帳號:guest(3.147.81.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):項之悅
作者(外文):Hsiang, Jr-Yue
論文名稱(中文):非熱X射線輻射於脈衝星星雲與其脈衝星之探討 & 使用康普頓偏光儀(Compol) 觀測天鵝座X-1及蟹狀星雲的伽瑪射線偏極化率
論文名稱(外文):Study on: (I) Non-thermal X-ray emissions of pulsar wind nebulae and their pulsars & (II) Measuring gamma-ray polarization from Cygnus X-1 and the Crab using Compton Polarimeter (Compol)
指導教授(中文):張祥光
指導教授(外文):Chang, Hsiang-Kuang
口試委員(中文):黃崇源
周翊
口試委員(外文):Hwang, Chung-Yuan
Chou, Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:108025501
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:113
中文關鍵詞:X射線天文學脈衝星與脈衝星星雲蟹狀星雲康普頓望遠鏡天鵝座X-1立方衛星
外文關鍵詞:X-ray astronomyPulsars and PWNeCrab NebulaCompton telescopeCygnus X-1CubeSat
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文包含兩個主題,第一篇已先發表於期刊 (Hsiang and Chang, 2021)。第一 篇主題為探討X射線脈衝星以及周圍X射線脈衝星雲間之關聯。我們總共收集三十 五顆目標星球,他們的輻射能由旋轉動能來供給,並且記錄其自旋、光譜相關參數 進行不同模型與數據擬合分析。我們將不同參數以對數形式組成一次函式,分別組 合不同參數進行數據擬合。結果顯示,關於脈衝星其中之一的自旋相關參數:旋轉 能量遞減率 E_dot與脈衝星亮度有強烈正相關性,與早期相關研究結論一致。此外, 我們發現脈衝星另一個自旋相關參數:光速圓柱域之磁場強度 (Magnetic field in light cylinder, B_lc) 同樣與脈衝星亮度也存在明顯正相關性。另一方面,我們新發現 脈衝星表面溫度與降冪模型之指數、特定自旋相關參數組合:P、 P_dot有著緊密的關 係:log(T^−1 * P^-0.5 * P_dot^0.125 )。這顯示出脈衝星表面溫度可能與其磁層中放射出的電漿粒子 對之能量散佈有強烈關聯,待與理論模型的建立比對進而解釋此結果。
第二篇主題探討小型康普頓偏極性儀 (Compton Polarimeter, Compol) 應用於觀 測伽瑪射線輻射源的偏極性。 於先前探討中, (Yang et al., 2020) 我們使用溴化 鈰 CeBr3 為其閃爍體材料,並根據計算推演及數據模擬,評估此儀器能觀測到天 鵝座X-1 伽瑪射線源 (Cygnus X-1)的偏極性。 因此,在本文中,我們嘗試更換釓 鎵鋁石榴石 (Gadolinium Aluminium Gallium Garnet, Gd3Al2Ga3O12, GAGG) 為閃 爍體材料,以及放大閃爍體矩陣的單位面積大小為 6mm ×6mm,避開溴化鈰易潮 解的特性,進一步探討其對於天鵝座X-1 伽瑪射線源偏極性的量測可行性。結果 顯示GAGG能有相對良好的表現。 此外,我們也以上述GAGG的模型來討論蟹狀 伽馬星雲及脈衝星系統於不同週期之偏極性的量測可行性。結果指出 Compol可量 測出此系統於Off-pulse phase 的偏極性,驗證 INTEGRAL/IBIS 46 % (Forot et al., 2008) 或是 INTEGRAL/SPI 72 % (Dean et al., 2008)發表的觀測結果,幫助我們得 到更準確的結果。此外,Compol也能驗證 Off-pulse phase裡面偏極性的特殊趨勢 (Vadawale et al., 2018),及Bridge phase的偏極性,開拓以前至今我們對此相位的 理解,並且更了解這些輻射源的機制及形成原因。
This thesis is composed of two parts. In the first part, we report some connections between X-ray detected pulsar wind nebulae and their pulsars. We collected timing properties and spectral information from 35 rotational-powered pulsars. The fitting results agree with the earlier studies, which show there be a strong correlation between E ̇ and the pulsar’s luminosity. Moreover, we discovered the magnetic field in pulsar’s light cylinder (B_lc) also shows similar results to E_dot. On the other hand, the correlation between temperature from pulsar’s surface and the timing properties: P and P_dot fitting with the indices of non-thermal power-law model shows also strong: log(T^−1 * P^-0.5 * P_dot^0.125). This indicates pulsar’s surface temperature is highly related to energy distribution of the radiating pair plasma in pulsar’s magnetospheres. Most of the content has been published (Hsiang and Chang, 2021).
In the second part, we extended a previous study (Yang et al., 2020) of feasibility of measuring gamma ray polarization of Cygnus X-1 with considerations of different crystal size and material. We studied Compton Polarimeter (Compol) models of CeBr3 and Gadolinium Aluminium Gallium Garnet (GAGG) scintillators and of pixel sizesof3mm×3mmand6mm×6mm. Theresultsofdifferentmodelsis similar, except for the GAGG models in 400-2000 keV, which shows a somewhat better performance. We also studied the feasibility of measuring the polarization of the Crab using Compol. We found that with 10-Ms Crab observation, the Compol measurement can be expected to resolve the issue of discrepancy between INTEGRAL/IBIS and INTEGRAL/SPI results, which report 46 % (Forot et al., 2008), and larger than 72 % (Dean et al., 2008) polarization degree, respectively. Moreover, the polarization trend measured during off-pulse of the Crab and the polarization in the bridge phase (Vadawale et al., 2018) can also be examined. It’s possible to achieve 10-Ms observation in a two years space mission for the Crab.
Abstract...................................... i
大綱........................................ ii
Acknowledgments................................ iii
致謝........................................ iv
Contents................................ v
ListofFigures................................... vii
ListofTables................................... ix

I Non-thermal X-ray emissions of pulsar wind nebulae and their pulsars
1 Introduction 1
1.1 Pulsar wind nebulae and the connection with pulsars . . . . . . . . . . 1
1.2 Pulsars’timingproperties ......................... 2
1.3 Motivationandobjectiveofthisproject.................. 7
2 Data Selection 8
2.1 pulsar types included in database ..................... 11
2.1.1 Rotation-PoweredPulsars ..................... 11
2.1.2 Detailsofeachsource........................ 12
2.2 Pulsartypesexcludedfromdatabase ................... 12
2.2.1 AccretionpoweredBinaries .................... 12
2.2.2 PulsarwithMagnetar-likeOutbursts . . . . . . . . . . . . . . . 12
2.2.3 UnresolvedPulsarsorPWNe ................... 13
Non-thermal X-ray emissions of pulsar wind nebulae and their pulsars 13
Analysis 14
3.1 PrincipleofFittingMethods........................ 14
3.2 FittingParameters ............................. 14
4 Results 17
4.1 Correlations of Timing and Spectral Fitting Parameters . . . . . . . . . 17
4.1.1 One-variable Results ........................ 17
4.1.2 Two-variable Results ........................ 22
4.2 Thermal-variable Results.......................... 24
5 Discussion 27
5.1 Known Correlations Using Larger Samples . . . . . . . . . . . . . . . . 27
5.2 New correlated parameter: Blc ...................... 27
5.3 Surface Temperatureof Pulsars ...................... 28
5.4 AnOutlier: Millisecond Pulsar: PSRJ2124-3358. . . . . . . . . . . . . 29
6 Summary 30

II Feasibility of measuring Gamma-ray polarization from Cygnus X-1 and the Crab using small Compton polarimeter 30
7 Introduction 31
7.1 Motivationandobjectiveofthisproject. . . . . . . . . . . . . . . . . . 31
7.2 Instrumentconcept............................. 31 7.2.1 Structure .............................. 31
7.2.2 Scintillator.............................. 34
7.3 Polarization determination with Compton scattering . . . . . . . . . . 36
7.4 Megalib and the orbital background.................... 42
8 Measuring polarization from Cygnus X-1 with different Compol models 44
8.1 BriefintroductiontoCygnus-X1...................... 44
8.2 EffectiveareaandDataratestudy .................... 46
8.2.1 Effectivearea ............................ 46
8.2.2 Datarate .............................. 48
8.3 Maximumdetectablepolarization(MDP). . . . . . . . . . . . . . . . . 52
8.4 Discussion.................................. 56
9 Feasibility of measuring polarization from the Crab with Compol 57
9.1 BriefintroductiontotheCrab....................... 57
9.2 Maximum detectable polarization (MDP) achievable with 10-Ms observation .................................... 62
9.3 Discussion.................................. 67
10 Summary 69
Appendix A:
Supplemental information for individual pulsars studies in Part I 70
Appendix B:
Detailed information used in deriving Minimum detectable polariza- tion (MDP) in Part II 76
Abichandani, R., Mathur, M. B., Drake, J. J., Fruscione, A., Lee, N. P., and Glotfelty, K. (2019). On the Possible Pulsar Wind Nebula Counterpart of the TeV Source HESS J1831-098. The Astronomer’s Telegram, 12463:1.
Anderson, S. B., Cadwell, B. J., Jacoby, B. A., Wolszczan, A., Foster, R. S., and Kramer, M. (1996). A 143 Millisecond Radio Pulsar in the Supernova Remnant S147. , 468:L55.
Archibald, R. F., Kaspi, V. M., Tendulkar, S. P., and Scholz, P. (2018). The 2016 Out- burst of PSR J1119-6127: Cooling and a Spin-down-dominated Glitch. , 869(2):180.
Bandstra, M. S., Bellm, E. C., Boggs, S. E., Perez-Becker, D., Zoglauer, A., Chang, H. K., Chiu, J. L., Liang, J. S., Chang, Y. H., Liu, Z. K., Hung, W. C., Huang, M. H. A., Chiang, S. J., Run, R. S., Lin, C. H., Amman, M., Luke, P. N., Jean, P., von Ballmoos, P., and Wunderer, C. B. (2011). Detection and Imaging of the Crab Nebula with the Nuclear Compton Telescope. , 738(1):8.
Becker, W., Kramer, M., Jessner, A., Taam, R. E., Jia, J. J., Cheng, K. S., Mignani, R., Pellizzoni, A., de Luca, A., Słowikowska, A., and Caraveo, P. A. (2006). A Multi- wavelength Study of the Pulsar PSR B1929+10 and Its X-Ray Trail. , 645(2):1421– 1435.
Bîrzan, L., Pavlov, G. G., and Kargaltsev, O. (2016). Chandra Observations of the Elusive Pulsar Wind Nebula around PSR B0656+14. , 817(2):129.
Blumer, H., Safi-Harb, S., and McLaughlin, M. A. (2017). PSR J1119-6127 and Its Pulsar Wind Nebula Following the Magnetar-like Bursts. , 850(1):L18.
Bogdanov, S. (2013). The Nearest Millisecond Pulsar Revisited with XMM-Newton: Improved Mass-radius Constraints for PSR J0437-4715. , 762(2):96.
Bogdanov, S., Guillot, S., Ray, P. S., Wolff, M. T., Chakrabarty, D., Ho, W. C. G., Kerr, M., Lamb, F. K., Lommen, A., Ludlam, R. M., Milburn, R., Montano, S.,
101
Miller, M. C., Bauböck, M., Özel, F., Psaltis, D., Remillard, R. A., Riley, T. E., Steiner, J. F., Strohmayer, T. E., Watts, A. L., Wood, K. S., Zeldes, J., Enoto, T., Okajima, T., Kellogg, J. W., Baker, C., Markwardt, C. B., Arzoumanian, Z., and Gendreau, K. C. (2019). Constraining the Neutron Star Mass-Radius Relation and Dense Matter Equation of State with NICER. I. The Millisecond Pulsar X-Ray Data Set. , 887(1):L25.
Bouchet, L., Jourdain, E., Roques, J. P., Strong, A., Diehl, R., Lebrun, F., and Terrier, R. (2008). INTEGRAL SPI All-Sky View in Soft Gamma Rays: A Study of Point-Source and Galactic Diffuse Emission. , 679(2):1315–1326.
Camilo, F., Gaensler, B. M., Gotthelf, E. V., Halpern, J. P., and Manchester, R. N. (2004). Chandra Detection of a Synchrotron Nebula around the Vela-like Pulsar J1016-5857. , 616(2):1118–1123.
Caswell, J. L., Kesteven, M. J., Stewart, R. T., Milne, D. K., and Haynes, R. F. (1992). G308.8-0.1: an Unusual Supernova Remnant Containing a Short-Period Pulsar, PSR J1341-6220. , 399:L151.
Chang, C., Konopelko, A., and Cui, W. (2008). Search for Pulsar Wind Nebula Associations with Unidentified TeV γ-Ray Sources. , 682(2):1177–1184.
Chang, C., Pavlov, G. G., Kargaltsev, O., and Shibanov, Y. A. (2012). X-Ray Obser- vations of the Young Pulsar J1357—6429 and Its Pulsar Wind Nebula. , 744(2):81.
Chang, H. K. (1995). Magnetic inverse Compton scattering above polar caps. , 301:456.
Chauvin, M., Florén, H. G., Friis, M., Jackson, M., Kamae, T., Kataoka, J., Kawano, T., Kiss, M., Mikhalev, V., Mizuno, T., Ohashi, N., Stana, T., Tajima, H., Taka- hashi, H., Uchida, N., and Pearce, M. (2018). Accretion geometry of the black-hole binary Cygnus X-1 from X-ray polarimetry. Nature Astronomy, 2:652–655.
Cheng, K. S., Ho, C., and Ruderman, M. (1986). Energetic Radiation from Rapidly Spinning Pulsars. II. VELA and Crab. , 300:522.
102

Cheng, K. S., Taam, R. E., and Wang, W. (2004). Pulsar Wind Nebulae and the X-Ray Emission of Nonaccreting Neutron Stars. , 617(1):480–489.
Cheng, K. S. and Zhang, L. (1999). Multicomponent X-Ray Emissions from Regions near or on the Pulsar Surface. , 515(1):337–350.
Dai, S., Johnston, S., Weltevrede, P., Kerr, M., Burgay, M., Esposito, P., Israel, G., Possenti, A., Rea, N., and Sarkissian, J. (2018). Peculiar spin frequency and radio profile evolution of PSR J1119-6127 following magnetar-like X-ray bursts. , 480(3):3584–3594.
Daugherty, J. K. and Harding, A. K. (1982). Electromagnetic cascades in pulsars. , 252:337–347.
De Luca, A., Caraveo, P. A., Mereghetti, S., Negroni, M., and Bignami, G. F. (2005). On the Polar Caps of the Three Musketeers. , 623(2):1051–1069.
Dean, A. J., Clark, D. J., Stephen, J. B., McBride, V. A., Bassani, L., Bazzano, A., Bird, A. J., Hill, A. B., Shaw, S. E., and Ubertini, P. (2008). Polarized Gamma-Ray Emission from the Crab. Science, 321(5893):1183.
DeLaney, T., Gaensler, B. M., Arons, J., and Pivovaroff, M. J. (2006). Time Vari- ability in the X-Ray Nebula Powered by Pulsar B1509-58. , 640(2):929–940.
Duvidovich, L., Giacani, E., Castelletti, G., Petriella, A., and Supán, L. (2019). A new study towards PSR J1826-1334 and PSR J1826-1256 in the region of HESS J1825-137 and HESS J1826-130. , 623:A115.
Forot, M., Laurent, P., Grenier, I. A., Gouiffès, C., and Lebrun, F. (2008). Polarization of the Crab Pulsar and Nebula as Observed by the INTEGRAL/IBIS Telescope. , 688(1):L29.
Gaensler, B. M., Stappers, B. W., Frail, D. A., and Johnston, S. (1998). An Unusual Pulsar Wind Nebula Associated with PSR B0906-49. , 499(1):L69–L73.
103

Ge, M. Y., Lu, F. J., Yan, L. L., Weng, S. S., Zhang, S. N., Wang, Q. D., Wang, L. J., Li, Z. J., and Zhang, W. (2019). The brightening of the pulsar wind nebula of PSR B0540-69 after its spin-down-rate transition. Nature Astronomy, 3:1122–1127.
Giacani, E. B., Frail, D. A., Goss, W. M., and Vieytes, M. (2001). Pulsar Wind Nebu- lae around the Southern Pulsars PSR B1643-43 and PSR B1706-44. , 121(6):3133– 3137.
Giacinti, G., Mitchell, A. M. W., López-Coto, R., Joshi, V., Parsons, R. D., and Hinton, J. A. (2020). Halo fraction in TeV-bright pulsar wind nebulae. , 636:A113.
Gonzalez, M. E., Kaspi, V. M., Pivovaroff, M. J., and Gaensler, B. M. (2006). Chandra and XMM-Newton Observations of the Vela-like Pulsar B1046-58. , 652(1):569–575.
Gotthelf, E. V. and Halpern, J. P. (2008). Discovery of a Young, Energetic 70.5 ms Pulsar Associated with the TeV Gamma-Ray Source HESS J1837-069. , 681(1):515– 521.
Guillot, S., Kaspi, V. M., Archibald, R. F., Bachetti, M., Flynn, C., Jankowski, F., Bailes, M., Boggs, S., Christensen, F. E., Craig, W. W., Hailey, C. A., Harrison, F. A., Stern, D., and Zhang, W. W. (2016). The NuSTAR view of the non-thermal emission from PSR J0437-4715. , 463(3):2612–2622.
H. E. S. S. Collaboration, Abramowski, A., Acero, F., Aharonian, F., Akhperjanian, A. G., Anton, G., Balenderan, S., Balzer, A., Barnacka, A., Becherini, Y., Becker, J., Bernlöhr, K., Birsin, E., Biteau, J., Bochow, A., Boisson, C., Bolmont, J., Bordas, P., Brucker, J., Brun, F., Brun, P., Bulik, T., Büsching, I., Carrigan, S., Casanova, S., Cerruti, M., Chadwick, P. M., Charbonnier, A., Chaves, R. C. G., Cheesebrough, A., Cologna, G., Conrad, J., Couturier, C., Dalton, M., Daniel, M. K., Davids, I. D., Degrange, B., Deil, C., Dickinson, H. J., Djannati-Ataï, A., Domainko, W., Drury, L. O., Dubus, G., Dutson, K., Dyks, J., Dyrda, M., Egberts, K., Eger, P., Espigat, P., Fallon, L., Farnier, C., Fegan, S., Feinstein, F., Fernandes, M. V., Fiasson, A., Fontaine, G., Förster, A., Füßling, M., Gajdus, M., Gallant,
104

Y. A., Garrigoux, T., Gast, H., Gérard, L., Giebels, B., Glicenstein, J. F., Glück, B., Göring, D., Grondin, M. H., Häffner, S., Hague, J. D., Hahn, J., Hampf, D., Harris, J., Hauser, M., Heinz, S., Heinzelmann, G., Henri, G., Hermann, G., Hillert, A., Hinton, J. A., Hofmann, W., Hofverberg, P., Holler, M., Horns, D., Jacholkowska, A., Jahn, C., Jamrozy, M., Jung, I., Kastendieck, M. A., Katarzyński, K., Katz, U., Kaufmann, S., Khélifi, B., Klochkov, D., Kluźniak, W., Kneiske, T., Komin, N., Kosack, K., Kossakowski, R., Krayzel, F., Laffon, H., Lamanna, G., Lenain, J. P., Lennarz, D., Lohse, T., Lopatin, A., Lu, C. C., Marandon, V., Marcowith, A., Masbou, J., Maurin, G., Maxted, N., Mayer, M., McComb, T. J. L., Medina, M. C., Méhault, J., Menzler, U., Moderski, R., Mohamed, M., Moulin, E., Naumann, C. L., Naumann-Godo, M., de Naurois, M., Nedbal, D., Nekrassov, D., Nguyen, N., Nicholas, B., Niemiec, J., Nolan, S. J., Ohm, S., de Oña Wilhelmi, E., Opitz, B., Ostrowski, M., Oya, I., Panter, M., Paz Arribas, M., Pekeur, N. W., Pelletier, G., Perez, J., Petrucci, P. O., Peyaud, B., Pita, S., Pühlhofer, G., Punch, M., Quirrenbach, A., Raue, M., Reimer, A., Reimer, O., Renaud, M., de los Reyes, R., Rieger, F., Ripken, J., Rob, L., Rosier-Lees, S., Rowell, G., Rudak, B., Rulten, C. B., Sahakian, V., Sanchez, D. A., Santangelo, A., Schlickeiser, R., Schulz, A., Schwanke, U., Schwarzburg, S., Schwemmer, S., Sheidaei, F., Skilton, J. L., Sol, H., Spengler, G., Stawarz, Ł., Steenkamp, R., Stegmann, C., Stinzing, F., Stycz, K., Sushch, I., Szostek, A., Tavernet, J. P., Terrier, R., Tluczykont, M., Valerius, K., van Eldik, C., Vasileiadis, G., Venter, C., Viana, A., Vincent, P., Völk, H. J., Volpe, F., Vorobiov, S., Vorster, M., Wagner, S. J., Ward, M., White, R., Wierzcholska, A., Zacharias, M., Zajczyk, A., Zdziarski, A. A., Zech, A., and Zechlin, H. S. (2012). Identification of HESS J1303-631 as a pulsar wind nebula through γ-ray, X-ray, and radio observations. , 548:A46.
Halpern, J. P., Gotthelf, E. V., Camilo, F., Collins, B., and Helfand, D. J. (2002). The New Gamma-ray Pulsar PSR J2229+6114, its Pulsar Wind Nebula, and Com- parison with the Vela Pulsar. In Slane, P. O. and Gaensler, B. M., editors, Neutron Stars in Supernova Remnants, volume 271 of Astronomical Society of the Pacific
105

Conference Series, page 199.
Hamamatsu Photonics K.K. (2019). Document of MPPCs (SiPMs)/MPPC arrays.
Harding, A. K. and Kalapotharakos, C. (2015). Synchrotron Self-Compton Emission from the Crab and Other Pulsars. , 811(1):63.
Harding, A. K. and Muslimov, A. G. (1998). Particle Acceleration Zones above Pulsar Polar Caps: Electron and Positron Pair Formation Fronts. , 508(1):328–346.
Hinton, J. A., Funk, S., Carrigan, S., Gallant, Y. A., de Jager, O. C., Kosack, K., Lemière, A., and Pühlhofer, G. (2007). Discovery of an X-ray nebula around PSR J1718-3825 and implications for the nature of the γ-ray source HESS J1718-385. , 476(3):L25–L28.
Hsiang, J.-Y. and Chang, H.-K. (2021). The power-law component of the X-ray emissions from pulsar-wind nebulae and their pulsars. Monthly Notices of the Royal Astronomical Society, 502(1):390–397.
Huang, R. H. H., Kong, A. K. H., Takata, J., Hui, C. Y., Lin, L. C. C., and Cheng, K. S. (2012). X-Ray Studies of the Black Widow Pulsar PSR B1957+20. , 760(1):92.
Johnson, S. P. and Wang, Q. D. (2010). The pulsar B2224+65 and its jets: a two epoch X-ray analysis. , 408(2):1216–1224.
Jourdain, E., Roques, J. P., Chauvin, M., and Clark, D. J. (2012). Separation of Two Contributions to the High Energy Emission of Cygnus X-1: Polarization Measure- ments with INTEGRAL SPI. , 761(1):27.
Kandel, D., Romani, R. W., and An, H. (2019). The Synchrotron Emission Pattern of Intrabinary Shocks. , 879(2):73.
Kargaltsev, O., Pavlov, G. G., and Garmire, G. P. (2007). X-Ray Emission from PSR B1800-21, Its Wind Nebula, and Similar Systems. , 660(2):1413–1423.
106

Kargaltsev, O., Pavlov, G. G., and Wong, J. A. (2009). Young Energetic PSR J1617- 5055, Its Nebula, and TeV Source HESS J1616-508. , 690(1):891–901.
Kaspi, V. M., Manchester, R. N., Johnston, S., Lyne, A. G., and D’Amico, N. (1992). PSR J1341-6220: A Young Pulsar in a Supernova Remnant. , 399:L155.
Kennel, C. F. and Coroniti, F. V. (1984). Magnetohydrodynamic model of Crab nebula radiation. , 283:710–730.
Kishishita, T., Bamba, A., Uchiyama, Y., Tanaka, Y., and Takahashi, T. (2012). X- Ray Investigation of the Diffuse Emission around Plausible γ-Ray Emitting Pulsar Wind Nebulae in Kookaburra Region. , 750(2):162.
Klingler, N., Kargaltsev, O., Pavlov, G. G., Ng, C. Y., Beniamini, P., and Volkov, I. (2018a). The Mouse Pulsar Wind Nebula. , 861(1):5.
Klingler, N., Kargaltsev, O., Pavlov, G. G., and Posselt, B. (2018b). The Variable Pulsar Wind Nebula of PSR J1809-1917. , 868(2):119.
Klingler, N., Kargaltsev, O., Rangelov, B., Pavlov, G. G., Posselt, B., and Ng, C. Y. (2016a). Chandra Observations of Outflows from PSR J1509-5850. , 828(2):70.
Klingler, N., Rangelov, B., Kargaltsev, O., Pavlov, G. G., Romani, R. W., Posselt, B., Slane, P., Temim, T., Ng, C. Y., Bucciantini, N., Bykov, A., Swartz, D. A., and Buehler, R. (2016b). Deep Chandra Observations of the Pulsar Wind Nebula Created by PSR B0355+54. , 833(2):253.
Knoll, G. F. (2010). Radiation Detection and Measurement. Wiley.
Kolb, C., Blondin, J., Slane, P., and Temim, T. (2017). Evolution of a Pulsar Wind
Nebula within a Composite Supernova Remnant. , 844(1):1.
Kuiper, L., Hermsen, W., Cusumano, G., Diehl, R., Schönfelder, V., Strong, A., Bennett, K., and McConnell, M. L. (2001). The Crab pulsar in the 0.75-30 MeV range as seen by CGRO COMPTEL. A coherent high-energy picture from soft X-rays up to high-energy gamma-rays. , 378:918–935.
107

Kuiper, L., Hermsen, W., and Dekker, A. (2018). The Fermi-LAT detection of magnetar-like pulsar PSR J1846-0258 at high-energy gamma-rays. , 475(1):1238– 1250.
Laurent, P., Rodriguez, J., Wilms, J., Cadolle Bel, M., Pottschmidt, K., and Grinberg, V. (2011). Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1. Science, 332(6028):438.
Li, X. H., Lu, F. J., and Li, T. P. (2005). X-Ray Spectroscopy of PSR B1951+32 and Its Pulsar Wind Nebula. , 628(2):931–937.
Li, X.-H., Lu, F.-J., and Li, Z. (2008). Nonthermal X-Ray Properties of Rotation- powered Pulsars and Their Wind Nebulae. , 682(2):1166–1176.
Lin, L. C.-C., Wang, H.-H., Li, K.-L., Takata, J., Hu, C.-P., Ng, C. Y., Hui, C. Y., Kong, A. K. H., Tam, P.-H. T., and Yeung, P. K. H. (2018). Investigation of the High-energy Emission from the Magnetar-like Pulsar PSR J1119-6127 after the 2016 Outburst. , 866(1):6.
Lorimer, D. R. and Kramer, M. (2004). Handbook of Pulsar Astronomy, volume 4.
Lowell, A. W., Boggs, S. E., Chiu, C. L., Kierans, C. A., Sleator, C., Tomsick, J. A., Zoglauer, A. C., Chang, H. K., Tseng, C. H., Yang, C. Y., Jean, P., von Ballmoos, P., Lin, C. H., and Amman, M. (2017). Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager. , 848(2):120.
Manchester, R. N., Hobbs, G. B., Teoh, A., and Hobbs, M. (2005). The Australia Telescope National Facility Pulsar Catalogue. , 129(4):1993–2006.
Matheson, H. and Safi-Harb, S. (2010). The Plerionic Supernova Remnant G21.5-0.9 Powered by PSR J1833-1034: New Spectroscopic and Imaging Results Revealed with the Chandra X-ray Observatory. , 724(1):572–587.
McGowan, K. E., Kennea, J. A., Zane, S., Córdova, F. A., Cropper, M., Ho, C.,
108

Sasseen, T., and Vestrand, W. T. (2003). Detection of Pulsed X-Ray Emission from XMM-Newton Observations of PSR J0538+2817. , 591(1):380–387.
Mignani, R. P., Razzano, M., Esposito, P., De Luca, A., Marelli, M., Oates, S. R., and Saz-Parkinson, P. (2012). VLT and Suzaku observations of the Fermi pulsar PSR J1028-5819. , 543:A130.
Miller-Jones, J. C. A., Bahramian, A., Orosz, J. A., Mandel, I., Gou, L., Maccarone, T. J., Neijssel, C. J., Zhao, X., Ziółkowski, J., Reid, M. J., Uttley, P., Zheng, X., Byun, D.-Y., Dodson, R., Grinberg, V., Jung, T., Kim, J.-S., Marcote, B., Markoff, S., Rioja, M. J., Rushton, A. P., Russell, D. M., Sivakoff, G. R., Tetarenko, A. J., Tudose, V., and Wilms, J. (2021). Cygnus X-1 contains a 21–solar mass black hole—Implications for massive star winds. Science, 371(6533):1046–1049.
Muslimov, A. G. and Harding, A. K. (2004). High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps. , 606(2):1143–1153.
Ng, C. Y., Roberts, M. S. E., and Romani, R. W. (2005). Two Pulsar Wind Nebulae: Chandra/XMM-Newton Imaging of GeV J1417-6100. , 627(2):904–909.
Ng, C. Y., Romani, R. W., Brisken, W. F., Chatterjee, S., and Kramer, M. (2007). The Origin and Motion of PSR J0538+2817 in S147. , 654(1):487–493.
Pavan, L., Pühlhofer, G., Bordas, P., Audard, M., Balbo, M., Bozzo, E., Eckert, D., Ferrigno, C., Filipović, M. D., Verdugo, M., and Walter, R. (2016). Closer view of the IGR J11014-6103 outflows. , 591:A91.
Pavlov, G. G., Zavlin, V. E., Sanwal, D., Burwitz, V., and Garmire, G. P. (2001). The X-Ray Spectrum of the Vela Pulsar Resolved with the Chandra X-Ray Observatory. , 552(2):L129–L133.
Petre, R., Kuntz, K. D., and Shelton, R. L. (2002). The X-Ray Structure and Spec- trum of the Pulsar Wind Nebula Surrounding PSR B1853+01 in W44. , 579(1):404– 410.
109

Petry, D., Beckmann, V., Halloin, H., and Strong, A. (2009). Soft gamma-ray sources detected by INTEGRAL. , 507(1):549–571.
Posselt, B., Pavlov, G. G., Slane, P. O., Romani, R., Bucciantini, N., Bykov, A. M., Kargaltsev, O., Weisskopf, M. C., and Ng, C. Y. (2017). Geminga’s Puzzling Pulsar Wind Nebula. , 835(1):66.
Posselt, B., Spence, G., and Pavlov, G. G. (2015). A Chandra Search for a Pulsar Wind Nebula around PSR B1055-52. , 811(2):96.
Possenti, A., Cerutti, R., Colpi, M., and Mereghetti, S. (2002). Re-examining the X- ray versus spin-down luminosity correlation of rotation powered pulsars. , 387:993– 1002.
Rangelov, B., Pavlov, G. G., Kargaltsev, O., Durant, M., Bykov, A. M., and Kras- silchtchikov, A. (2016). First Detection of a Pulsar Bow Shock Nebula in Far-UV: PSR J0437-4715. , 831(2):129.
Reynolds, S. P., Borkowski, K. J., and Gwynne, P. H. (2018). Expansion and Bright- ness Changes in the Pulsar-wind Nebula in the Composite Supernova Remnant Kes 75. , 856(2):133.
Roberts, M. S. E., Tam, C. R., Kaspi, V. M., Lyutikov, M., Vasisht, G., Pivovaroff, M., Gotthelf, E. V., and Kawai, N. (2003). The Pulsar Wind Nebula in G11.2-0.3. , 588(2):992–1002.
Romani, R. W. and Ng, C. Y. (2003). The Pulsar Wind Nebula Torus of PSR J0538+2817 and the Origin of Pulsar Velocities. , 585(1):L41–L44.
Romani, R. W., Ng, C. Y., Dodson, R., and Brisken, W. (2005). The Complex Wind Torus and Jets of PSR B1706-44. , 631(1):480–487.
Romani, R. W., Slane, P., and Green, A. W. (2017). The Asymmetric Bow Shock- /Pulsar Wind Nebula of PSR J2124-3358. , 851(1):61.
110

Sakai, M., Matsumoto, H., Haba, Y., Kanou, Y., and Miyamoto, Y. (2013). Discovery of Diffuse Hard X-Ray Emission from the Vicinity of PSR J1648-4611 with Suzaku. , 65:64.
Schneider, F. R., Shimazoe, K., Somlai-Schweiger, I., and Ziegler, S. I. (2015). A PET detector prototype based on digital SiPMs and GAGG scintillators. Physics in Medicine and Biology, 60(4):1667–1679.
Seitz, B., Campos Rivera, N., and Stewart, A. G. (2016). Energy resolution and tem- perature dependence of ce:gagg coupled to 3 mm × 3 mm silicon photomultipliers. IEEE Transactions on Nuclear Science, 63(2):503–508.
Seward, F. D. and Wang, Z.-R. (1988). Pulsars, X-Ray Synchrotron Nebulae, and Guest Stars. , 332:199.
Shah, K., Glodo, J., Higgins, W., van Loef, E., Moses, W., Derenzo, S., and Weber, M. (2004). Cebr/sub 3/ scintillators for gamma-ray spectroscopy. In IEEE Symposium Conference Record Nuclear Science 2004., volume 7, pages 4278–4281.
Slane, P., Helfand, D. J., van der Swaluw, E., and Murray, S. S. (2004). New Constraints on the Structure and Evolution of the Pulsar Wind Nebula 3C 58. , 616(1):403–413.
Stappers, B. W., Gaensler, B. M., and Johnston, S. (1999). A deep search for pulsar wind nebulae using pulsar gating. , 308(3):609–617.
Sturner, S. J. (1995). Electron Energy Losses near Pulsar Polar Caps. , 446:292.
Takata, J., Chang, H. K., and Shibata, S. (2008). Particle acceleration and non- thermal emission in the pulsar outer magnetospheric gap. , 386(2):748–758.
Temim, T., Slane, P., Reynolds, S. P., Raymond, J. C., and Borkowski, K. J. (2010). Deep Chandra Observations of the Crab-like Pulsar Wind Nebula G54.1+0.3 and Spitzer Spectroscopy of the Associated Infrared Shell. , 710(1):309–324.
111

Temim, T., Slane, P., Sukhbold, T., Koo, B.-C., Raymond, J. C., and Gelfand, J. D. (2019). Probing the Innermost Ejecta Layers in Supernova Remnant Kes 75: Im- plications for the Supernova Progenitor. , 878(1):L19.
Timokhin, A. N. and Harding, A. K. (2019). On the Maximum Pair Multiplicity of Pulsar Cascades. , 871(1):12.
Vadawale, S. V., Chattopadhyay, T., Mithun, N. P. S., Rao, A. R., Bhattacharya, D., Vibhute, A., Bhalerao, V. B., Dewangan, G. C., Misra, R., Paul, B., Basu, A., Joshi, B. C., Sreekumar, S., Samuel, E., Priya, P., Vinod, P., and Seetha, S. (2018). Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager. Nature Astronomy, 2:50–55.
Van Etten, A., Romani, R. W., and Ng, C. Y. (2007). Rings And Jets Around PSR J2021+3651: The “Dragonfly Nebula”. In American Astronomical Society Meeting Abstracts, volume 211 of American Astronomical Society Meeting Abstracts, page 102.09.
Vasisht, G., Aoki, T., Dotani, T., Kulkarni, S. R., and Nagase, F. (1996). Detection of a Hard X-Ray Plerion in the Candidate Historical Remnant G11.2-0.3. , 456:L59.
Weisskopf, M. C., Elsner, R. F., and O’Dell, S. L. (2010). On understanding the figures of merit for detection and measurement of x-ray polarization. In Arnaud, M., Murray, S. S., and Takahashi, T., editors, Space Telescopes and Instrumen- tation 2010: Ultraviolet to Gamma Ray, volume 7732 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 77320E.
Wilson, A. S. (1986). X-Ray Observations of Supernova Remnants Resembling the Crab Nebula. , 302:718.
Yang, C.-Y., Chang, Y.-C., Liang, H.-H., Chu, C.-Y., Hsiang-Yue, J., Chiu, J.-L., Lin, C.-H., Laurent, P., Rodriguez, J., and Chang, H.-K. (2020). Feasibility of Observing Gamma-Ray Polarization from Cygnus X-1 Using a CubeSat. , 160(1):54.
112

Yoneyama, M., Kataoka, J., Arimoto, M., Masuda, T., Yoshino, M., Kamada, K., Yoshikawa, A., Sato, H., and Usuki, Y. (2018). Evaluation of GAGG:ce scintillators for future space applications. Journal of Instrumentation, 13(02):P02023–P02023.
Zoglauer, A., Andritschke, R., Boggs, S. E., Schopper, F., Weidenspointner, G., and Wunderer, C. B. (2008). MEGAlib: simulation and data analysis for low- to-medium-energy gamma-ray telescopes. In Turner, M. J. L. and Flanagan, K. A., editors, Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray, volume 7011 of Society of Photo-Optical Instrumentation Engineers (SPIE) Con- ference Series, page 70113F.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *