|
[1] Alexandre Joel Chorin. Numerical solution of the navier–stokes equations. Mathematics of Computation, 22(104):745–762, October 1985. [2] G.K Batchelor. An introduction to fluid dynamics. Cambridge Mathematical Library, 113:1–4, 1967. [3] Bernd R. Noack Steven L. Brunton and Petros Koumoutsakos. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 54:477–508, 2020. [4] Jessica K. Shang Owen Williams Brian L. Polagye Isabel Scherl, Benjamin Strom and Steven L. Brunton. Robust principal component analysis for modal decomposition of corrupt fluid flows. Physical Review Fluids, 5:054401, 2020. [5] Mark L. Kimber Paul J. Kristo and Sharath S. Girimaji. Towards reconstruction of complex flow fields using unit flows. Fluids, 6(7):255, 2021. [6] Luiz S. Martins-Filho Fernando Madeira SungKi Jung, Won Choi. An implementation of self-organizing maps for airfoil design exploration via multi-objective optimization technique. Journal of Aerospace Technology and Management, 5(2):193–202, 2016. [7] Maziar S. Hemati Hao Zhang Clarence Rowley Eric A. Deem, Louis N. Cattafesta III and Rajat Mitta. Adaptive separation control of a laminar boundary layer using online dynamic mode decomposition. Journal of Fluid Mechanics, 903:A21, 2020. [8] Christopher J. Landry Maˇsa Prodanovi´c Javier E.Santos, Duo Xu Honggeun Jo and Michael J. Pyrcz. Poreflow-net: A 3d convolutional neural network to predict fluid flow through porous media. Advances in Water Resources, 138:103539, 2020. [9] Jean Rabault Aur´elien Larcher Alexander Kuhnle Paul Garnier, Jonathan Viquerat and Elie Hachem. A review on deep reinforcement learning for fluid mechanics. Computers and Fluids, 225:104973, 2021. [10] J. Kim and P. Moin. Application of a fractional step method to incompressible navier–stokes equations. Journal of Computational Physics, 59:308–323, 1985. [11] Francis Giraldo Wang Chang and Blair Perot. Analysis of an exact fractional step method. Journal of computational physics, 180:183–199, 2002. [12] Dana Jacobsen and Inanc Senocak. A parallel multilevel preconditioned iterative pressure poisson solver for the large-eddy simulation of turbulent flow inside a duct. 49th AIAA Aerospace Sciences Meeting, 2012. [13] Dana Jacobsen Rey DeLeon and Inanc Senocak. Large-eddy simulations of turbulent incompressible flows on gpu clusters. Computing in Science and Engineering, 15:26–33, 2013. [14] Achi Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31:333–390, 1977. [15] Zih-Hao Wei Sheng-Hong Lai Chao-An Lin Hsin-Wei Hsu, Feng-Nan Hwang. A parallel multilevel preconditioned iterative pressure poisson solver for the large-eddy simulation of turbulent flow inside a duct. Computers and Fluids, 45:138–146, 2011. [16] Barbara Solenthalery Marc Pollefeys L’ubor Ladicky, SoHyeon Jeong and Markus Gross. Data-driven fluid simulations using regression forests. ACM Trans. Graph., 199(6):1–9, 2015. [17] Xubo Yang Cheng Yang and Xiangyun Xiao. Data-driven projection method in fluid simulation. Computer Animation and Virtual Worlds, 27(3-4):415–424, 2016. [18] R. K. Jaiman T. P. Miyanawalaa. An efficient deep learning technique for the navier-stokes equations: application to unsteady wake flow dynamics. arXiv, Aug 2018. [19] Phaedon-SteliosKoutsourelakis ParisPerdikaris YinhaoZhua, NicholasZabaras. Physicsconstrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. Journal ofComputationalPhysics, 394:56–81, 2019. [20] Xianzhong Ma Bin Dong Zichao Long, Yiping Lu. Pde-net: Learning pdes from data. Proceedings of the 35th International Conference on Machine Learning, 80:3208–3216, 2018. [21] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations. Journal of Machine Learning Research, 19:1–24, 2018. [22] Deep Ray Kjetil O. Lye, Siddhartha Mishra. Deep learning observables in computational fluid dynamics. Journal of Computational Physics, 410:109339, 2020. [23] Zico Kolter Filipe De Avila Belbute-Peres, Thomas Economon. Proceedings of the 37th International Conference on Machine Learning, title = Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction, year = 2020, volume = 119, pages = 2402-2411, publisher = PMLR. [24] Zhiping Mao Lu Lu, Xuhui Meng and George Em Karniadakis. Deepxde: A deep learninglibrary for solving differentialequations. SIAM REVIEW, 63(1):208–228, 2021. [25] Pablo Sprechmann Jonathan Tompson, Kristofer Schlachter and Ken Perlin. Accelerating eulerian fluid simulationwith convolutional networks. Proceedings of the 34 th International Conference on Machine Learning, 70:3424–3433, 2017. [26] Micha¨el Bauerheim Antony Misdariis Benedicte Cuenot Ekhi Ajuria Illarramendi, Antonio Alguacil and Emmanuel Benazera. Towards an hybrid computational strategy based on deep learning for incompressible flows. AIAA AVIATION 2020 FORUM, page 3058, 2020. [27] Sylvain Laizet Panagiotis Tzirakis Georgios Rizos Ali Girayhan ozbay, Arash Hamzehloo and Bjo¨rn Schuller. Poisson cnn: Convolutional neural networks for the solution of the poisson equation on a cartesian mesh. Data-Centric Engineering, 2, 2021. [28] Modular learning in neural networks. Proc. Conf. on AI, 1:279–284, 1987. [29] James L. McClel David E. Rumelhart and the PDP Research Group. Parallel distributed processing: Explorations in the microstructure of cognition. Learning Internal Representations by Error Propagation, 1:318–362, 1986. [30] ZHERONG PAN BO REN PINGCHUAN MA, YUNSHENG TIAN and DINESH MANOCHA. Fluid directed rigid body control using deep reinforcement learning. ACM Transactions on Graphics, 37(4):1–11, 2018. [31] Nils Thuerey Theodore Kim Markus Gross1 Byungsoo Kim1, Vinicius C. Azevedo1 and Barbara Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. Computer Graphics Forum, 38(2):59–70, 2019. [32] M. Becher S. Wiewel and N. Thuerey. Latent-space physics: Towards learning the temporal evolution of fluid flow. Computer Graphics Forum, 38(2):71–82, 2019. [33] Abhinav Vishnu and Aparna Chandramowliswharan. Cfdnet: A deep learning-based accelerator for fluid simulations. ACM, 20, 2020. [34] Lionel Agostini. Exploration and prediction of fluid dynamical systems using auto-encoder technology. Physics of Fluids, 32(6):67103, 2020. [35] Noam Koenigstein Dor Bank and Raja Giryes. Autoencoders. arXiv, 2020. [36] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv, 2014. [37] Shin CT Ghia U, Ghia KN. High-re solutions for incompressible flow using the navier–stokes equations and a multigrid method. Journal of Computational Physics, (48):387–411, January 1982. [38] Robert R. Hwang Yih-Ferng Peng, Yuo-Hsien Shiau. Transition in a 2-d lid-driven cavity flow. Computers and Fluids, (32):337–352, 2003. [39] Mazen Saad Charles-Henri Bruneau. The 2d lid-driven cavity problem revisited. Computers and Fluids, 35:326–348, 2006. [40] Steven Frankel Kameswararao Anupindi, Weichen Lai. Characterization of oscillatory instability in lid driven cavity flows using lattice boltzmann method. Computers and Fluids, 92:7–21, 2014. [41] Keller H.B. Schreiber R. Driven cavity flows by efficient numerical techniques. Journal of Computer Physics, 49, 1983. [42] Haecheon Choi and Parviz Moin. Effects of the computational time step on numerical solutions of turbulent flow. Journal of Computational Physics, 113:1–4, 1994.
|