|
𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 [1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 103–112, 1965. [2] D. A. Molodtsov, “Soft set theory–first results,” Computers & Mathematics with Applications, vol. 37, no. 4-5, pp. 19–31, 1999. [3] S. Das and S. K. Samanta, “Soft real sets, soft real numbers and their properties,” Journal of Fuzzy Mathematics, vol. 20, no. 3, pp. 551–576, 2012. [4] S. Das and S. K. Samanta, “Soft metric,” Annals of Fuzzy Mathematics and Informatics, vol. 6, no. 1, pp. 77–94, 2013. [5] P. K. Maji, R. Biswas, and A. R. Roy, “Soft set theory,” Computers & Mathematics with Applications, vol. 45, no. 4-5, pp. 555–562, 2003. [6] M. I. Ali, F. Feng, X. Liu, W. K. Min, and M. Shabir, “On some new operations in soft set theory,” Computers & Mathematics with Applications, vol. 49, pp.1547–1553, 2005. [7] K. V. Babitha and J. J. Sunil, “Soft set relations and functions,” Computers & Mathematics with Applications, vol. 60, no. 7, pp. 1840–1849, 2010. [8] D. Chen, E. C. C. Tsang, D. S. Yeung, and X. Wang, “The parameterization reduction of soft sets and its applications,” Computers & Mathematics with Applications, vol. 49, no. 5-6, pp. 757–763, 2005. [9] C. G. Aras, A. Sonmez, and H. Cakall, “On soft mappings,” 2013, [10] P. Majumdar and S. K. Samanta, “On soft mappings,” Computers & Mathematics with Applications, vol. 60, no. 9, pp. 2666–2672, 2010. [11] M. Abbas, G. Murtaza, and S. Romaguera, “Soft contraction theorem,” Journal of Nonlinear and Convex Analysis, vol. 16, pp. 423–435, 2015. [12] M. Abbas, G. Murtaza, and S. Romaguera, “On the fixed point theory of soft metric spaces,” Fixed Point Theory Appl. 2016. [13] C.-M. Chen, I.-J. Lin. ”Fixed point theory of the soft Meir-Keeler type contractive mappings on a complete soft metric space,”. Fixed Point Theory Appl. 2015. [14] C.-M. Chen, “Common fixed-point theorems in complete generalized metric spaces,” Journal of Applied Mathematics, vol. 2012. [15] Boyd, D.W.,Wong, J.S.W.: “Nonlinear contractions,” Proc. Am.Math. Soc. 20, pp.458–464 1969. [16] A. Meir and E. Keeler, “A theorem on contraction mappings,” Journal of Mathematical Analysis and Applications, vol. 28, no. 2, pp. 326–329, 1969. [17] G. Jungck, K.B. Moon, S. Park, B.E. Rhoades “On generalizations of the Meir Keeler J. Math. Anal. Appl. pp. 180, 221-222, 1993. |