Cu and Ni) prepared by thermal diffusion. Nanotechnology, 2008. 19: 475702.
35. M.B. Rahmani, S.H. Keshmiri, M. Shafiei, K. Latham, W. Wlodarski, J. du Plessis, and K. Kalantar Zadeh, Transition from n- to p-type of spray pyrolysis deposited Cu doped ZnO thin films for NO2 sensing. Sens. Lett., 2009. 7: 621-628.
36. C. Chen, W. Dai, Y. Lu, H. He, Q. Lu, T. Jin, and Z. Ye, Origin of p-type conduction in Cu-doped ZnO nano-films synthesized by hydrothermal method combined with post-annealing. Mater. Res. Bull., 2015. 70: 190-194.
37. P. Ferreira, K. Mitsuishi, and E. Stach, In situ transmission electron microscopy. MRS Bull., 2008. 33: 83-90.
38. K.E. Hajraoui, C. Zeiner, E. Robin, S. Kodjikian, A. Lugstein, J.L. Rouvière, and M.D. Hertog, In-situ propagation of a Cu phase in germanium nanowires observed by transmission electron microscopy, in European Microscopy Congress 2016: Proceedings. 2016. 642-643.
39. C. Kallesoe, C.Y. Wen, T.J. Booth, O. Hansen, P. Boggild, F.M. Ross, and K. Molhave, In situ TEM creation and electrical characterization of nanowire devices. Nano Lett, 2012. 12: 2965-2970.
40. K. El Hajraoui, M.A. Luong, E. Robin, F. Brunbauer, C. Zeiner, A. Lugstein, P. Gentile, J.L. Rouviere, and M. Den Hertog, In Situ Transmission Electron Microscopy Analysis of Aluminum-Germanium Nanowire Solid-State Reaction. Nano Lett, 2019. 19: 2897-2904.
41. B. Puchala and D. Morgan, Atomistic modeling of As diffusion in ZnO. Phys. Rev. B, 2012. 85: 099901.
42. S. Mori and P.B. Barker, Diffusion magnetic resonance imaging: its principle and applications. Anat. Rec., 1999. 257: 102-109.
43. S.C. Wang, M.Y. Lu, A. Manekkathodi, P.H. Liu, H.C. Lin, W.S. Li, T.C. Hou, S. Gwo, and L.J. Chen, Complete replacement of metal in metal oxide nanowires via atomic diffusion: In/ZnO case study. Nano Lett, 2014. 14: 3241-3246.
44. H. Mehrer, Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Vol. 155. 2007: Springer Science & Business Media.
45. J.L. Sun, J. Xu, and J.L. Zhu, Oxidized macroscopic-long Cu nanowire bundle photoconductor. Appl. Phys. Lett., 2007. 90: 201119.
46. Z. Chen, Y. Tang, C. Liu, Y. Leung, G. Yuan, L. Chen, Y. Wang, I. Bello, J. Zapien, and W. Zhang, Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. J. Phys. Chem. C, 2009. 113: 13433-13437.
47. M. Sakurai, Y.G. Wang, T. Uemura, and M. Aono, Electrical properties of individual ZnO nanowires. Nanotechnology, 2009. 20: 155203.
48. F. Maldonado and A. Stashans, Al-doped ZnO: Electronic, electrical and structural properties. J. Phys. Chem. Solids, 2010. 71: 784-787.
49. B.K. Singh and S. Tripathi, p-n homojunction based on Bi doped p-type ZnO and undoped n-type ZnO for optoelectronic application in yellow-red region of visible spectrum. J. Lumin, 2018. 198: 427-432.
50. C.L. Hsu, Y.D. Gao, Y.S. Chen, and T.J. Hsueh, Vertical p-type Cu-doped ZnO/n-type ZnO homojunction nanowire-based ultraviolet photodetector by the furnace system with hotwire assistance. ACS Appl. Mater. Interfaces, 2014. 6: 4277-4285.
|