帳號:guest(3.15.150.226)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王重文
作者(外文):Wang, Chung-Wen
論文名稱(中文):鬼魅星系: 在低質量暗物質暈裡的吸積主宰星系
論文名稱(外文):Ghostly galaxies: accretion-dominated stellar systems in low-mass dark matter halos
指導教授(中文):安德魯 古柏
指導教授(外文):Cooper, Andrew
口試委員(中文):何英宏
薛熙于
口試委員(外文):Harsono, Daneil
Schive, Hsi-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:108025701
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:47
中文關鍵詞:暗物質吸積模擬矮星系
外文關鍵詞:dark matteraccretionsimulationdwarf galaxies
相關次數:
  • 推薦推薦:0
  • 點閱點閱:84
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這個論文中,我會探討一個新的矮星系的形成情況。這種星系獲得質量的主要來源是吸積,不像一般的星系有吸積有合併。'鬼魅'星系的命名啟發於Lynden-Bell與Lynden-Bell的文章\cite{Lynden-Bell:1995vu},這之後'鬼魅'這個詞也被用來描述由再電離前星系所組成殘骸的恆星暈\cite{Ricotti_2005ApJ_DwarfinLocalGroup,Ricotti_2022_GhostlyStellarHalo},這些星系在再電離後停止了星體形成且保留了再電離前的資訊(例如:化學組成)。鬼魅星系本體不擁有一個星系而是藉由合併其他星系去得到,有些合併得到的星系也包含了再電離前的星系,因此整個星系全是由再電離前星系的殘骸所組成。研究這些殘骸可以讓我們認知再電離前的環境和星體組成,而且不需要觀察高度紅位移的星系。

當鬼魅星系進入一個比較大質量的暗物質暈可能會在動力摩擦(當進入一個更高職量的暗物質暈裡一個暗物質暈會感覺到的摩擦力)的作用下變得比較擴散。主要分枝缺少中心星系倒置鬼魅星系在合併之後變成一個純恆心暈的星系。鬼魅星系擴散般的結構可能跟一些極低表面亮度的星系有關。因此藉由模擬來理解鬼魅星系的性質(光度函數和密度剖面等等)會很有趣。

章節一會先做基礎的介紹。第一個段落我會講超暗矮星系和近來的研究。這個段落會有二個小節。第一個小節是極低表面亮度星系的發現被稱作超暗矮星系。不像矮橢球星系,這種矮星系有著更低的亮度。這些低表面亮度的星系之前不斷的在斯隆數字巡天和DES/Pan-STARRS發現,更勝於之的還有,超彌散星系有著相似的表面亮度但銀河系的大小會在下個小節。第二個段落是在這個研究中用到的模擬。第三段落是星系形成的基礎條件介紹。最後一個段落是它們是否存在於模擬中。

章節二會細說在暗物質暈裡形成星系的條件。並非所有暗物質暈都能形成星系,除非冷卻氣體的效率夠高。冷卻門檻在再電離前可以近似為7000K,再電離後 $4\times10^{4} \mathrm{K}$。個個段落會介紹更多這二個不同的門檻。

章節三是較完整的模擬說明。第一段介紹一個廣泛用在暗物質暈模擬的合併樹。對於用到的模擬,Extended Press-Schechter碼和Copernicus Complexio模擬用來預期一種經由特別的形成歷史的星系的性質。每個小節會講各自的細節和優點。

章節四是整個預測鬼魅星系的成果。我們先調查了鬼魅星系確實能在N-body模擬中發生,然後用半解析模型EPS去做統計確認,還有光度函數和合併時間與合併質量。在非群集區域他們有著傾向的質量在大約$\sim4\times10^{9}\,\mathrm{M_{\odot}}$ 於紅位移等於0的時候,大約5\% 的同質量暗物質暈是鬼魅星系。對於不同再電離強度和光度函數的性質也有被討論。最後我們會做個結論鬼魅星系是否能被觀測和超暗矮星系與超彌散星系的比較。

章節五是總結
In this thesis, I will discuss a new scenario for the formation of dwarf galaxies. These galaxies obtain their stellar mass mostly by accretion, unlike normal galaxies, obtaining their mass by both smooth accretion and mergers. The term 'Ghostly' Galaxy is inspired from Lynden-Bell \& Lynden-Bell\cite{Lynden-Bell:1995vu}, later this 'Ghostly' term is also used to describe stellar halos that come from relics of pre-ionization galaxies \cite{Ricotti_2005ApJ_DwarfinLocalGroup,Ricotti_2022_GhostlyStellarHalo} which shut off their star formation after the reionization and preserved the information (i.e. chemical abundance) before the reionization. Ghostly galaxies do not host a galaxy itself but accrete one through merger and some of them contain only galaxies form before reionization, it is therefore, the entire galaxy is the relics of pre-reionization galaxies. Studying pre-reionization relics gives us insights of the environment and stellar composition before the reionization, and this does not require us to observe extremely high redshift galaxies.

Ghostly galaxies may looked diffuse because the dynamical friction (a halo will feel a friction force when falling into a bigger halo) acting on the galaxies that fall into a higher mass halo. Lacking a central galaxy in the main branch halo makes ghostly galaxies become a pure stellar halo galaxy after mergers. The diffuse structure of ghostly galaxies perhaps relates to some extremely low surface brightness galaxies (i.e. ultra faint dwarfs or ultra diffuse galaxies). It will be interesting to understand the properties (the luminosity function, density profiles, etc) of those ghostly galaxies by simulation.

Chapter 1 is a general introduction. First section I will talk about the ultra-faint dwarfs and recent researches on these objects, why they are important and why they link to our work. There are two subsections in this section, first is the discovery of extremely low surface brightness dwarf galaxies, so-called Ultra Faint Dwarfs (UFDs). Unlike normal dwarf spheroidal galaxies, this type of dwarf galaxies have much lower brightness. These new low surface brightness objects were continuously discovered by Sloan Digital Sky Survey (SDSS) and DES/Pan-STARRS, and furthermore, Ultra diffuse galaxies with similar surface brightness but size of our Milky Way galaxy will be in the next subsection. Second section is the two simulations used in this research. Third section is the basic idea of galaxy forming criteria. The final section talks about their existence in the simulations.


Chapter 2 will talk about the condition of forming a galaxy in a dark matter halo. Not all dark matter halos are able to form a galaxy inside, unless the gas cooling efficiency is high enough to turn the hot gas into cold gas for galaxy formation. The cooling threshold can be approximated as $\mathrm{T_{200} = 7000 K}$ and $\mathrm{T_{200} = 4\times10^{4} K}$ before reionization and after reionization, respectively. More information on the different cooling thresholds are discussed in each section.

Chapter 3 is the simulations and methods that used in this research. The first section introduced the idea of merger tree which is generally used to describe the formation history of dark matter halos. For the simulations, the Extended Press-Schechter (EPS) code \cite{Parkinson2007} and the Copernicus Complexio (Coco) simulation \cite{Hellwing_2016} are tools used to predict the properties of galaxies with a certain type of assembly history. One section will be given to each simulation to explain details and advantages of the simulation.

Chapter 4 present our results of prediction on the ghostly galaxy scenario. We first inspect the ghostly galaxy scenario indeed happened in the coco N-body simulation and then use the EPS semi-analytic model to do the statistical checks and some follow up study which includes luminosity function and merger time and mass ratio. They have a preferential halo mass of $\sim4\times10^{9}\,\mathrm{M_{\odot}}$ at z=0 for field halos, it has a peak of $\sim5$ per cent of all halos of that mass. Properties of different reionization intensity and luminosity function are also discussed. At the End, we will conclude whether ghostly galaxies are detectable and how they match observed UFDs/UDGs.

Chapter 5 is the summary.
Abstract (Chinese)
Publication Statement (Chinese/English)
Abstract
Acknowledgements
Contents
List of Figures
List of Tables
1 Introduction----1
1.1 Detection of diffuse dwarf galaxies----1
1.1.1 Ultra Faint Dwarfs----2
1.1.2 Ultra diffuse Galaxies----2
1.2 Methods for approaching our targets, the Ghostly Galaxies----3
1.3 Not all dark matter halos host a galaxy----4
1.4 Finally, they might be hidden in the dark sky----4
2 Simulation----6
2.1 The merger tree----7
2.2 The Coco Simulation----9
2.3 The EPS methods----10
3 The Virial Temperature Threshold----11
3.1 Gas Cooling----12
3.1.1 Before The Reionization----13
3.1.2 After The Reionization----14
4 Ghosts Hunting Results----16
4.1 Frequency of Ghostly Galaxies----16
4.2 The Luminosity Function----20
4.3 Merger mass ratio and time----27
4.4 Particle tagging methods----29
5 Conclusion----36
Bibliography
[1] D. Lynden-Bell and R. M. Lynden-Bell. Ghostly streams from the formation
of the Galaxy’s halo. MNRAS, 275(2):429–442, July 1995.
[2] Massimo Ricotti and Nickolay Y. Gnedin. Formation Histories of Dwarf
Galaxies in the Local Group. ApJ, 629(1):259–267, August 2005.
[3] Massimo Ricotti, Emil Polisensky, and Emily Cleland. Ghostly stellar haloes
and their relationship to ultra-faint dwarfs. Monthly Notices of the Royal
Astronomical Society, may 2022.
[4] Hannah Parkinson, Shaun Cole, and John Helly. Generating dark matter halo
merger trees. Monthly Notices of the Royal Astronomical Society, 383(2):557–
564, dec 2007.
[5] Wojciech A. Hellwing, Carlos S. Frenk, Marius Cautun, Sownak Bose, John
Helly, Adrian Jenkins, Till Sawala, and Maciej Cytowski. The copernicus
complexio: a high-resolution view of the small-scale universe. Monthly Notices
of the Royal Astronomical Society, 457(4):3492–3509, feb 2016.
[6] Cedric Lacey and Shaun Cole. Merger rates in hierarchical models of galaxy
formation. MNRAS, 262(3):627–649, June 1993.
[7] Peter Behroozi, Risa H Wechsler, Andrew P Hearin, and Charlie Conroy.
UniverseMachine: The correlation between galaxy growth and dark matterhalo assembly from z = 0-10. Monthly Notices of the Royal Astronomical
Society, 488(3):3143–3194, may 2019.
[8] N. Trentham, R. B. Tully, and M. A. W. Verheijen. The Ursa Major cluster
of galaxies - III. Optical observations of dwarf galaxies and the luminosity
function down to MR=-11. MNRAS, 325:385–404, July 2001.
[9] Pieter G. van Dokkum, Roberto Abraham, Allison Merritt, Jielai Zhang,
Marla Geha, and Charlie Conroy. FORTY-SEVEN MILKY WAY-SIZED,
EXTREMELY DIFFUSE GALAXIES IN THE COMA CLUSTER. The As-
trophysical Journal, 798(2):L45, jan 2015.
[10] Ben Moore, Neal Katz, George Lake, Alan Dressler, and Augustus Oem-
ler. Galaxy harassment and the evolution of clusters of galaxies. Nature,
379(6566):613–616, feb 1996.
[11] L. Mayer, C. Mastropietro, J. Wadsley, J. Stadel, and B. Moore. Simultaneous
ram pressure and tidal stripping; how dwarf spheroidals lost their gas. Monthly
Notices of the Royal Astronomical Society, 369(3):1021–1038, jul 2006.
[12] Jin Koda, Masafumi Yagi, Hitomi Yamanoi, and Yutaka Komiyama. Ap-
proximately a Thousand Ultra-diffuse Galaxies in the Coma Cluster. ApJ,
807(1):L2, July 2015.
[13] C. Yozin and K. Bekki. The quenching and survival of ultra diffuse galaxies
in the Coma cluster. MNRAS, 452(1):937–943, September 2015.
[14] Jos ́e A. Benavides, Laura V. Sales, Mario. G. Abadi, Annalisa Pillepich, Dylan
Nelson, Federico Marinacci, Michael Cooper, Ruediger Pakmor, Paul Torrey,
Mark Vogelsberger, and Lars Hernquist. Quiescent ultra-diffuse galaxies in
the field originating from backsplash orbits. Nature Astronomy, 5:1255–1260,
September 2021.
[15] Fangzhou Jiang, Avishai Dekel, Jonathan Freundlich, Aaron J. Romanowsky,
Aaron A. Dutton, Andrea V. Macci`o, and Arianna Di Cintio. Formation of
ultra-diffuse galaxies in the field and in galaxy groups. MNRAS, 487(4):5272–
5290, August 2019.
[16] N. C. Amorisco and A. Loeb. Ultradiffuse galaxies: the high-spin tail of the
abundant dwarf galaxy population. MNRAS, 459:L51–L55, June 2016.
[17] Arianna Di Cintio, Chris B. Brook, Aaron A. Dutton, Andrea V. Macci`o,
Aura Obreja, and Avishai Dekel. NIHAO - XI. Formation of ultra-diffuse
galaxies by outflows. MNRAS, 466(1):L1–L6, March 2017.
[18] Beth Willman, Michael R. Blanton, Andrew A. West, Julianne J. Dalcanton,
David W. Hogg, Donald P. Schneider, Nicholas Wherry, Brian Yanny, and
Jon Brinkmann. A new milky way companion: Unusual globular cluster or
extreme dwarf satellite? The Astronomical Journal, 129(6):2692–2700, jun
2005.
[19] Coral Wheeler, Jose O ̃norbe, James S. Bullock, Michael Boylan-Kolchin,
Oliver D. Elbert, Michael Shea Garrison-Kimmel, Philip F. Hopkins, and
Duˇsan Kereˇs. Sweating the small stuff: Simulating dwarf galaxies, ultra-faint
dwarf galaxies, and their own tiny satellites. Monthly Notices of the Royal
Astronomical Society, 453:1305–1316, 8 2015.
[20] Joshua D. Simon. The faintest dwarf galaxies. Annual Review of Astronomy
and Astrophysics, 57(1):375–415, aug 2019.
[21] Pieter G. van Dokkum, Roberto Abraham, Allison Merritt, Jielai Zhang,
Marla Geha, and Charlie Conroy. Forty-seven milky way-sized, extremely
diffuse galaxies in the coma cluster. Astrophysical Journal Letters, 798, 10
2014. There are some similar objects reported before. (Impey1988...).
[22] R. A. E. Fosbury, U. Mebold, W. M. Goss, and M. A. Dopita. The active
elliptical galaxy NGC 1052. MNRAS, 183:549–568, June 1978.
[23] I. D. Karachentsev, V. E. Karachentseva, A. A. Suchkov, and E. K. Grebel.
Dwarf galaxy candidates found on the SERC EJ sky survey. A&AS, 145:415–
423, September 2000.
[24] Pieter van Dokkum, Shany Danieli, Yotam Cohen, Allison Merritt, Aaron J.
Romanowsky, Roberto Abraham, Jean Brodie, Charlie Conroy, Deborah
Lokhorst, Lamiya Mowla, Ewan O’Sullivan, and Jielai Zhang. A galaxy lack-
ing dark matter. Nature, 555(7698):629–632, March 2018.
[25] Ignacio Trujillo. Ultra-diffuse galaxies at the crossroads. Nature Astronomy,
5:1182–1184, 12 2021. This paper discusses whether UDGs are really different
to regular ultra faint dwarfs. A UDG with a same mass dwarf will have a
larger ref f because the center of the UDG has very little star formation. 1.
velocity disperson is the same 2. number of globular clusters is the same.
[26] V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F.
Navarro, C. S. Frenk, and S. D.M. White. The aquarius project: The sub-
haloes of galactic haloes. Monthly Notices of the Royal Astronomical Society,
391:1685–1711, 2008.
[27] Michael Boylan-Kolchin, Volker Springel, Simon D. M. White, Adrian Jenk-
ins, and Gerard Lemson. Resolving cosmic structure formation with the
Millennium-II Simulation. MNRAS, 398(3):1150–1164, September 2009.
[28] E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw,
N. Jarosik, D. Larson, M. R. Nolta, L. Page, D. N. Spergel, M. Halpern,
R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker,
J. L. Weiland, E. Wollack, and E. L. Wright. Seven-year Wilkinson Mi-
crowave Anisotropy Probe (WMAP) Observations: Cosmological Interpreta-
tion. ApJS, 192(2):18, February 2011.
[29] Volker Springel, Simon D. M. White, Giuseppe Tormen, and Guinevere Kauff-
mann. Populating a cluster of galaxies - i. results at \fontshape{it}{z}=0.
Monthly Notices of the Royal Astronomical Society, 328(3):726–750, dec 2001.
[30] Shaun Cole, Cedric G. Lacey, Carlton M. Baugh, and Carlos S. Frenk. Hier-
archical galaxy formation. MNRAS, 319(1):168–204, November 2000.
[31] Andrew J Benson, Aaron Ludlow, and Shaun Cole. Halo concentrations from
extended press–schechter merger histories. Monthly Notices of the Royal As-
tronomical Society, 485(4):5010–5020, mar 2019.
[32] Thales A. Gutcke, Christoph Pfrommer, Greg L. Bryan, R ̈udiger Pakmor,
Volker Springel, and Thorsten Naab. Lyra iii: The smallest reionization sur-
vivors. The Astrophysical Journal, 2022.
[33] John H. Wise, Matthew J. Turk, Michael L. Norman, and Tom Abel. The
birth of a galaxy: Primordial metal enrichment and stellar populations. The
Astrophysical Journal, 11 2010. 2012? Pop3 stars enrich.
[34] Alejandro Benitez-Llambay and Carlos Frenk. The detailed structure and the
onset of galaxy formation in low-mass gaseous dark matter haloes. Monthly
Notices of the Royal Astronomical Society, 498(4):4887–4900, sep 2020.
[35] James E. Gunn and Bruce A. Peterson. On the Density of Neutral Hydrogen
in Intergalactic Space. ApJ, 142:1633–1636, November 1965.
[36] Robert H. Becker, Xiaohui Fan, Richard L. White, Michael A. Strauss, Vi-
jay K. Narayanan, Robert H. Lupton, James E. Gunn, James Annis, Neta A.
Bahcall, J. Brinkmann, A. J. Connolly, Istv ́a n Csabai, Paul C. Czarapata,
Mamoru Doi, Timothy M. Heckman, G. S. Hennessy, ˇZeljko Ivezi ́c, G. R.
Knapp, Don Q. Lamb, Timothy A. McKay, Jeffrey A. Munn, Thomas Nash,
Robert Nichol, Jeffrey R. Pier, Gordon T. Richards, Donald P. Schneider,
Chris Stoughton, Alexander S. Szalay, Aniruddha R. Thakar, and D. G. York.
Evidence for reionization at [ITAL][CLC]z[/CLC][/ITAL] ∼ 6: Detection of a
gunn-peterson trough in a [ITAL][CLC]z[/CLC][/ITAL] = 6.28 quasar. The
Astronomical Journal, 122(6):2850–2857, dec 2001.
[37] D. N. Spergel, R. Bean, O. Dore, M. R. Nolta, C. L. Bennett, J. Dunk-
ley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page, H. V. Peiris, L. Verde,
M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S.
Tucker, J. L. Weiland, E. Wollack, and E. L. Wright. Three-year wilkinson mi-
crowave anisotropy probe (WMAP) observations: Implications for cosmology.
The Astrophysical Journal Supplement Series, 170(2):377–408, jun 2007.
[38] A. S. Font, A. J. Benson, R. G. Bower, C. S. Frenk, A. Cooper, G. De Lucia,
J. C. Helly, A. Helmi, Y.-S. Li, I. G. McCarthy, J. F. Navarro, V. Springel,
E. Starkenburg, J. Wang, and S. D. M. White. The population of Milky
Way satellites in the Λ cold dark matter cosmology. MNRAS, 417:1260–1279,
October 2011.
[39] Till Sawala, Carlos S. Frenk, Azadeh Fattahi, Julio F. Navarro, Richard G.
Bower, Robert A. Crain, Claudio Dalla Vecchia, Michelle Furlong, Adrian
Jenkins, Ian G. McCarthy, Yan Qu, Matthieu Schaller, Joop Schaye, and
Tom Theuns. Bent by baryons: the low-mass galaxy-halo relation. Monthly
Notices of the Royal Astronomical Society, 448(3):2941–2947, mar 2015.
[40] Yunchong Wang, Ethan O. Nadler, Yao-Yuan Mao, Susmita Adhikari, Risa H.
Wechsler, and Peter Behroozi. Universemachine: Predicting galaxy star for-mation over seven decades of halo mass with zoom-in simulations. The Astro-
physical Journal, 915:116, 7 2021. The removal of late time sf at z<=1 cause
stellar mass of dwarfs being underestimate. They said there are some diffi-
culties when applying UM to zoom-in simulation. Is it because an individual
galaxy can not reflect the halo aboundance? That’s why they have to count
all 45 zoom-in galaxies together? The process of getting the SMHM relation
at low mass end is to use SFR.
[41] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. M. White. The evolution
of large-scale structure in a universe dominated by cold dark matter. ApJ,
292:371–394, May 1985.
[42] Lilian Jiang, John C. Helly, Shaun Cole, and Carlos S. Frenk. N-body dark
matter haloes with simple hierarchical histories. Monthly Notices of the Royal
Astronomical Society, 440:2115–2135, 2014.
[43] Andrew P. Cooper, Shaun Cole, Carlos S. Frenk, Theo Le Bret, and Andrew
Pontzen. Comparing semi-analytic particle tagging and hydrodynamical sim-
ulations of the Milky Way’s stellar halo. MNRAS, 469(2):1691–1712, August
2017.
[44] G. Torrealba, S. E. Koposov, V. Belokurov, and M. Irwin. The feeble giant.
discovery of a large and diffuse milky way dwarf galaxy in the constellation of
crater. Monthly Notices of the Royal Astronomical Society, 1 2016. Crater2,
the fourth largest satellite of the Milky Way.
[45] David J. Sand, Bur ̧cin Mutlu-Pakdil, Michael G. Jones, Ananthan
Karunakaran, Feige Wang, Jinyi Yang, Anirudh Chiti, Paul Bennet, Denija
Crnojevi ́c, and Kristine Spekkens. Tucana B: A Potentially Isolated and Quenched Ultra-faint Dwarf Galaxy at D = 1.4 Mpc. ApJ, 935(1):L17, Au-
gust 2022.
[46] Pieter van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, and
Aaron J. Romanowsky. A Second Galaxy Missing Dark Matter in the NGC
1052 Group. ApJ, 874(1):L5, March 2019.
[47] Go Ogiya. Tidal stripping as a possible origin of the ultra diffuse galaxy
lacking dark matter. Monthly Notices of the Royal Astronomical Society:
Letters, 480:L106–L110, 10 2018.
[48] Mireia Montes, Ra ́ul Infante-Sainz, Alberto Madrigal-Aguado, Javier Rom ́an,
Matteo Monelli, Alejandro S. Borlaff, and Ignacio Trujillo. The Galaxy “Miss-
ing Dark Matter” NGC 1052-DF4 is Undergoing Tidal Disruption. ApJ,
904(2):114, December 2020.
[49] Pieter van Dokkum, Shany Danieli, Yotam Cohen, Allison Merritt, Aaron J.
Romanowsky, Roberto Abraham, Jean Brodie, Charlie Conroy, Deborah
Lokhorst, Lamiya Mowla, Ewan O’Sullivan, and Jielai Zhang. A galaxy lack-
ing dark matter. Nature, 3 2018. A UDG lacks of dark matter.
[50] Charles C. Dyer and Peter S. S. Ip. Softening in N-Body Simulations of
Collisionless Systems. ApJ, 409:60, May 1993.
[51] Alis J Deason, Sownak Bose, Azadeh Fattahi, Nicola C Amorisco, Wojciech
Hellwing, and Carlos S Frenk. Dwarf stellar haloes: a powerful probe of small-
scale galaxy formation and the nature of dark matter. Monthly Notices of the
Royal Astronomical Society, 511(3):4044–4059, dec 2021.
[52] Sarah Brough, Chris Collins, Ricardo Demarco, Henry C. Ferguson, Gaspar
Galaz, Benne Holwerda, Cristina Martinez-Lombilla, Chris Mihos, and Mireia Montes. The vera rubin observatory legacy survey of space and time and the
low surface brightness universe, 2020.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *