|
He, Y., Cheng, C.-S., and Tang, B. (2018). Strong orthogonal arrays of strength two plus. The Annals of Statistics, 46(2):457–468. He, Y. and Tang, B. (2013). Strong orthogonal arrays and associated latin hypercubes for computer experiments. Biometrika, 100(1):254–260. Hickernell, F. (1998). A generalized discrepancy and quadrature error bound. Mathematics of Computation, 67(221):299–322. Korobov, A. (1959). The approximate computation of multiple integrals. In Dokl. Akad.Nauk SSSR, volume 124, pages 1207–1210. McKay, M. D., Beckman, R. J., and Conover, W. J. (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1):55–61. Mukerjee, R. and Wu, C.-F. (2006). A Modern Theory of Factorial Design. Springer. Sun, C.-Y. and Tang, B. (2021). Uniform projection designs and strong orthogonal arrays. Journal of the American Statistical Association, pages 1–15. Sun, F., Wang, Y., and Xu, H. (2019). Uniform projection designs. The Annals of Statistics, 47(1):641–661. Tang, B. (1993). Orthogonal array-based latin hypercubes. Journal of the American Statistical Association, 88(424):1392–1397. Wang, L., Xiao, Q., and Xu, H. (2018). Optimal maximin L_1-distance latin hypercube designs based on good lattice point designs. The Annals of Statistics, 46(6B):3741–3766. |