|
1. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958. 2. Zeugolis, D. I.; Paul, G. R.; Attenburrow, G., Cross-linking of extruded collagen fibers—A biomimetic three-dimensional scaffold for tissue engineering applications. J. Biomed. Mater. Res. Part A 2009, 89A, 895-908. 3. Lim, J.; Grafe, I.; Alexander, S.; Lee, B., Genetic causes and mechanisms of Osteogenesis Imperfecta. Bone 2017, 102, 40-49. 4. Nuytinck, L.; Freund, M.; Lagae, L.; Pierard, G. E.; Hermanns-Le, T.; De Paepe, A., Classical Ehlers-Danlos syndrome caused by a mutation in type I collagen. Am. J. Hum. Genet. 2000, 66, 1398-1402. 5. Curtis, R. W.; Chmielewski, J., A comparison of the collagen triple helix and coiled-coil peptide building blocks on metal ion-mediated supramolecular assembly. Pept. Sci. 2021, 113, e24190. 6. Ramshaw, J. A. M.; Shah, N. K.; Brodsky, B., Gly-X-Y tripeptide frequencies in collagen: A context for host–guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86-91. 7. Highberger, J. H.; Gross, J.; Schmitt, F. O., Electron microscope observations of certain fibrous structures obtained from connective tissue extracts. J. Am. Chem. Soc. 1950, 72, 3321-3322. 8. Pauling, L.; Corey, R. B.; Branson, H. R., The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 1951, 37, 205-211. 9. Ramachandran, G. N.; Kartha, G., Structure of collagen. Nature 1954, 174, 269-270. 10. Rich, A.; Crick, F. H. C., The structure of collagen. Nature 1955, 176, 915-916. 11. Rich, A.; Crick, F. H. C., The molecular structure of collagen. J. Mol. Biol. 1961, 3, 483-506, IN1-IN4. 12. Okuyama, K.; Takayanagi, M.; Ashida, T.; Kakudo, M., A new structural model for collagen. Polym. J. 1977, 9, 341-343. 13. Okuyama, K.; Xu, X.; Iguchi, M.; Noguchi, K., Revision of collagen molecular structure. Pept. Sci. 2006, 84, 181-191. 14. Moradi, M.; Babin, V.; Roland, C.; Sagui, C., A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. J. Chem. Phys. 2010, 133, 125104. 15. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554. 16. Shoulders, M. D.; Raines, R. T., Interstrand dipole-dipole interactions can stabilize the collagen triple helix. J. Biol. Chem. 2011, 286, 22905-22912. 17. Hinderaker, M. P.; Raines, R. T., An electronic effect on protein structure. Protein Sci. 2003, 12, 1188-1194. 18. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967. 19. Marini, J. C.; Forlino, A.; Cabral, W. A.; Barnes, A. M.; San Antonio, J. D.; Milgrom, S.; Hyland, J. C.; Körkkö, J.; Prockop, D. J.; De Paepe, A.; Coucke, P.; Symoens, S.; Glorieux, F. H.; Roughley, P. J.; Lund, A. M.; Kuurila-Svahn, K.; Hartikka, H.; Cohn, D. H.; Krakow, D.; Mottes, M.; Schwarze, U.; Chen, D.; Yang, K.; Kuslich, C.; Troendle, J.; Dalgleish, R.; Byers, P. H., Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 2007, 28, 209-221. 20. Bodian, D. L.; Madhan, B.; Brodsky, B.; Klein, T. E., Predicting the clinical lethality of Osteogenesis Imperfecta from collagen glycine mutations. Biochemistry 2008, 47, 5424-5432. 21. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M., Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 1994, 266, 75-81. 22. Madhan, B.; Xiao, J.; Thiagarajan, G.; Baum, J.; Brodsky, B., NMR monitoring of chain-specific stability in heterotrimeric collagen peptides. J. Am. Chem. Soc. 2008, 130, 13520-13521. 23. Acevedo-Jake, A. M.; Clements, K. A.; Hartgerink, J. D., Synthetic, register-specific, AAB heterotrimers to investigate single point glycine mutations in Osteogenesis Imperfecta. Biomacromolecules 2016, 17, 914-921. 24. Clements, K. A.; Acevedo-Jake, A. M.; Walker, D. R.; Hartgerink, J. D., Glycine substitutions in collagen heterotrimers alter triple helical assembly. Biomacromolecules 2017, 18, 617-624. 25. Sunner, J.; Nishizawa, K.; Kebarle, P., Ion-solvent molecule interactions in the gas phase. The potassium ion and benzene. J. Phys. Chem. 1981, 85, 1814-1820. 26. Burley, S. K.; Petsko, G. A., Amino-aromatic interactions in proteins. FEBS Lett. 1986, 203, 139-143. 27. Shepodd, T. J.; Petti, M. A.; Dougherty, D. A., Tight, oriented binding of an aliphatic guest by a new class of water-soluble molecules with hydrophobic binding sites. J. Am. Chem. Soc. 1986, 108, 6085-6087. 28. Ma, J. C.; Dougherty, D. A., The cation−π interaction. Chem. Rev. 1997, 97, 1303-1324. 29. Dougherty, D. A., Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-168. 30. Kearney, P. C.; Mizoue, L. S.; Kumpf, R. A.; Forman, J. E.; McCurdy, A.; Dougherty, D. A., Molecular recognition in aqueous media. New binding studies provide further insights into the cation-π interaction and related phenomena. J. Am. Chem. Soc. 1993, 115, 9907-9919. 31. Shepodd, T. J.; Petti, M. A.; Dougherty, D. A., Molecular recognition in aqueous media: donor-acceptor and ion-dipole interactions produce tight binding for highly soluble guests. J. Am. Chem. Soc. 1988, 110, 1983-1985. 32. Petti, M. A.; Shepodd, T. J.; Barrans, R. E.; Dougherty, D. A., "Hydrophobic" binding of water-soluble guests by high-symmetry, chiral hosts. An electron-rich receptor site with a general affinity for quaternary ammonium compounds and electron-deficient π systems. J. Am. Chem. Soc. 1988, 110, 6825-6840. 33. Schneider, H. J.; Schiestel, T.; Zimmermann, P., Host-guest supramolecular chemistry. 34. The incremental approach to noncovalent interactions: coulomb and van der Waals effects in organic ion pairs. J. Am. Chem. Soc. 1992, 114, 7698-7703. 34. Schneider, H.-J., Linear free energy relationships and pairwise interactions in supramolecular chemistry. Chem. Soc. Rev. 1994, 23, 227-234. 35. Chipot, C.; Maigret, B.; Pearlman, D. A.; Kollman, P. A., Molecular dynamics potential of mean force calculations: a study of the toluene−ammonium π-cation interactions. J. Am. Chem. Soc. 1996, 118, 2998-3005. 36. Duffy, E. M.; Kowalczyk, P. J.; Jorgensen, W. L., Do denaturants interact with aromatic hydrocarbons in water? J. Am. Chem. Soc. 1993, 115, 9271-9275. 37. Mecozzi, S.; West, A. P., Jr.; Dougherty, D. A., Cation-π interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566-10571. 38. Singh, J.; Thornton, J. M., SIRIUS: An automated method for the analysis of the preferred packing arrangements between protein groups. J. Mol. Biol. 1990, 211, 595-615. 39. Zheng, H.; Lu, C.; Lan, J.; Fan, S.; Nanda, V.; Xu, F., How electrostatic networks modulate specificity and stability of collagen. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 6207-6212. 40. Chen, C.-C.; Hsu, W.; Hwang, K.-C.; Hwu, J. R.; Lin, C.-C.; Horng, J.-C., Contributions of cation–π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53. 41. Chiang, C.-H.; Horng, J.-C., Cation−π interaction induced folding of AAB-type collagen heterotrimers. J. Phys. Chem. B 2016, 120, 1205-1211. 42. Bhate, M.; Wang, X.; Baum, J.; Brodsky, B., Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. Biochemistry 2002, 41, 6539-6547. 43. Chiang, C.-H.; Fu, Y.-H.; Horng, J.-C., Formation of AAB-type collagen heterotrimers from designed cationic and aromatic collagen-mimetic peptides: evaluation of the C-terminal cation−π interactions. Biomacromolecules 2017, 18, 985-993. 44. 李育昇(2017)。膠原蛋白模擬胜肽與硼烷共軛化合物的製備及雙硫鍵與cation-π作用力對膠原蛋白異源三股螺旋摺疊探討。國立清華大學化學研究所碩士論文,新竹市。 45. Ting, Y.-H.; Chen, H.-J.; Cheng, W.-J.; Horng, J.-C., Zinc(II)–Histidine induced collagen peptide assemblies: morphology modulation and hydrolytic catalysis evaluation. Biomacromolecules 2018, 19, 2629-2637. 46. 傅懿萲(2017)。Cation-π作用力及甘胺酸變異對AAB型膠原蛋白異源三股螺旋穩定性之探討。國立清華大學化學研究所碩士論文,新竹市。 47. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154. 48. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876-2890. 49. Chen, Y.-S.; Chen, C.-C.; Horng, J.-C., Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Pept. Sci. 2011, 96, 60-68.
|