|
Chapter 1 1. a) Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E. W.; Eds., Pergamon Press: Oxford, 1982. b) Green, M. L. H.; Davies, S.G. Philos. Trans. R. Soc.London A 1988, 326, 501. c) Collman, J.P.; Hegedus, L.S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books:Mill Valley, California, 1987. d) Seebach, D. Angew. Chem. 1990, 102, 1363; Angew. Chem.Int. Ed. Engl. 1990, 29, 1320. 2. a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. b) Trost, B. M. Angew. Chem. 1995, 107, 285; Angew. Chem. Int. Ed. Engl. 1995, 34, 259. c) Trost, B. M. Science 1991, 254, 1471. 3. a) Anastas, P.; Warner, J. C. in Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998. b) Anastas, P.T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686. c) Anastas, P. T.; Zimmerman, J. B. Environ. Sci. Technol. 2003, 37, 94. d) Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Science 2002, 297, 807. e) Trost, B. M.; Toste, D. F.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. 4. a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010 110, 704. b) Fabisch, B.; Mitchell, T. N. J. Organomet. Chem. 1984, 269, 219. c) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53. d) Fedoryński, M. Chem. Rev. 2003 103, 1099. d) Doering, W. E.; Hoffmann, A. K. J. Am. Chem. Soc. 1954, 76, 6162. e) Doering, W. von E.; Buttery, R. G.; Laughlin, R. G.; Chaudhure, N. J. Am. Chem. Soc. 1956, 78, 3224. f) Friedman, L.; Shechter, H. J. Am. Chem. Soc., 1960, 82, 1002. 5. a) Organic Chemistry Morrison, R.T.; Boyd, R.N. pp. 473-478. b) Fischer, E. O.; Maasböl, A. Angew. Chem. 1964, 76, 645; Angew. Chem. Int. Ed. 1964, 3, 580. c) Hashmi, A. S. K. Angew. Chem. 2008, 120, 6856; Angew. Chem. Int. Ed. 2008, 47, 6754. d) Schubert, U.; Ackermann, K.; Aumann, R. Cryst. Struct. Comm. 1982, 11, 591. e) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361. 6. For a review on gold N-heterocyclic carbenes, see: a) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91. For selected examples on Fischer-type carbene complexes of gold, see: b) Raubenheimer, H. G.; Esterhuysen, M.W.; Timoshkin, A.; Chen, Y.; Frenking, G. Organometallics 2002, 21, 3173. c) Schubert, U.; Ackermann, K.; Aumann, R. Cryst. Struct. Comm. 1982, 11, 591. d) Faῆanás-Mastral, M.; Aznar, F. Organometallics 2009, 28, 666. 7. a) Doyle, M.P.; Duffy, R.; Ratnikov, M. Chem. Rev. 2010,110, 704. b) Gil-lingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918. c) Sun, X.L.; tang, Y. Acc. Chem. Res. 2008, 41, 937. d) Xia, Y.; Feng, S.; Liu. Z. Angew. Chem. Int. Ed. 2015, 54, 7891. e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem. Rev. 2015, 115, 9981. 8. a) Comprehensive reviews on α-diazocarbonyl compounds, see: Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. b) Padwa A.; Austin, D. J. Angew. Chem., Int. Ed. 1994, 33, 1797. c) Padwa A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. d) Doyle, M. P; McKervey M. A.; Ye, T. Wiley, New York, 1998. e) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. f) Padwa, A. J. Organomet. Chem. 2001, 3, 617. g) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50. h) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. 9. a) Manning, J. R.; Davies, H. M. L. Nature 2008, 451, 417. b) Morton, D.; Davies, H. M. L. Chem. Soc. Rev. 2011, 40, 1857. c) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704. 10.a) Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794. b) Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q-L. J. Am. Chem. Soc. 2007, 129, 5834. c) Zhu, S.-F.; Song, X.-G.; Li, Y.; Cai, Y.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 16374. 11. Zhu, S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580. 12. Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. 13. Comprehensive reviews on α-diazocarbonyl compounds, see: (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. (b) Padwa A.; Austin, D. J. Angew. Chem., Int. Ed. 1994, 33, 1797. (c) Padwa A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (d) Doyle, M. P; McKervey M. A.; Ye, T. Wiley, New York, 1998. (e) Doyle M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (f) Padwa, A. J. Organomet. Chem. 2001, 3, 617. (g) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50. (h) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. 14. For a discussion on nucleophilicity of diazo compounds, see: Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem.–Eur. J., 2003, 9, 4068. 15. (a) Wenkert, E.; McPherson, A. A. J. Am. Chem. Soc. 1972, 94, 8084. (b) Burkoth, T. L. Tetrahedron Lett. 1969, 57, 5049. (c) Woolsey, N. F.; Khalil, M. H. J. Org. Chem. 1972, 37, 2405. 16. Jiang, N.; Qu, Z.; Wang, J. Org. Lett. 2001, 3, 2989. 17. (a) Schollkopf, U.; Frasnelli, H.; Hoppe, D. Angew. Chem., Int. Ed. 1970, 9, 300. (b) Schollkopf, U.; Banhidai, B.; Frasnelli, H.; Meyer, R.; Beckhaus, H. Liebigs Ann. Chem. 1974, 1767. 18. (a) Pellicciari, R.; Natalini, B. J. Chem. Soc., Perkin Trans. 1977, 1, 1882. (b) Pellicciari, R.; Natalini, B.; Sadeghpour, B. M.; Marinozzi, M.; Snyder, J. P.; Williamson, B. L.; Kuethe, J. T.; Padwa, A. J. Am. Chem. Soc. 1996, 118, 1. (c) Moody, C. J.; Taylor, R. J. Tetrahedron Lett.1987, 28, 5351. 19. (a) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263–309. (b) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577–6605. (c) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061–3071. (d) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704–724. (e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981. 20. For recent reviews on phototransformations of diazo compounds see: (a) Candeias, N.; Afonso, C. Curr. Org. Chem. 2009, 13, 763. (b) Galkina, O. S.; Rodina, L. L. Russ. Chem. Rev. 2016, 85, 537. (c) Ciszewski, L. W.; K. R.-Jasinka, Gryko, D. Org. Biomol. Chem. 2019, 17, 432. 21. Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Org. Chem. 2013, 78, 5711. 22. Kardile, R. D.; Liu, R.-S. Org. Lett. 2019, 21, 6452−6456. 23. (a) Liu, F.; Yu, Y.; Zhang, J. Angew. Chem., Int. Ed. 2009, 48, 5505−5508. (b) Gao, H.; Zhao, X.; Yu, Y.; Zhang, J. Chem. - Eur. J. 2010, 16, 456−459. (c) Gao, H.; Wu, X.; Zhang, J. Chem.- Eur. J. 2011, 17, 2838−2841. (d) Wang, Y.; Zhang, P.; Qian, D.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 14849. (e) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X.-L.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 4350−4354. (f) Liu, F.; Qian, D.; Li, L.; Zhao, X.; Zhang, J. Angew. Chem., Int. Ed. 2010, 49, 6669−6672. (g) Kardile, R. D.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem., Int. Ed. 2020, 59, 10396−10400. 24. Kardile, R. D.; Liu, R.-S. Org. Lett. 2019, 21, 6452−6456. 25. See selected examples: (a) Gao, L.; Kang, B. C.; Hwang, G.; Ryu, D. H. Angew. Chem. Int. Ed. 2012, 51, 8322–8325. (b) Li, W.; Wang, J.; Hu, X.; Shen, K.; Wang, W.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2010, 132, 8532–8533. (c) Hashimoto, T.; Miyamoto, H.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 11280–11281. (d) Mahmood, J.; M. Hossain, M. J. Org. Chem. 1998, 63, 3333–3336. (e) Holmquist, C. R.; Roskamp, E. J. J. Org. Chem. 1989, 54, 3258–3260. 26. J. H. Hansen, B. T. Parr, P. Pelphrey, Q. Jin, J. Autschbach, H. M. L. Davies, Angew. Chem., Int. Ed., 2011, 50, 2544-2548. 27. D. Zhang, G. Xu, D. Ding, C. Zhu, J. Li, J. Sun, Angew. Chem., Int. Ed., 2014, 53, 11070-11074. 28. Mata, S.; Gonzalez, M. J.; Gonzalez, J.; Lopez, L. A.; Vicente, R. Chem.-Eur. J. 2017, 23, 1013−1017. 29. Aue, D. H.; Helwig, G. S. Tetrahedron Lett. 1974, 15, 721−724. 30. Wang, B.; Yi, H.; Zhang, H.; Sun, T.; Zhang, Y.; Wang, J. J. Org. Chem. 2018, 83, 1026−1032. 31. Xu, G.; Zhu, C.; Gu, W.; Li, J.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 883−887. 32. (a) Doyle, M. P.; McKervey, M. A; Ye, T. Wiley, New York USA, 1998. (b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861–2904. (c) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061−3071. (d) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704−724. (e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981. 33. (a) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506–516. (b) Fructos, M. R.; Requejo, M. M. D.; Pérez, P. J. Chem. Commun. 2016, 52, 7326–7335. 34. For a nucleophilic C-attack of vinyldiazo species, see selected examples: (a) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed., 2012, 51, 11809–11813. (b) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Org. Chem. 2013, 78, 5711. (c) Raj, A. S. K.; Liu, R.-S. Angew. Chem., Int. Ed., 2019, 131, 11096–11100. (d) Raj, A. S. K.; Narode, A. S.; Liu, R.-S. Org. Lett. 2021, 23, 1378−1382. 35. For nucleophilic C-attack of α-aryldiazo species, see: (a) Fructos, M. R.; Requejo, M. M. D.; Pérez, P. J. Chem. Commun. 2009, 5153–5155. (b) Pawar, S. K.; Wang, C. D.; Bhunia, S.; Jadhav, A. M.; Liu, R.-S. Angew. Chem., Int. Ed., 2013, 52, 7559. (c) Kardile, R. D.; Liu, R.-S. Org. Lett. 2019, 21, 6452−6456. 36. (a) Hodgson, D. M.; Angrish, D. Chem. Eur. J. 2007, 13, 3470. (b) Hansen, J. H.; Parr, B. T.; Pelphrey, P.; Jin, Q.; Autschbach, J.; Davies, H. M. L. Angew. Chem., Int. Ed., 2011, 50, 2544. (c) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Angew. Chem., Int. Ed., 2014, 53, 11070. 37. (a) Mata, S.; Gonzalez, M. J.; Gonzalez, J.; Lopez, L. A.; Vicente, R. Chem.–Eur. J. 2017, 23, 1013−1017. (b) Kardile, R. D.; Liu, R.-S. Org. Lett. 2020, 22, 8229−8233. 38. (a) Li, C.; Zeng, Y.; Wang, J. Tetrahedron Lett. 2009, 50, 2956–2959. (b) Seidel, G.; Mynott, R.; Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 2510–2513. (c) Miege, F.; Meyer, C.; Cossy, J. Org. Lett. 2010, 12, 4144–4147. (d) Mokar, B. D.; Jadhav, P. D.; Pandit, Y. B.; Liu, R.-S. Chem. Sci. 2018, 9, 4488–4492. (e) Miege, F.; Meyer, C.; Cossy J.; Beilstein J. Org. Chem. 2011, 7, 717–734. 39. (a) Piersanti, G.; Giorgi, L.; Bartoccini, F.; Tarzia, G.; Minetti, P.; Gallo, G.; Giorgi, F.; Castorina, M.; Ghirardi, O.; Carminati, P. Org. Biomol. Chem. 2007, 5, 2567–2571. (b) Nag, S.; Nayak, M.; Batra, S. Adv. Synth. Catal. 2009, 351, 2715. (c) Ibrahim, H. M.; Behbehani, H.; Makhseed, S.; Elnagdi, M. H. Molecules. 2011, 16, 3723. 40. (a) Tucker, T. J.; Sisko, J. T.; Tynebor, R. M.; Williams, T. M.; Felock, P. J.; Flynn, J. A.; Lai, M.T.; Liang, Y.; McGaughey, G.; Liu, M.; Miller, M.; Moyer, G.; Munshi, V.; Poehnelt., R. P.; Prasad, S.; Reid, J. C.; Sanchez, R.; Torrent, M.; Vacca, J. P.; Wan, B. L.; Yan, Y. J. Med. Chem. 2008, 51, 6503–6511. (b) Ma, Y.; Sun, G.; Chen, D.; Peng, X.; Chen, Y. L.; Su, Y.; Ji, Y.; Liang, J.; Wang, X.; Chen, L.; Ding, J.; Xiong, B.; Ai, J.; Geng, M. Y.; Shen, J. J. J. Med. Chem. 2015, 58, 2513−2529. (c) Engers, D. W.; Blobaum, A. L.; Gogliotti, R. D.; Cheung, Y. Y.; Salovich, J. M.; Barrantes, P. M. G.; Daniels. J. S.; Morrison, R.; Jones, C. K.; Soars, M. G.; Zhuo, X.; Hurley, J.; Macor, J. E.; Bronson, J. J.; Conn, P. J.; Lindsley, C. W.; Niswender, C. M.; Hopkins, C.R. ACS Chem. Neurosci. 2016, 7, 1192−1200. (d) Bollinger, S. R.; Engers, D. W.; Panarese, J. D.; West, M.; Engers, J. L.; Loch, M. T.; Rodriguez, A. L.; Blobaum, A. L.; Jones, C. K.; Gray, A. T.; Conn, P. J.; Lindsley, C. W.; Niswender, C. M.; Hopkins, C.R. J. Med. Chem. 2019, 62, 342−358. (e) Mugnaini, C.; Brizzi, A.; Vinciarelli, G.; Paolino, Corelli, F. New J. Chem. 2020, 44, 16218-16226. 41. (a) Singh, R. R.; Pawar, S. K.; Huang, M. J.; Liu, R.-S. Chem. Commun. 2016, 52, 11434- 11437. (b) Singh, R. R.; Liu, R.-S. Chem. Commun. 2017, 53, 4593–4596. (c) Pawar, S. K.; Yang, M.-C.; Su, M.-D.; Liu, R.-S. Chem., Int. Ed., 2017, 129, 5117 –5121. (d) Patil, M. D.; Kale, B. S.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 5658– 5668. (e) Dubovtsev, A. Y.; Shcherbakov, N. V.; Dar’in D. V.; Kukushkin V. Yu. Adv. Synth. Catal. 2020, 362, 2672-2682. (f) Shcherbakov, N. V.; Dar’in D. V.; Kukushkin V. Yu.; Dubovtsev, A. Y. J. Org. Chem. 2021, 86, 7218−7228. 42. For X-ray diffraction studies of key compounds: (a) 1-3a: CCDC- 2074287. (b) 1-14: CCDC-2082958. (c) 1-15b: CCDC- 2080350. 43. For chemical synthesis of 2,3-diaza-1,3,5-hexatrienes and their reactivity, see: (a) Kleine,T.; Frohlich, R.; Wibbeling, B.; Wurthwein, E.-U. J. Org. Chem. 2011, 76, 4591–4599. (b) Liu, P.; Sun, J. Org. Lett. 2017, 19, 3482−3485. (c) Wu, D.; Wang, Y.; Zhou, J.; Sun, Q.; Zhao, Y.; Xu, X. Org. Lett. 2019, 21, 8722−8725. 44. (a) Muthusamy, S.; Sivaguru.; M. Org.Lett. 2014, 16, 4248−4251. (b) Wagh, S. B.; Hsu, Y.- C.; Liu, R.-S. ACS Catal. 2016, 6, 7160−7166. (c) Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R. M. Angew.Chem., Int.Ed., 2019, 58, 1203 –1207. (d) Edwards, A.; Rubin M. Org. Biomol. Chem. 2016, 14, 2883–2890. 45. (a) Singh, R. R.; Pawar, S. K.; Huang, M.; Liu, R.-S. Chem. Commun. 2016, 52, 11434-11437. (b) Singh, R. R.; Liu, R.-S. Chem. Commun. 2017, 53, 4593-4596. (c) Pawar, S. K.; Yang, M.- C.; Su, M.-D.; Liu, R.-S. Angew. Chem. 2017, 129, 5117 –5121 46. Chen C.-N.; Liu, R.-S. Angew.Chem., Int.Ed., 2019, 58, 9831 –9835. 47. (a) Collado, A.; Go´mez-Sua´rez A.; Martin, A. R.; Slawin, A. M. Z.; Nolan, S. P.; Chem. Commun.,2013, 49, 5541-5543 (b) Medina, F.; Michon, C.; Agbossou-Niedercorn, F.; Eur. J. Org. Chem.2012, 6218–6227.
Chapter 2 1. a) H. Staudinger, Ber. Dtsch. Chem. Ges. 1905, 38, 1735-1739; b) H. Staudinger, From Organic Chemistry to Macromolecules, Wiley, New York, 1970. 2. a) Hanford, W. E.; Sauer, J. C.; Org. React. 1946, 3, 108-140; b) J. A. Hyatt, P. W. Raynolds, Org. React. 1994, 45, 159-646. 3. Danheiser, R. L.; Science of Synthesis (Houben–Weyl), vol.23 Thieme, Stuttgart, Germany, 2006. 4. Wynberg, H.; Staring, E. G. J. J. Am. Chem. Soc. 1982, 104, 166-168. 5. He, L.; Lv, H.; Zhang, Y. R.; Ye, S. J. Org. Chem. 2008, 73, 8101-8103. 6. Brady, W. T. The Chemistry of Ketenes, Allenes and Related Compounds; Patai, S., Ed.; Interscience: New York, 1980; pp 278-308. 7. Goldstein, M. J.; Odell, B. G. J. Am. Chem. Soc. 1967, 89, 6356. 8. a) Masamune, S.; Fukimoto, K. Tetrahedron Lett. 1965, 4647. b) Small, A. J. Am. Chem. Soc. 1964, 86, 2091. c) Masamune, S.; Castellucci, N. T. Proc. Chem. Soc. 1964, 298. 9. Moore, H. W.; Wilbur, D. S. J. Org. Chem. 1980, 45, 4483–4491. 10. Kresze, G.; Runge, W.; Ruch, E. Justus Liebigs Ann. Chem. 1972, 756, 112–127. 11. (a) Newman, M. S.; Arkell, A.; Fukunaga, T. J. Am. Chem. Soc. 1960, 82, 2498-2501. (b) Olah, G. A.; Wu, A.; Farooq, O. Synthesis 1989, 568. 12. (a) Chiang, Y.; Kresge, A. J.; Popik, V. V. J. Am. Chem. Soc. 1999, 121, 5930-5932. (b) Wagner, B. D.; Arnold, B. R.; Brown, G. S.; Lusztyk, J. J. Am. Chem. Soc. 1998, 120, 1827-1834. 13. Tidwell, T. T. Ketenes; John Wiley & Sons: Hoboken, NJ, 2006. 14. Sarkar, S.; Mallick, S.; Kumar,P.; Bandyopadhyay, B. Phys. Chem. Chem. Phys., 2018, 20, 13437-13447. 15. Korobifsyna J. K.; Nikolaeo, W. A. Zh. Org. Khim. 1971, 7, 413. 16. Nikolaeu, W. A.; Kotok, C. D.; Korobitsyna, J. K.; Zh. Org. Khim. 1994, 10, 1335. 17. Arminger, B.; Gindl-Altmutter, W.; Keckes, J.; Hansmann, C. RSC Adv. 2019, 9, 24357-24367. 18. Gong, L.; McAllister, M. A.; Tidwell, T. T. J. Am. Chem. Soc.1991, 113, 6021. 19. L. I. Smith, H. H. Hoehn, J. Am. Chem. Soc. 1939, 61, 2619 – 2624. 20. Kondo, T.; Niimi, M.; Yoshida, Y.; Wada, K.; Mitsudo, T. A.; Kimura, Y.; Toshimitsu, A. Molecules, 2010, 15, 4189-4200. 21. Xu, Y.-C.; Challener, C.A.; Dragisich, V.; Brandvold, T.A.; Peterson, G.A.; Wulff, W.D.; Willard, P.G. J. Am. Chem. Soc. 1989, 111, 7269-7271. 22. Grotjahn, D. B.; Lo, H.C. Organometallics, 1995, 14, 5463-5465. 23. Kohnen, A. L.; Mak, X. Y.; Lam, T. Y.; Dunetz, J. R.; Danheiser, R. L. Tetrahedron, 2006, 62, 3815-3822. 24. (a) Williams, J. W.; Hurd, C. D. J. Org. Chem. 1940, 5, 122. (b) Hanford, W. E.; Sauer, J. C. In Adams, R., Ed.; Organic Reactions; Wiley: New York, 1946; Vol 3, pp 108–140. 25. (a) Hassner, A.; Dillon, J. L., Jr. J. Org. Chem. 1983, 48, 3382. (b) Danheiser, R. L.; Sard, H. Tetrahedron Lett. 1983, 24, 23. 26. Reviewed in: (a) Brady, W. T. Synthesis 1971, 415. (b) Brady, W. T. Tetrahedron 1981, 37, 2949. (c) Schaumann, E.; Scheiblich, S. In Kropf, E., Schaumann, E., Eds.; Methoden der Organischen Chemie (Houben Weyl); Thieme: Stuttgart, Germany, 1993; Vol. E15c, pp 2933-2958. 27. Danheiser, R. L.; Savariar, S.; Cha, D. D. Organic Syntheses. Wiley: New York, 1993; Collect. Vol. VIII, pp 82-86. 28. Lawlor, M. D.; Lee, T. W.; Danheiser, R. L. J. Org. Chem. 2000, 65, 4375. 29. Kuehne, M. E.; Sheeran, P. J. J. Org. Chem. 1968, 33, 4406. 30. Pirwerdjan, R.; Priebbenow, D. L.; Becker, P.; Lamers, P.; Bolm, C. Org. Lett. 2013, 15, 5397-5399. 31. He, L.; Lv, H.; Zhang, Y. R.; Ye, S. J. Org. Chem. 2008 73, 8101-8103. 32. Dochnahl, M.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 2391-2393. 33. Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11586-11587. 34. S. Chen, E. C. Salo, K. A. Wheeler, N. J. Kerrigan. Org. Lett. 2012, 14, 1784-1787. 35. (a) Allen, A. D.; T. T. Tidwell, Chem. Rev. 2013, 113, 7287-7342. (b) Tidwell, T. T. Angew. Chem., Int. Ed. 2005, 44, 5778-5785. (c) Snider, B. B. Chem. Rev. 1988, 88, 793-811. (d) Allen, A. D.; Tidwell, T. T. Eur. J. Org. Chem. 2012, 1081-1096. (e) Paull, D. H.; Weatherwax, A.; Lectka, T. Tetrahedron. 2009, 65, 6771-6803. (f) Tidwell, T. T. Eur. J. Org. Chem. 2006, 563-576. 36. (a) Hyatt, J. A.; Raynolds, P. W. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New York USA, 1994; Vol. 45, pp 159646. (b) R. L. Danheiser, Ed. Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; Thieme: Stuttgart Germany, 2006, Vol. 23. 37. (a) Pirwerdjan, R.; Priebbenow, D. L.; Becker, P.; Lamers, P.; Bolm, C. Org. Lett. 2013, 15, 5397-5399. (b) Kowalski, C. J.; Lal, G. S. J. Am. Chem. Soc. 1988, 110, 3693-3695. (c) Wasserman, H. H.; Piper, J. U.; Dehmlow, E. V. J. Org. Chem. 1973, 38, 1451-1455. (d) Kohnen, A. L.; Mak, X. Y.; Lam, T. Y.; Dunetz, J. R.; Danheiser, R. L. Tetrahedron. 2006, 62, 3815-3822. (e) Danheiser, R. L.; Gee, S. K. J. Org. Chem, 1984, 49, 1672-1674. (f) Mak, X. Y.; Crombie, A. L.; Danheiser, R. L.; J. Org. Chem. 2011, 76, 1852-1873. (g) Benda, K.; Knoth, T.; Danheiser, R. L.; Schaumann, E. Tetrahedron Lett. 2011, 52, 46-48. (h) Auvinet, A. L.; Harrity, J. P. A. Angew. Chem. Int. Ed. 2011, 50, 2769-2772. 38. (a) Smith, L. I.; Hoehn, H. H. J. Am. Chem. Soc. 1939, 61, 2619-2624. (b) Smith, L. I.; Hoehn, H. H.; J. Am. Chem. Soc. 1941, 63, 1181-1184. (c) Brown, D. G. T. R. Hoye, R. G. Brisbois, J. Org. Chem. 1998, 63, 1630-1636. (d) Druey, J.; Jenny, E. F.; Schenker, K.; Woodward, R. B. Helv. Chim. Acta, 1962, 45, 600-610. (e) Smith, L. I.; Hoehn, H. H. Org. Synth. 1940, 20, 47. (f) Taylor, E. C.; McKillop, A.; Hawks, G. H. Org. Synth. 1972, 52, 36. 39. For the dimerization and trimerzation of ketenes, see: A. A. Ibrahim, P.H. Wei, G. D. Harzmann, N. J. Kerrigan, J. Org. Chem. 2010, 75, 7901-7904. 40. For X-ray diffraction studies of key compounds: (a) 2-4b: CCDC-2074288. (b) 2-5a: CCDC- 2108140. 41. Phosphine is known to catalyze [2+2]-cycloadditions of ketenes with imines. See selected examples: (a) S. Chen, E. C. Salo, K. A. Wheeler, N. J. Kerrigan. Org. Lett. 2012, 14, 1784-1787. (b) B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 1578-1579. 42. P. D. Bartlett, R. E. McCluney, J. Org. Chem. 1983, 48, 4165-4168. 43. (a) Y. Zheng, J. Zhang, X. Cheng, X. Xu and L. Zhang, Angew. Chem., Int. Ed., 2019, 58, 5241–5245. (b) P. Sharma, R. R. Singh, S. S. Giri, L. Y. Chen, M. J. Cheng and R. S. Liu, Org. Lett., 2019, 21,5475–5479. 44. (a) Sharma, P.; Singh, R. R.; Giri, S. S.; Chen, L. Y.; Cheng, M. J.; Liu, R. S. Org. Lett. 2019, 21, 5475-5479. b) Lopes, E. F.; Dalberto, B. T.; Perin, G.; Alves, D.; Barcellos, T.; Lenardao, E. J. Chem. Eur. J. 2017, 23, 13760-13765. c) Kang, K.; Sakamoto, K.; Nishimoto, Y.; Yasuda, M. Chemistry letter, 2020, 49, 1136-1139. 45. (a) Xu, B.; Zhu, S. F.; Zuo, X. D.; Zhang, Z. C.; Zhou, Q. L. Angew. Chem. Int. Ed. 2014, 53, 3913-3916. b) Chen, C. N.; Cheng, W. M.; Wang, J. K.; Chao, T. H.; Cheng, M. J.; Liu, R. S. Angew. Chem. Int. Ed., 2021, 60, 4479-4448. 46. Sha, S.-C.; Zhang, J.; Walsh, P. J. Org. Lett. 2015, 17, 410−413.
Chapter 3 1. Durckheimer,W.; Blumback, R. J.; Sheunemann, K. H. Angew. Chem., Int. Ed. Engl. 1985, 180, 24. 2. Brady, W. T.; Gu, Y. J. Org. Chem. 1989, 54, 2834. 3. Ward, J. S.; Pettit, R. J. Am. Chem. Soc. 1971, 93, 262. 4. Schuster, D. I.; Lem, G.; Kaprinidis, N. A. Chem. Rev. 1995, 95, 2003. 5. Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry; Academic: New York, NY, 1970. 6. Tidwell, T. T. Ketenes; Wiley: New York, NY, 1995. 7. Tidwell, T. T. Acc. Chem. Res. 1990, 23, 273. 8. Lynch, J. E.; Riseman, S. M.; Laswell, W. L.; Tschaen, D. M.; Volante, R. P.; Smith, G. B.; Shinkay, I. J. Org. Chem. 1989, 54, 3792. 9. Cossio, F. P.; Ugalde, J. M.; Lopez, X.; Lecea, B.; Palomo, C. J. Am. Chem. Soc. 1993, 115, 995. 10. Valenti, E.; Pericas, M. A.; Mayana, A. J. Org. Chem. 1990, 55, 3582. 11. Wang, X.; Houk, K. N. J. Org. Chem. 1990, 112, 1754. 12. Salzner, U.; Bachrach, S. M. J. Org. Chem. 1996, 61, 237. 13. Hyatt, J. A.; Raynolds, P. W. Org. React. 1994, 45, 159. 14. Huisgen, R.; Otto, P. Tetrahedron Lett. 1968, 43, 4491. 15. Huisgen, R.; Otto, P. Chem. Ber. 1969, 102, 3475. 16. Luthardt, P.; Moller, M. H.; Rodewald, U.; Wurthwein, E. U. Chem. Ber. 1989, 122, 1705. 17. Rossi, E.; Abbiatti, G.; Pini, E. Tetrahedron. 1997, 53, 14107. 18. Tidwell, T. T. Ketenes; JohnWiley & Sons: Hoboken, NJ, 2006. 19. Staudinger, H. Justus Liebigs Ann. Chem. 1907, 51, 356. 20. Staudinger, H. Ber. Dtsch. Chem. Ges. 1907, 40, 1145. 21. Yamabe, S.; Dai, T.; Minato, T.; Machiguchi, T.; Hasegawa, T. J. Am. Chem. Soc. 1996, 118, 6518. 22. Machiguchi, T.; Hasegawa, T.; Ishiwata, A.; Terashima, S.; Yamabe, S.; Minato, T. J. Am. Chem. Soc. 1999, 121, 4771. 23. Machiguchi, T.; Okamoto, J.; Takachi, J.; Hasegawa, T.; Yamabe, S.; Minato, T. J. Am. Chem. Soc. 2003, 125, 14446. 24. Ussing, B. R.; Hang, C.; Singleton, D. A. J. Am. Chem. Soc. 2006, 128, 7594. 25. Staudinger, H. Chem. Ber. 1905, 38, 1735-1739. 26. Diels, O.; Alder, K. Ann. Chem. 1928, 460, 98-122. 27. (a) Farmer, E. H.; Farooq, M. O. Chem., Ind. (London) 1937, 1079-1080. (b) Farmer, E. H.; Farooq, M. O. J. Chem. Soc. 1938, 1295-1930. 28. (a) Lewis, J. R.; Ramage, G. R.; Simonsen, J. L.; Wainwright, W.G. J. Chem. Soc. 1937, 1837- 1841. (b) Smith, L. I.; Agre, C. L.; Leekley, R. M.; Prichard, W. W. J. Am. Chem. Soc. 1939, 61, 7-11. 29. (a) Dawson, T. L.; Ramage, G. R. J. Chem. Soc. 1950, 3523-3525. (b) Dryden, H. L., Jr. J. Am. Chem. Soc. 1954, 76, 2841. (c) Dryden, H. L., Jr.; Burgert, B. E. J. Am. Chem. Soc. 1955, 77, 5633-5637. (d) Brady, W. T.; O’Neal, H. R. J. Org. Chem. 1967, 32, 2704-2707. 30. (a) Staudinger, H. Liebigs Ann. Chem. 1907, 356, 51-123. (b) Staudinger, H. Chem. Ber. 1907, 40, 1145-1148. (c) Staudinger, H.; Suter, E. Chem. Ber. 1920, 53B, 1092-1105. (d) Staudinger, H.; Rheiner, A. HelV. Chim. Acta, 1924, 7, 8-18. 31. (a) Hanford, W. E.; Sauer, J. C. Org. React. 1946, 3, 108-140. (b) Roberts, J. D.; Sharts, C. M. Org. React. 1962, 12, 1-56. (c) Ulrich, H. Cycloaddition Reactions of Heterocumulenes; Academic: Academic: New York, 1967. (d) Bormann, D. Methoden der Organischen Chemie: Theime Verlag: Stuttgart, 1968; Vol. 7, Part 4. (e) Ghosez, L.; O’Donnell, M. J. In Pericyclic Reactions; Marchand, A. P., Lehr, R. E., Eds.; Academic: Orlando, FL, 1977; Vol. 2, pp 79-140. (f) Huisgen, R. Pure Appl. Chem. 1980, 52, 2283-2302. (g) Brady, W. T. Tetrahedron 1981, 37, 2949-2966. (h) Clemens, R. J. Chem. Rev. 1986, 86, 241-318. (i) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis: Academic: San Diego, CA, 1987. (j) Ghosez, L.; Marchand-Brynaert, J. In ComprehensiVe Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, U.K., 1991; Vol. 5, pp 85-122. (k) Schaumann, E.; Scheiblich, S. Methoden der Organischen Chemie: Theime Verlag: Stuttgart, 1993; Vol. E15, Part 3, Chapters 4, 6, and 8. 32. (a) Tidwell, T. T. Ketenes; Wiley: New York, 1995. (b) Tidwell, T. T. Acc. Chem. Res. 1990, 23, 273-279. 33. Hyatt, J. A.; Raynolds, P. W. Org. React. 1994, 45, 159-646. 34. (a) Huisgen, R.; Otto, P. Tetrahedron Lett. 1968, 43, 4491-4495. (b) Huisgen, R.; Otto, P. Chem. Ber. 1969, 102, 3475-3485. 35. Patai, S., Ed.; The Chemistry of Functional Groups; Wiley: Chichester, U.K., 1980; Parts 1 and 2. 36. Gosez, L.; de Perez, C. Angew. Chem., Int. Ed. Engl. 1971, 10, 184-185. 37. Marchand-Brynaert, J.; Ghosez, L. Tetrahedron Lett. 1974, 377-380. 38. (a) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1969, 8, 781-853. (b) Woodward, R. B.; Hoffmann, R. The ConserVation of Orbital Symmetry; Verlag Chemie: Weinheim, Germany, 1970. 39. (a) Martin, J. C.; Gott, P. G.; Goodlett, V. W.; Hasek, R. H. J. Org. Chem. 1965, 30, 4175-4180. (b) Hasek, R. H.; Gott, P. G.; Martin, J. C. J. Org. Chem. 1964, 29, 2510-2513. 40. Brady, W. T.; Hoff, E. F., Jr. J. Org. Chem. 1970, 35, 3733. 41. (a) Huisgen, R.; Feiler, L. A.; Otto, P. Tetrahedron Lett. 1968, 4485-4490. (b) Huisgen, R.; Feiler, L. A.; Otto, P. Chem. Ber. 1969, 102, 3444-3459. 42. Rasik, L. A.; Brown, M. K. J. Am. Chem. Soc. 2013, 135, 1673−1676. 43. Chen, C. N.; Cheng, W. M.; Wang, J. K.; Chao, T. H.; Cheng, M. J.; Liu, R. S. Angew. Chem., Int. Ed. 2021, 60, 4479−4484. 44. Allais, F.; Angelaud, R.; Camuzat-Dedenis, B.; Julienne, K.; Landais, Y. Eur. J. Org. Chem. 2003, 1069–1073. 45. Sasane, A. V.; Kuo, T. C.; Cheng M. J.; R. S. Liu. Org. Lett., 2022, 24, 5220–5225. 46. Levandowski, B. J.; Raines, R. T. Chem. Rev. 2021, 121, 6777−6801. 47. (a) Lv, J.; Zhang, L.; Hu, S.; Cheng, J.-P.; Luo, S. Chem.-Eur. J. 2012, 18, 799−803. (b) Chen, C. N.; Liu, R.-S. Angew. Chem., Int. Ed. 2019, 58, 9831−9835. (c) Jadhav, P. D.; Chen, J. X.; Liu, R.-S. ACS Catal. 2020, 10, 5840−5845. (d) Tanpure, S.D.; Kuo, T.-C.; Cheng, M.-J.; Liu, R.-S. ACS Catal. 2022, 12(1), 536−543. (e) Sasane, A. V.; Kuo, T. C.; Cheng M. J.; R. S. Liu. Org. Lett., 2022, 24, 5220–5225. 48. (a) Smith, H. D.; Korkor, O.; Davies, H. M. L. Tetrahedron Lett. 1987, 28, 1853−1856 (b) Jimenez-Aberasturi, X.; Palacios, F.; de Los Santos, J. M. J. Org. Chem. 2022, 87, 17, 11583–11592. 49. (a) Mclean, S.; Haynes.; P. Tetrahedron Lett. 1965, 21, 2329−2342. (b) Spangler, C. W. Chem. Rev. 1976, 76, 187−217. (c) Hess, B. A., Jr.; Baldwin, J. E. J. Org. Chem. 2002, 67, 6025−6033. (d) Yamabe, S.; Tsuchida, N.; Yamazaki, S. J. Chem. Theory Comput. 2005, 1, 944−952. 50. (a) Adibhatla R. M.; Hatcher J. F.; Gusain A. Neurochem. Res. 2012, 37, 671. (b) Liang, H. Beilstein J. Org. Chem. 2008, 4, 31. (c) Li, A.; Yuan, C. C.; Chow, D.; Chen, M.; Emery, M. G.; Hale, C.; Zhang, X.; Subramanian, R.; St. Jean, D. J.; Komorowski, R.; Véniant, M.; Wang, M.; Fotsch, C. ACS Med. Chem. Lett. 2011, 2, 824. (d) Iqbal, Z.; Ali, S.; Iqbal, J.; Abbas, Q.; Qureshi, I. Z.; Hameed, S. Bioorg. Med. Chem. Lett. 2013, 23, 488. 51. For X-ray diffraction studies of key compounds: (a) 3-4a: CCDC-2208584. (b) 3-4a’: CCDC-2243828. (c) 3-9a: CCDC- 2208582. (d) 3-11a: CCDC-2252553. (e) 3-11b: CCDC-2246975. (f) 3-11b’: CCDC- 2243826. 52. More, S. A.; Sadaphal, V. A.; Kuo, T.-C.; Cheng, M.-J.; Liu, R.-S. Chem. Commun., 2022, 58, 10064–10067. 53. (a) Machiguchi, T.; Hasegawa, T.; Ishiwata, A.; Terashima, S.; Yamabe, S.; Minato, T. J. Am. Chem. Soc. 1999, 121, 4771−4786. (b) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 1578–1579. (c) Cosso, F. P.; Arrieta, A.; Sierra, M. A. Acc. Chem. Res. 2008, 41, 925–936 (d) Chen, S.; Salo, E. C.; Wheeler, K. A.; Kerrigan, N. J. Org. Lett. 2012, 14, 1784–1787. (e) Rigsbee, E. M.; Zhou, C.; Rasik, C. M.; Spitz, A. Z.; Nichols, A. J.; Brown, M. K. Org. Biomol. Chem. 2016, 14, 5477−5480. 54. (a) Peloquin, A. J.; Stone, R. L.; Avila, S. E.; Rudico, E. R.; Horn, C. B.; Gardner, K. A.; Ball, D. W.; Johnson, J. E. B.; Iacono, S. T.; Balaich, G. J. J. Org. Chem. 2012, 77, 6371−6376. (b) Shurdha, E.; Miller, H. A.; Johnson, R. E.; Balaich, G. J.; Iacono, S. T. Tetrahedron 70 (2014), 5142-5147. (c) Tanpure, S. D.; Kuo, T.-C.; Cheng, M.-J.; Liu, R.-S. ACS Catal. 2022, 12, 536. 55. (a) More, S. A.; Sadaphal, V. A.; Kuo, T.-C.; Cheng, M.-J.; Liu, R.-S. Chem. Commun., 2022, 58, 10064–10067. (b) Xu, B.; Zhu, S.-F.; Zuo, X.- D.; Zhang, Z.-C.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2014, 53, 3913−3916. (c) Chen, C. N.; Cheng, W. M.; Wang, J. K.; Chao, T. H.; Cheng, M. J.; Liu, R. S. Angew. Chem., Int. Ed. 2021, 60, 4479−4484. 56. (a) Keipour, H.; Jalba, A.; Delage-Laurin, L.; Ollevier, T. J. Org. Chem. 2017, 82, 3000−3010. (b) Keipour, H.; Ollevier, T. Org. Lett. 2017, 19, 5736−5739.
Chapter 4 1. General reviews on preparation of nitrogen-heterocycles: (a) “Amino-Based Building Blocks for the Construction of Biomolecules”: A. Mann in Amino Group Chemistry: From Synthesis to the Life Sciences (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007, pp. 207-256-592 (b) Balasubramanian, M.; Keay, J. G. in Comprehensive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W. Rees), Pergamon, Oxford, 1984, pp. 245-300 (c) Jin, Z. Nat. Prod. Rep. 2011, 28, 1143-1191. (d) Amines: Synthesis, Properties and Applications (Ed.: S. A. Lawrence), Cambridge University Press, Cambridge, 2004. (e) Modern Amination Methods (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007. 2. π-Acid catalysis reviews: (a) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410−3449. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180-3211. (c) Gorin, D. J.; Toste, F. D. Nature. 2007, 446, 395. 3. General and recent reviews of gold catalysis and its applications (a) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902-912. (b) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953-965. (c) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462-1479. (d) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448-2462. (e) Lopez, F.; Mascarenas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075-1094. (f) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208-3221. (g) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326-3350. 4. (a) Bunz, U. H. F. Acc. Chem. Res. 2015, 48 (6), 1676−1686. (b) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57 (24), 10257−10274. (c) Ding, D.; Zhu, G.; Jiang, X. Angew. Chem., Int. Ed. 2018, 57, 9028–9032. (d) Ding, D.; Mou, T.; Feng, M.; Jiang, X. J. Am. Chem. Soc. 2016, 138, 5218−5221. (e) Feng, M.; Tang, B.; Wang, N.; Xu, H.-X.; Jiang, X. Angew. Chem., Int. Ed. 2015, 54, 14960−14964. 5. Blount, J. F.; Madan, P. B.; Fryer, R. I. J. Org. Chem. 1977, 42, 1791. (b) Ning, R. Y.; Chen, W. Y.; L. H. Sternbach. J. Heterocycl. Chem. 1974, 11, 125. 6. Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 794-797. 7. Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 12688-12692. 8. Alam, K.; Hong, S. W.; Oh, K. H.; Park, J. K. Angew. Chem., Int. Ed. 2017, 56, 13387. 9. Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047. 10. Mei, T.-S.; Kou, L.; Ma, S.; Engle, K. M.; Yu, J.-Q. Synthesis. 2012, 44, 1778. 11. Sahani, R. L.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 12736−12740. 12. a) Risch, P.; Pfeifer, T.; Segrestaa, J.; Fretz, H.; Pothier, J. J. Med. Chem. 2015, 58, 8011–8035. b) White, D. E.; Tadross, P. M.; Lu, Z.; Jacobsen, E. N. Tetrahedron. 2014, 70, 4165-4180. 13. Tsai, M.-H.; Wang, C.-Y.; Kulandai Raj, A. S.; Liu, R.-S. Chem. Commun. 2018, 54, 10866−10869. 14. Singh, R. R.; Skaria, M.; Chen, L.-Y.; Cheng, M.-J.; Liu, R.-S. Chem. Sci. 2019, 10, 1201−1206. 15. (a) Rule, M.; Salinaro, R. F.; Pratt, D. R.; J. A. Berson. J. Am.Chem. Soc. 1982, 104, 2223-2228. (b) Salinaro, R. F.; J. A. Berson. J. Am. Chem. Soc. 1982, 104, 2228–2232. 16. Skaria, M.; Sharma, P.; Liu, R.-S. Org. Lett. 2019, 21, 2876−2879. 17. Gao, Y.; Yang, S.; Huo, Y.; Chen, Q.; Li, X.; Hu, X.-Q. ACS Catal. 2021, 11, 7772−7779. 18. Lyu, X.; Zhang, J.; Kim, D.; Seo, S.; Chang, S. J. Am. Chem. Soc. 2021, 143, 5867−5877. 19. (a) Jeon, J.; Lee, C.; Seo, H.; Hong, S. J. Am. Chem. Soc. 2020, 142, 20470−20480. (b) Xiao, J.; He, Y.; Ye, F.; Zhu, S. Chem. 2018, 4, 1645−1657. 20. (a) Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10961−10963. (b) Li, S.; Yuan, W.; Ma, S. Angew. Chem., Int. Ed. 2011, 50, 2578−2582. (c) Wang, X.; Nakajima, M.; Martin, R. J. Am. Chem. Soc. 2015, 137, 8924−8927. (d) Wang, X.; Nakajima, M.; Serrano, E.; Martin, R. J. Am. Chem. Soc. 2016, 138, 15531−15534. (e) Zhang, X.; Xie, X.; Liu, Y. J. Am. Chem. Soc. 2018, 140, 7385−7389. 21. (a) Baum, J. S.; Condon, M. E.; Shook, D. A. J. Org. Chem. 1987, 52, 2983−2988. (b) Gao, Y.; Yang, S.; Li, Y.; Huo, Y.; Huang, Z.; Chen, Z.; Hu, X.-Q. J. Org. Chem. 2020, 85, 10222−10231. 22. (a) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644−4680. (b) Xiao, L.; Lan, H.; Kido, J. Chem. Lett. 2007, 36, 802. (c) Li, Y.-J.; Sasabe, H.; Su, S.-J.; Tanaka, D.; Takeda, T.; Pu, Y.-J.; Kido, J. Chem. Lett. 2009, 38, 712. (d) Wu, X. F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113 (1), 1−35. (e) Stepien, M.; Gonka, E.; Zyla, M.; Sprutta, N. Chem. Rev. 2017, 117, 3479−3716. (f) Kroonblawd, M. P.; Lindsey, R. K.; Goldman, N. Chem. Sci. 2019, 10, 6091−6098. (g) Hiroto, S. Chem. Asian J. 2019, 14 (15), 2514−2523. (h) Borissov, A.; Maurya, Y. K.; Moshniaha, L.; Wong, W.-S.; Zyla Karwowska, M.; Stepien, M. Chem. Rev. 2022, 122, 565−788.23. 23. (a) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep. 2013, 30, 694. (b) Jadhav, A. S.; Pankhade, Y. A.; Vijaya Anand, R. J. Org. Chem. 2018, 83, 8615−8626. (c) Li, Y.; Jin, J.; Fan, W.; Huang, D. Org. Lett. 2023, 25, 8284−8289. (d) Nam, S.; Kim, I. J. Org. Chem. 2023, 88, 745−754. (e) Sanil, G.; Krzeszewski, M.; Chaladaj, W.; Danikiewicz, W.; Knysh, I.; Dobrzycki, L.; Staszewska-Krajewska, O.; Cyranski, M. K.; Jacquemin, D.; Gryko, D. T. Angew. Chem., Int. Ed. 2023, 62, e202311123. (f) Ye, L. W.; Zhu, X. Q.; Sahani, R. L.; Xu, Y.; Qian, P. C.; Liu, R. S. Chem. Rev. 2021, 121, 9039−9112. 24. (a) Tasior, M.; Chotkowski, M.; Gryko, D. T. Org. Lett. 2015, 17 (24), 6106−6109. (b) Alcaide, B.; Almendros, P.; Fernandez, I.; Herrera, F.; Luna, A. Chem. Eur. J. 2018, 24, 1448–1454. (c) Kong, X. F.; Zhan, F.; He, G. X.; Pan, C. X.; Gu, C. X.; Lu, K.; Mo, D. L.; Su, G. F. J. Org. Chem. 2018, 83, 2006-2017. (d) Qiao, J.; Jia, X.; Li, P.; Liu, X.; Zhao, J.; Zhou, Y.; Wang, J.; Liu, H.; Zhao, F. Adv. Synth. Catal. 2019, 361, 1419−1440. (e) Kawahara, K. P.; Matsuoka, W.; Ito, H.; Itami, K. Angew. Chem., Int. Ed. 2020, 59, 6383. (f) Zhang, Y.; Pun, S. H.; Miao, Q. Chem. Rev. 2022, 122, 14554−14593.26. 25. Alam, K.; Hong, S. W.; Oh, K. H.; Park, J. K. Angew. Chem., Int. Ed. 2017, 56, 13387 -13391.28. 26. (a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 794−797. (b) Ye, L.-W.; Zhu, X.-Q.; Sahani, R. L.; Xu, Y.; Qian, P.-C.; Liu, R.-S. Chem. Rev. 2021, 121, 9039−9112. 27. (a) Pegan, S. D.; Sturdy, M.; Ferry, G.; Delagrange, P.; Boutin, J. A.; Mesecar, A. D. Protein Sci. 2011, 20, 1182. (b) Paris, D.; Cottin, M.; Demonchaux, P.; Augert, G.; Dupassieux, P.; Lenoir, P.; Peck, M. J.; Jasserand, D. J. Med. Chem. 1995, 38, 669. (c) Lee, D. U.; Bae, J. S.; Nam, H.; Hong, S. G.; Lee, D. H.; Kim, S. S. Chem. Abstr. 2010, 153, 618726. (d) Mugabo, P.; Philander, A.; Raji, I.; Dietrich, D.; I. J. Ethnopharmacol. 2014, 158, 123. (e) Pereira, M. M. A.; Prabhakar, S.; Lobo, A. M. J. Nat. Prod. 1996, 59, 744−747. (f) Plubrukarn, A.; Davidson, B. J. Org. Chem. 1998, 63, 1657-1659. 28. For gold catalyzed reactions of alkyne substrate 1 with pyridine-based oxide, see: Karad, S.-N.; Liu, R.-S. Angew. Chem., Int. Ed. 2014, 53, 5444−5448. 29. For X-ray diffraction studies of key compounds: (a) 4-3a: CCDC-2283774. (b) 4-3i: CCDC-2292226. (c) 4-3i’: CCDC-2290023. (d) 4-4a: CCDC-2283773. (e) 4-6a: CCDC-2288008. (f) 4-6b: CCDC-2301731. (g) 4-7a: CCDC-2301524. (h) 4-7c: CCDC-2301525. 30. (a) Adamczyk, M.; Watt, D. S.; Netzel, D. A. J. Org. Chem. 1984, 49, 4226–4237.(b) Karad, S. N.; Liu, R.-S. Angew. Chem., Int. Ed. 2014, 53, 5444−5448. (c) Sedelmeier, J.; Ley, S. V.; Lange, H.; Baxendale, I. R. Eur. J. Org. Chem. 2009, 4412. (d) Song, L.; Tian, G.; He, Y.; Van der Eycken, E. V. Chem. Commun. 2017, 53, 12394. 31. (a) J. Chauhan, S. Fletcher, Tetrahedron Lett. 2012, 53, 4951- 4954. (b) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 12688−12692. (c) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 794−797. (d) Sahani, R. L.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 12736−12740. (e) Wang, C.; Xu, G.; Shao, Y.; Tang, S.; Sun, J. Org. Lett. 2020, 22, 5990−5994. (f) Shao, R.; Zhao, H.; Ding, S.; Li, L.; Chen, C.; Wang, J.; Shang, Y. Chem. Commun. 2022, 58, 4771-4774.
|