帳號:guest(3.144.84.179)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):契賽弗
作者(外文):Chetheekkaranpurackal Joseph, Ouseph
論文名稱(中文):大型強子對撞機前端物理設施的新物理搜索
論文名稱(外文):New Physics Search at the Forward Physics Facilities at the LHC
指導教授(中文):張敬民
指導教授(外文):Cheung, Kingman
口試委員(中文):史馬丁
曾柏彥
王子敬
吳建宏
林貴林
口試委員(外文):Spinrath, Martin
Tseng, Po-yen
Wong, Henry Tsz King
Ng, Kin-Wang
Lin, Guey-Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108025892
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:111
中文關鍵詞:超越標準模型的物理中微子對撞機物理
外文關鍵詞:Physics Beyond Standard ModelNeutrinosCollider Physics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文利用 FASER$\nu$ 探測器以及提出的正向物理實驗,深入研究了標準模型 (BSM) 以外的物理學的各個方面。 研究範圍包括分析中微子和原子核之間的中性流散射,到檢查$Z'$ 模型產生的非標準相互作用、活性中微子和重中微子與$Z'$ 之間的過渡磁偶極矩相互作用以及暗光子模型。 透過使用簡化的 $Z'$ 模型對 FASER$\nu$ 探測器中的中性電流散射進行深入分析,我們確定了其在探測 BSM 場景中的卓越靈敏度,特別是在低質量狀態下。此外,我們透過 $Z'$ 車型提高了大型強子對撞機的單噴射發動機生產範圍,突出了 FASER$\nu$ 和單噴氣發動機生產在探測 $Z'$ 不同質量範圍時的互補性。FASER$\nu$ 辨別單一中微子味道的能力有助於更深入地了解中微子交互作用。 透過研究活性中微子$Z'$ 過渡磁偶極矩,我們揭示了對FASER$\nu$ 相互作用的見解,並證明了其在探測重中微子和$Z'$ 小質量狀態方面的有效性。 此外,也探討了各種正向物理實驗中暗光子模型的靈敏度,包括 FASER$\nu$、FASER$\nu2$、FLArE 和 SND$\textcircled{a}$LHC。論文的結論是,FASER$\nu$ 與其他正向物理實驗一起,為探索標準模型之外的物理學提供了一個有前途的平台,其結果促進了對基本粒子相互作用的理解並指導了未來高能物理的實驗工作。
This thesis delves into diverse facets of physics beyond the Standard Model (BSM) by leveraging the FASER$\nu$ detector alongside proposed forward physics experiments. The research spans from analyzing neutral-current scattering between neutrinos and nuclei to examining non-standard interactions arising from $Z'$ models, transitional magnetic dipole moment interactions between active and heavy neutrinos with $Z'$, and dark photon models. Through an in-depth analysis of neutral-current scattering in the FASER$\nu$ detector using a simplified $Z'$ model, we establish its superior sensitivity in probing BSM scenarios, particularly in low mass regimes. Additionally, we improve bounds on monojet production at the LHC through the $Z'$ model, highlighting the complementarity between FASER$\nu$ and monojet production in probing different mass ranges of $Z'$. The capability of FASER$\nu$ to discern individual neutrino flavors contributes to a deeper understanding of neutrino interactions. By studying the active-to-heavy-neutrino $Z'$ transitional magnetic dipole moment, we reveal insights into interactions at FASER$\nu$ and demonstrate its effectiveness in probing small mass regimes of heavy neutrinos and $Z'$. Furthermore, sensitivity reaches on dark photon models at various forward physics experiments, including FASER$\nu$, FASER$\nu2$, FLArE, and SND@LHC, are explored. The thesis concludes that FASER$\nu$, alongside other forward physics experiments, offers a promising platform for exploring physics beyond the Standard Model, with results advancing understanding of fundamental particle interactions and guiding future experimental endeavors in high-energy physics.
**Abstract (Chinese) I**
**Abstract II**
**Declaration IV**
**Acknowledgements V**
**Contents VI**
**List of Figures IX**
**List of Tables XI**

1. **Introduction** 1

2. **Neutrinos at the Forward Region of LHC** 4
2.1 Standard Model Neutrino Interactions 5
2.2 Neutrinos in Standard Model Weak Interactions 8
2.3 Collider Neutrinos and Forward Physics Experiments 10
2.4 The Proposed Forward Physics Facility and Neutrino Interactions 14

3. **Non-standard Neutrino and Z′ Interactions at the FASERν and the LHC** 17
3.1 The Z′ Model and Non-standard Neutrino Interactions 20
3.1.1 Non-standard Neutrino Interactions 21
3.2 Effects of Z′ on Monojet Production 24
3.2.1 Sensitivity Reach on Parameter Space of the Z′ Model and NSI’s 26
3.3 Effects of Z′ and Neutral-current NSI’s Interactions at FASERν 28
3.3.1 Z′ Interactions at FASERν 30
3.4 Complementarity of Monojet and FASERν Results 36

4. **Constraining the Transitional Magnetic Dipole Moment Interaction Between Active and Heavy Neutrinos with the Z′ at FASERν** 39
4.1 The Heavy Neutrino Model 43
4.2 Heavy Neutrino Production at FASERν 46
4.3 FASERν - FASER Sensitivity Towards Active to Heavy Neutrino Z′ Transitional Magnetic Dipole Moment 52
4.3.1 Benchmark Model I (BM-I): Heavy Neutrino N and Z′ Mixed with μ and νμ 58
4.3.2 Benchmark Model-II (BM-II): Heavy Neutrino N and Z′ Mixed with e and νe 61
4.3.3 Benchmark Model-III (BM-III): Heavy Neutrino N and Z′ Mixed with τ and ντ 63

5. **Dark Photon Search at the Forward Physics Facility** 67
5.1 The U(1)B−L Model 69
5.2 Neutrino-Electron Scattering 71
5.2.1 Standard Model Cross-Section 71
5.2.2 Dark Photon Contribution to the Cross-Section 72
5.3 Sensitivity Reach on Parameter Space of the Dark Photon Model at the Forward Physics Experiments 74
5.3.1 Dark Photon Interactions at FASERν and FASERν2 76
5.3.2 Dark Photon Interactions at SND@LHC 82
5.3.3 Dark Photon Interactions at FLArE (10 Tons) 84
5.4 Complementarity of FASERν /2, SND@LHC, and FLArE Results 86

6. **Conclusion** 91

**Bibliography** 97

A.1 Production Cross-Section of Heavy Neutrino Across Neutrino Energy Range 93
A.2 Angular Distributions of the Heavy Neutrino 93
A.3 Heavy Neutrino Decay Length 94
[1] Jonathan L. Feng, Iftah Galon, Felix Kling, and Sebastian Trojanowski. Dark Higgs bosons at the ForwArd Search ExpeRiment. Phys. Rev. D, 97(5):055034, 2018.
[2] Felix Kling and Sebastian Trojanowski. Heavy Neutral Leptons at FASER. Phys. Rev. D, 97(9):095016, 2018.
[3] Jonathan L. Feng, Iftah Galon, Felix Kling, and Sebastian Trojanowski. Axionlike particles at FASER: The LHC as a photon beam dump. Phys. Rev. D, 98(5):055021, 2018.
[4] Frank Deppisch, Suchita Kulkarni, and Wei Liu. Heavy neutrino production via Z′ at the lifetime frontier. Phys. Rev. D, 100(3):035005, 2019.
[5] Kingman Cheung, C. J. Ouseph, and TseChun Wang. Non-standard neutrino and Z’ interactions at the FASERν and the LHC. JHEP, 12:209, 2021.
[6] Nobuchika Okada, Satomi Okada, and Qaisar Shafi. Light Z‘ and dark matter from U(1)X gauge symmetry. Phys. Lett. B, 810:135845, 2020.
[7] Majid Bahraminasr, Pouya Bakhti, and Meshkat Rajaee. Sensitivities to secret neutrino interaction at FASERν. J. Phys. G, 48(9):095001, 2021.
[8] Kevin J. Kelly, Manibrata Sen, Walter Tangarife, and Yue Zhang. Origin of sterile neutrino dark matter via secret neutrino interactions with vector bosons. Phys. Rev. D, 101(11):115031, 2020.
[9] Adam Falkowski, Mart ́ın Gonz ́alez-Alonso, Joachim Kopp, Yotam Soreq, and Zahra Tabrizi. EFT at FASERν. JHEP, 10:086, 2021.
[10] Akitaka Ariga et al. FASER’s physics reach for long-lived particles. Phys. Rev. D, 99(9):095011, 2019.
[11] Ahmed Ismail, Roshan Mammen Abraham, and Felix Kling. Neutral current neutrino interactions at FASERν. Phys. Rev. D, 103(5):056014, 2021.
[12] J. A. Formaggio and G. P. Zeller. From eV to EeV: Neutrino Cross Sections Across Energy Scales. Rev. Mod. Phys., 84:1307–1341, 2012.
[13] Raj Gandhi, Chris Quigg, Mary Hall Reno, and Ina Sarcevic. Ultrahigh- energy neutrino interactions. Astropart. Phys., 5:81–110, 1996.
[14] Jonathan L. Feng et al. The Forward Physics Facility at the High-Luminosity LHC. J. Phys. G, 50(3):030501, 2023.
[15] Nikita Blinov, Kevin James Kelly, Gordan Z Krnjaic, and Samuel D Mc- Dermott. Constraining the Self-Interacting Neutrino Interpretation of the Hubble Tension. Phys. Rev. Lett., 123(19):191102, 2019.
[16] Francis-Yan Cyr-Racine and Kris Sigurdson. Limits on Neutrino-Neutrino Scattering in the Early Universe. Phys. Rev. D, 90(12):123533, 2014.
[17] Christina D. Kreisch, Francis-Yan Cyr-Racine, and Olivier Dor ́e. Neutrino puzzle: Anomalies, interactions, and cosmological tensions. Phys. Rev. D, 101(12):123505, 2020.
[18] Subhajit Ghosh, Rishi Khatri, and Tuhin S. Roy. Can dark neutrino in- teractions phase out the Hubble tension? Phys. Rev. D, 102(12):123544, 2020.
[19] G. De Lellis. Search for Hidden Particles (SHiP): a new experiment proposal. Nucl. Part. Phys. Proc., 263-264:71–76, 2015.
[20] M. Anelli et al. A facility to Search for Hidden Particles (SHiP) at the CERN SPS. 4 2015.
[21] Henso Abreu et al. Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC. Eur. Phys. J. C, 80(1):61, 2020.
[22] Akitaka Ariga et al. FASER: ForwArd Search ExpeRiment at the LHC. 1 2019.
[23] Xiao-Gang He, Girish C. Joshi, H. Lew, and R. R. Volkas. Simplest Z-prime model. Phys. Rev. D, 44:2118–2132, 1991.
[24] William Shepherd, Tim M. P. Tait, and Gabrijela Zaharijas. Bound states of weakly interacting dark matter. Phys. Rev. D, 79:055022, 2009.
[25] Georges Aad et al. Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at √s =13 TeV with the ATLAS detector. Phys. Rev. D, 103(11):112006, 2021.
[26] Guo-yuan Huang, Tommy Ohlsson, and Shun Zhou. Observational Con- straints on Secret Neutrino Interactions from Big Bang Nucleosynthesis. Phys. Rev. D, 97(7):075009, 2018.
[27] James B. Dent, Francesc Ferrer, and Lawrence M. Krauss. Constraints on Light Hidden Sector Gauge Bosons from Supernova Cooling. 1 2012.
[28] Roni Harnik, Joachim Kopp, and Pedro A. N. Machado. Exploring nu Signals in Dark Matter Detectors. JCAP, 07:026, 2012.
[29] Ann E. Nelson and Nikolaos Tetradis. CONSTRAINTS ON A NEW VEC- TOR BOSON COUPLED TO BARYONS. Phys. Lett. B, 221:80–84, 1989.
[30] Sean Tulin. New weakly-coupled forces hidden in low-energy QCD. Phys. Rev. D, 89(11):114008, 2014.
[31] Bernard Aubert et al. Search for Invisible Decays of a Light Scalar in Ra- diative Transitions υ3S → γ A0. In 34th International Conference on High Energy Physics, 7 2008.
[32] Rouven Essig, Jeremy Mardon, Michele Papucci, Tomer Volansky, and Yi- Ming Zhong. Constraining Light Dark Matter with Low-Energy e+e− Col- liders. JHEP, 11:167, 2013.
[33] Julian Heeck, Manfred Lindner, Werner Rodejohann, and Stefan Vogl. Non- Standard Neutrino Interactions and Neutral Gauge Bosons. SciPost Phys., 6(3):038, 2019.
[34] Neutrino Non-Standard Interactions: A Status Report, volume 2, 2019.
[35] L. Wolfenstein. Neutrino Oscillations in Matter. Phys. Rev. D, 17:2369–2374,
1978.
[36] S. P. Mikheyev and A. Yu. Smirnov. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos. Sov. J. Nucl. Phys., 42:913– 917, 1985.
[37] Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Jordi Salvado. Updated constraints on non-standard interactions from global analysis of oscillation data. JHEP, 08:180, 2018. [Addendum: JHEP 12, 152 (2020)].
[38] Alexander Friedland, Michael L. Graesser, Ian M. Shoemaker, and Luca Vec- chi. Probing Nonstandard Standard Model Backgrounds with LHC Mono- jets. Phys. Lett. B, 714:267–275, 2012.
[39] Sujata Pandey, Siddhartha Karmakar, and Subhendu Rakshit. Strong con- straints on non-standard neutrino interactions: LHC vs. IceCube. JHEP, 11:046, 2019.
[40] K. S. Babu, Dorival Gon ̧calves, Sudip Jana, and Pedro A. N. Machado. Neutrino Non-Standard Interactions: Complementarity Between LHC and Oscillation Experiments. Phys. Lett. B, 815:136131, 2021.
[41] DianYu Liu, ChuanLe Sun, and Jun Gao. Constraints on neutrino non- standard interactions from LHC data with large missing transverse momen- tum. JHEP, 02:033, 2021.
[42] Johan Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, and Tim Stelzer. MadGraph 5 : Going Beyond. JHEP, 06:128, 2011.
[43] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP, 07:079, 2014.
[44] Torbj ̈orn Sjo ̈strand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands. An introduction to PYTHIA 8.2. Comput. Phys. Commun., 191:159–177, 2015.
[45] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaˆıtre, A. Mertens, and M. Selvaggi. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. JHEP, 02:057, 2014.
[46] Adam Alloul, Neil D. Christensen, C ́eline Degrande, Claude Duhr, and Ben- jamin Fuks. FeynRules 2.0 - A complete toolbox for tree-level phenomenol- ogy. Comput. Phys. Commun., 185:2250–2300, 2014.
[47] M. G. Aartsen et al. Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption. Nature, 551:596–600, 2017.
[48] Amanda Cooper-Sarkar, Philipp Mertsch, and Subir Sarkar. The high energy neutrino cross-section in the Standard Model and its uncertainty. JHEP, 08:042, 2011.
[49] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, Pavel M. Nadolsky, and W. K. Tung. New generation of parton distributions with uncertainties from global QCD analysis. JHEP, 07:012, 2002.
[50] S. Davidson, C. Pena-Garay, N. Rius, and A. Santamaria. Present and future bounds on nonstandard neutrino interactions. JHEP, 03:011, 2003.
[51] Pouya Bakhti, Yasaman Farzan, and Silvia Pascoli. Discovery potential of FASERν with contained vertex and through-going events. JHEP, 04:075, 2021.
[52] S. Ansarifard and Y. Farzan. Neutral exotica at FASERν and SND@LHC. JHEP, 02:049, 2022.
[53] Felix Kling. Probing light gauge bosons in tau neutrino experiments. Phys. Rev. D, 102(1):015007, 2020.

[54] Krzysztof Jodlowski and Sebastian Trojanowski. Neutrino beam-dump ex- periment with FASER at the LHC. JHEP, 05:191, 2021.
[55] Peter Ballett, Matheus Hostert, Silvia Pascoli, Yuber F. Perez-Gonzalez, Zahra Tabrizi, and Renata Zukanovich Funchal. Z′s in neutrino scattering at DUNE. Phys. Rev. D, 100(5):055012, 2019.
[56] Wolfgang Altmannshofer, Stefania Gori, Maxim Pospelov, and Itay Yavin. Neutrino Trident Production: A Powerful Probe of New Physics with Neu- trino Beams. Phys. Rev. Lett., 113:091801, 2014.
[57] Wolfgang Altmannshofer, Stefania Gori, Stefano Profumo, and Farinaldo S. Queiroz. Explaining dark matter and B decay anomalies with an Lμ − Lτ model. JHEP, 12:106, 2016.
[58] Georges Aad et al. Measurements of Four-Lepton Production at the Z Res- onance in pp Collisions at √s =7 and 8 TeV with ATLAS. Phys. Rev. Lett., 112(23):231806, 2014.
[59] Albert M Sirunyan et al. Search for an Lμ − Lτ gauge boson using Z→ 4μ events in proton-proton collisions at √s = 13 TeV. Phys. Lett. B, 792:345– 368, 2019.
[60] J. P. Lees et al. Search for a muonic dark force at BABAR. Phys. Rev. D, 94(1):011102, 2016.
[61] Ayuki Kamada and Hai-Bo Yu. Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube. Phys. Rev. D, 92(11):113004, 2015.
[62] Sergei Gninenko and Dmitry Gorbunov. Refining constraints from Borexino measurements on a light Z’-boson coupled to Lμ-Lτ current. Phys. Lett. B, 823:136739, 2021.
[63] M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, E. Picciau, and Y. Y. Zhang. Constraints on light vector mediators through coherent elastic neutrino nucleus scattering data from COHERENT. JHEP, 01:116, 2021.
[64] Peter B. Denton, Yasaman Farzan, and Ian M. Shoemaker. Testing large non-standard neutrino interactions with arbitrary mediator mass after CO- HERENT data. JHEP, 07:037, 2018.
[65] Jiajun Liao and Danny Marfatia. COHERENT constraints on nonstandard neutrino interactions. Phys. Lett. B, 775:54–57, 2017.
[66] Matthew R. Buckley, Dan Hooper, Joachim Kopp, and Ethan Neil. Light Z’ Bosons at the Tevatron. Phys. Rev. D, 83:115013, 2011.
[67] Marcela Carena, Alejandro Daleo, Bogdan A. Dobrescu, and Timothy M. P. Tait. Z′ gauge bosons at the Tevatron. Phys. Rev. D, 70:093009, 2004.
[68] Mohammad Abdullah, James B. Dent, Bhaskar Dutta, Gordon L. Kane, Shu Liao, and Louis E. Strigari. Coherent elastic neutrino nucleus scattering as a probe of a Z’ through kinetic and mass mixing effects. Phys. Rev. D, 98(1):015005, 2018.
[69] Tsutomu Yanagida. Horizontal gauge symmetry and masses of neutrinos. Conf. Proc. C, 7902131:95–99, 1979.
[70] Rabindra N. Mohapatra and Goran Senjanovic. Neutrino Mass and Sponta- neous Parity Nonconservation. Phys. Rev. Lett., 44:912, 1980.

[71] P. S. Bhupal Dev and R. N. Mohapatra. TeV Scale Inverse Seesaw in SO(10) and Leptonic Non-Unitarity Effects. Phys. Rev. D, 81:013001, 2010.
[72] F. Deppisch and J. W. F. Valle. Enhanced lepton flavor violation in the supersymmetric inverse seesaw model. Phys. Rev. D, 72:036001, 2005.
[73] Felix Kling and Laurence J. Nevay. Forward neutrino fluxes at the LHC. Phys. Rev. D, 104(11):113008, 2021.
[74] Henso Abreu et al. The tracking detector of the FASER experiment. Nucl. Instrum. Meth. A, 1034:166825, 2022.
[75] Henso Abreu et al. The trigger and data acquisition system of the FASER experiment. JINST, 16(12):P12028, 2021.
[76] Henso Abreu et al. Technical Proposal: FASERnu. 1 2020.
[77] Akitaka Ariga et al. Technical Proposal for FASER: ForwArd Search Ex- peRiment at the LHC. 12 2018.
[78] Yongsoo Jho, Jongkuk Kim, Pyungwon Ko, and Seong Chan Park. Search for sterile neutrino with light gauge interactions: recasting collider, beam- dump, and neutrino telescope searches. 8 2020.
[79] Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Arsenii Titov, and Zeren Simon Wang. Heavy neutral leptons in effective field theory and the high-luminosity LHC. JHEP, 09:039, 2021.
[80] Ahmed Ismail, Sudip Jana, and Roshan Mammen Abraham. Neutrino up- scattering via the dipole portal at forward LHC detectors. Phys. Rev. D, 105(5):055008, 2022.
[81] Arindam Das, Sanjoy Mandal, Takaaki Nomura, and Sujay Shil. Heavy Majorana neutrino pair production from Z’ at hadron and lepton colliders. Phys. Rev. D, 105(9):095031, 2022.
[82] Arindam Das, P. S. Bhupal Dev, and Nobuchika Okada. Long-lived TeV- scale right-handed neutrino production at the LHC in gauged U(1)X model. Phys. Lett. B, 799:135052, 2019.
[83] Marco Drewes and Bj ̈orn Garbrecht. Combining experimental and cosmo- logical constraints on heavy neutrinos. Nucl. Phys. B, 921:250–315, 2017.
[84] R. E. Shrock. A Test for the Existence of Effectively Stable Neutral Heavy Leptons. Phys. Rev. Lett., 40:1688, 1978.
[85] E. Gallas et al. Search for neutral weakly interacting massive particles in the Fermilab Tevatron wide band neutrino beam. Phys. Rev. D, 52:6–14, 1995.
[86] Silvia Pascoli, Richard Ruiz, and Cedric Weiland. Heavy neutrinos with dynamic jet vetoes: multilepton searches at √s = 14 , 27, and 100 TeV. JHEP, 06:049, 2019.
[87] Daniel Alva, Tao Han, and Richard Ruiz. Heavy Majorana neutrinos from Wγ fusion at hadron colliders. JHEP, 02:072, 2015.
[88] Anupama Atre, Tao Han, Silvia Pascoli, and Bin Zhang. The Search for Heavy Majorana Neutrinos. JHEP, 05:030, 2009.
[89] JoAnne L. Hewett and Thomas G. Rizzo. Low-Energy Phenomenology of Superstring Inspired E(6) Models. Phys. Rept., 183:193, 1989.
[90] A. Leike. The Phenomenology of extra neutral gauge bosons. Phys. Rept., 317:143–250, 1999.
[91] Paul Langacker. The Physics of Heavy Z′ Gauge Bosons. Rev. Mod. Phys., 81:1199–1228, 2009.
[92] Hye-Sung Lee. R-parity violating U(1)-prime - extended supersymmetric standard model. Mod. Phys. Lett. A, 23:3271–3283, 2008.
[93] M. Agostini et al. Limiting neutrino magnetic moments with Borexino Phase- II solar neutrino data. Phys. Rev. D, 96(9):091103, 2017.
[94] Vedran Brdar, Admir Greljo, Joachim Kopp, and Toby Opferkuch. The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection. JCAP, 01:039, 2021.
[95] Gabriel Magill, Ryan Plestid, Maxim Pospelov, and Yu-Dai Tsai. Dipole Portal to Heavy Neutral Leptons. Phys. Rev. D, 98(11):115015, 2018.
[96] Pilar Coloma, Pedro A. N. Machado, Ivan Martinez-Soler, and Ian M. Shoe- maker. Double-Cascade Events from New Physics in Icecube. Phys. Rev. Lett., 119(20):201804, 2017.
[97] Richard D. Ball et al. Parton distributions from high-precision collider data. Eur. Phys. J. C, 77(10):663, 2017.
[98] Johan Alwall, Claude Duhr, Benjamin Fuks, Olivier Mattelaer, Deniz Gizem O ̈ztu ̈rk, and Chia-Hsien Shen. Computing decay rates for new physics the- ories with FeynRules and MadGraph 5 aMC@NLO. Comput. Phys. Com- mun., 197:312–323, 2015.
[99] D. Geiregat et al. First observation of neutrino trident production. Phys. Lett. B, 245:271–275, 1990.
[100] W. Czyz, G. C. Sheppey, and J. D. Walecka. Neutrino production of lepton pairs through the point four-fermion interaction. Nuovo Cim., 34:404–435, 1964.
[101] J. Lovseth and M. Radomiski. Kinematical distributions of neutrino- produced lepton triplets. Phys. Rev. D, 3:2686–2706, 1971.
[102] Gabriel Magill and Ryan Plestid. Probing new charged scalars with neutrino trident production. Phys. Rev. D, 97(5):055003, 2018.
[103] Gabriel Magill and Ryan Plestid. Neutrino Trident Production at the Inten- sity Frontier. Phys. Rev. D, 95(7):073004, 2017.
[104] Peter Ballett, Matheus Hostert, Silvia Pascoli, Yuber F. Perez-Gonzalez, Zahra Tabrizi, and Renata Zukanovich Funchal. Neutrino Trident Scattering at Near Detectors. JHEP, 01:119, 2019.
[105] R. W. Brown, R. H. Hobbs, J. Smith, and N. Stanko. Intermediate boson. iii. virtual-boson effects in neutrino trident production. Phys. Rev. D, 6:3273– 3292, 1972.
[106] R. Belusevic and J. Smith. W - Z Interference in Neutrino - Nucleus Scat- tering. Phys. Rev. D, 37:2419, 1988.
[107] Wolfgang Altmannshofer, Stefania Gori, Justo Mart ́ın-Albo, Alexandre Sousa, and Michael Wallbank. Neutrino Tridents at DUNE. Phys. Rev. D, 100(11):115029, 2019.
[108] R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
[109] Daniel Z. Freedman. Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current. Phys. Rev. D, 9:1389–1392, 1974.
[110] Matthew J. Strassler and Kathryn M. Zurek. Echoes of a hidden valley at hadron colliders. Phys. Lett. B, 651:374–379, 2007.
[111] S. Bilmis, I. Turan, T. M. Aliev, M. Deniz, L. Singh, and H. T. Wong. Con- straints on Dark Photon from Neutrino-Electron Scattering Experiments. Phys. Rev. D, 92(3):033009, 2015.
[112] Kaustav Chakraborty, Arindam Das, Srubabati Goswami, and Samiran Roy. Constraining general U(1) interactions from neutrino-electron scat- tering measurements at DUNE near detector. JHEP, 04:008, 2022.
[113] Rouven Essig et al. Working Group Report: New Light Weakly Coupled Particles. In Snowmass 2013: Snowmass on the Mississippi, 10 2013.

[114] Rouven Essig, Roni Harnik, Jared Kaplan, and Natalia Toro. Discovering New Light States at Neutrino Experiments. Phys. Rev. D, 82:113008, 2010.
[115] Rouven Essig, Philip Schuster, and Natalia Toro. Probing Dark Forces and Light Hidden Sectors at Low-Energy e+e- Colliders. Phys. Rev. D, 80:015003, 2009.
[116] Luis A. Anchordoqui et al. The Forward Physics Facility: Sites, experiments, and physics potential. Phys. Rept., 968:1–50, 2022.

[117] Kingman Cheung and C. J. Ouseph. Constraining the transitional magnetic dipole moment interaction between active and heavy neutrinos with the Z′ at FASERν. Eur. Phys. J. C, 83(7):593, 2023.
[118] Brian Batell, Jonathan L. Feng, and Sebastian Trojanowski. Detecting Dark Matter with Far-Forward Emulsion and Liquid Argon Detectors at the LHC. Phys. Rev. D, 103(7):075023, 2021.
[119] Brian Batell, Jonathan L. Feng, Ahmed Ismail, Felix Kling, Roshan Mam- men Abraham, and Sebastian Trojanowski. Discovering dark matter at the LHC through its nuclear scattering in far-forward emulsion and liquid argon detectors. Phys. Rev. D, 104(3):035036, 2021.

[120] Brian Batell, Jonathan L. Feng, Max Fieg, Ahmed Ismail, Felix Kling, Roshan Mammen Abraham, and Sebastian Trojanowski. Hadrophilic dark sectors at the Forward Physics Facility. Phys. Rev. D, 105(7):075001, 2022.

[121] Martin Bauer, Patrick Foldenauer, and Joerg Jaeckel. Hunting All the Hid- den Photons. JHEP, 07:094, 2018.

[122] A. G. Beda, E. V. Demidova, A. S. Starostin, V. B. Brudanin, V. G. Egorov, D. V. Medvedev, M. V. Shirchenko, and Ts. Vylov. GEMMA experiment: Three years of the search for the neutrino magnetic moment. Phys. Part. Nucl. Lett., 7:406–409, 2010.

[123] Jiunn-Wei Chen, Hsin-Chang Chi, Hau-Bin Li, C. P. Liu, Lakhwinder Singh, Henry T. Wong, Chih-Liang Wu, and Chih-Pan Wu. Constraints on mil- licharged neutrinos via analysis of data from atomic ionizations with germa- nium detectors at sub-keV sensitivities. Phys. Rev. D, 90(1):011301, 2014.

[124] H. B. Li et al. Limit on the electron neutrino magnetic moment from the Kuo-Sheng reactor neutrino experiment. Phys. Rev. Lett., 90:131802, 2003.

[125] G. Bellini et al. Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett., 107:141302, 2011.

[126] M. Deniz et al. Measurement of Nu(e)-bar -Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor. Phys. Rev. D, 81:072001, 2010.


[127] L. B. Auerbach et al. Measurement of electron - neutrino - electron elastic scattering. Phys. Rev. D, 63:112001, 2001.

[128] P. Vilain et al. Measurement of differential cross-sections for muon-neutrino electron scattering. Phys. Lett. B, 302:351–355, 1993.


[129] Yu. M. Andreev et al. Search for a New B-L Z’ Gauge Boson with the NA64 Experiment at CERN. Phys. Rev. Lett., 129(16):161801, 2022.

[130] Luis A. Anchordoqui, Ignatios Antoniadis, Karim Benakli, and Dieter Lust. Anomalous U(1) gauge bosons and string physics at the forward physics facility. Phys. Lett. B, 832:137253, 2022.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *