|
Mahendran, A. and Vedaldi, A. (2016). Visualizing deep convolutional neural networks usingnatural pre-images.International Journal of Computer Vision, 120(3):233–255.Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. InProceedingsof the IEEE international conference on computer vision, pages 618–626.Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks:Visualising image classification models and saliency maps.arXiv preprint arXiv:1312.6034.Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity:The all convolutional net.arXiv preprint arXiv:1412.6806.Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for deep networks. InInternational Conference on Machine Learning, pages 3319–3328. PMLR.Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H. (2015). Understanding neuralnetworks through deep visualization.arXiv preprint arXiv:1506.06579.Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. InEuropean conference on computer vision, pages 818–833. Springer.Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning deep featuresfor discriminative localization. InProceedings of the IEEE conference on computer visionand pattern recognition, pages 2921–2929. |