|
[1] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee. YOLACT++: Better Real-time Instance Segmentation. In TPAMI, doi: 10.1109.2020.3014297, 2020. [2] D.-H. Lee, K.-L. Chen, K.-H. Liou, C.-L. Liu, J.-L. Liu. Deep learning and control algorithms of direct perception for autonomous driving. Applied Intelligence 51, 237-247, 2021. [3] D.-H. Lee and J.-L. Liu. End-to-end deep learning of lane detection and path prediction for real-time autonomous driving. arXiv:2102.04738, 2021. [4] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation Tech report (v5). arXiv: 1311.2524v5, 2014. [5] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T. Y. Lin, E. D. Cubuk, ..., and B. Zoph. Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation. arXiv:2012.07177, 2020. [6] X. Ke, J. Zou, and Y. Niu. End-to-end automatic image annotation based on deep CNN and multi-label data augmentation. IEEE Transactions on Multimedia, 21(8), pages 2093-2106, 2019. [7] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, ... , and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, pages 740-755, 2014. [8] R. P. Martinez, I. Schiopu, B. Cornelis, and A. Munteanu. Real-time instance segmentation of traffic videos for embedded devices. Sensors, 21(1), 275, 2021. [9] B.C. Russell, A. Torralba, K. P. Murphy, and W.T. Freeman. LabelMe: a database and web-based tool for image annotation. In IJCV, pages 157-173, 2008. [10] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Beyond skip connections: Top-down modulation for object detection. arXiv:1612.06851, 2016. [11] J. Uhrig, E. Rehder, B. Fr¨ohlich, U. Franke, and T. Brox. Box2pix: Single-shot instance segmentation by assigning pixels to object boxes. In IEEE IV, 2018. [12] L.-C. Chen, A. Hermans, G. Papandreou, F. Schroff, P. Wang, and H. Adam. MaskLab: Instance segmentation by refining object detection with semantic and direction features. In CVPR, pages 4013–4022, 2018. [13] Z. Tian, C. Shen, H. Chen, and T. He.FCOS: Fully Convolutional One-Stage Object Detection. arXiv:1904.01355, 2019. [14] H. Law and J. Deng. Cornernet: Detecting objects as paired keypoints. In ECCV, 2018. [15] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian. CenterNet: Keypoint triplets for object detection. In ICCV, 2019. [16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In CVPR, pages 779-788, 2016. [17] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. In ICCV, pages 2980-2988, 2017. [18] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015. [19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015. [20] Y. Li, H. Qi, J. Dai , X. Ji, and Y. Wei. Fully convolutional instance-aware semantic segmentation. In CVPR, pages 4438-4446, 2017. [21] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan. BlendMask: Top-down meets bottom-up for instance segmentation. In CVPR, 2020. [22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. [23] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable convolutional networks. In ICCV, 2017. [24] A. Kirillov, R. Girshick, K. He, and P. Dollar. Panoptic feature pyramid networks. In CVPR, 2019. [25] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image segmentation. In MICCAI,2015. [26] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In ECCV, 2016. [27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.SSD: Single shot multibox detector. In ECCV, 2016. [28] Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang. Mask Scoring R-CNN. In CVPR, 2019. [29] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal loss for dense object detection. In CVPR, 2017. [30] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation network for instance segmentation. In CVPR, 2018. [31] C.-Y. Fu, M. Shvets, and A. C. Berg. Retinamask: Learning to predict masks improves state-of-the-art single-shot detection for free. arXiv:1901.03353, 2019. |