|
[1] Chintarungruangchai, P., & Jiang, G. (2019). Detecting Exoplanet Transits through Machine-learning Techniques with Convolutional Neural Networks. Publications of the Astronomical Society of the Pacific, 113(1000), 064502. [2] Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. The International Joint Conference on Artificial Intelligence, 1137-1143. [3] Mandel, K., & Agol, E. (2002). Analytic light curves for planetary transit searches. The Astrophysical Journal, 580(2), L171. [4] Nikhil Ketkar, Deep Learning with Python, Springer,2017 [5] Shallue, C. J. & Vanderburg, A. (2018). Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90. The Astronomical Journal, 155(2), 94. [6] Srivastava, N., et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15, 1929-1958. [7] Yeh, C., & Jiang, G. (2020). Searching for Possible Exoplanet Transits from BRITE Data through a Machine Learning Technique. Publications of the Astronomical Society of the Pacific,133(1019), 014401. [8] 陳輝樺,「找尋太陽系外行星的方法」,科博館訊,306,2013,7. [9] 胡佳玲,「系外行星」,臺北星空,92,2019,8-12. [10] 郭芷綺,「以機器學習法搜尋戲外行星的研究」,國立清華大學,碩士,109 [11] https://www.nasa.gov/kepler/missiontimeline [12] https://exoplanetarchive.ipac.caltech.edu/bulk_data_download/ [13] https://www.natgeomedia.com/science/video/content-7744.html [14] https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/ [15] https://www.researchgate.net/figure/Dropout-neural-network-model-a-is-a-standard-neural-network-b-is-the-same-network_fig3_309206911
|