帳號:guest(3.144.3.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳科廷
作者(外文):Chen, Ke-Ting
論文名稱(中文):甘胺酸變異對膠原蛋白異源三股螺旋影響之探討
論文名稱(外文):Effects of mutating glycine residues on collagen heterotrimers
指導教授(中文):洪嘉呈
指導教授(外文):Horng, Jia-Cherng
口試委員(中文):魯才德
許馨云
口試委員(外文):Lu, Tsai-Te
Hsu, Hsin-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:108023572
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:78
中文關鍵詞:甘胺酸變異膠原蛋白同源三股螺旋異源三股螺旋Cation-π作用力
外文關鍵詞:mutation of glycinecollagenhomotrimerheterotrimercation-π interactions
相關次數:
  • 推薦推薦:0
  • 點閱點閱:258
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
膠原蛋白是人體中含量最豐富的蛋白質,是由三股第二型聚脯胺酸鏈組成,每股主要包含(Pro-Hyp-Gly)作為重複序列單元。三股螺旋可以是三條相同鏈形成的AAA型同源三股螺旋,或是以兩種或三種不同鏈組成的AAB型、ABC型異源三股螺旋。近年來,膠原蛋白模擬胜肽常被拿來探討膠原蛋白的結構與功能性,也被應用於超分子結構或生物材料中。我們實驗室先前的研究顯示了cation-π作用力可以促使異源三股螺旋的生成,為了進一步探討胺基酸變異對三股螺旋結構的影響,在第一部分,我們在以cation-π作用力形成的異源三股螺旋結構中,將胜肽鏈的甘胺酸置換為肌胺酸或丙胺酸,並研究對於三股螺旋穩定度的影響;在這項實驗中,我們也會討論氫鍵的貢獻與立體效應的影響。在第二部分,我們以(Pro-Hyp-Gly)9為模板,設計新的序列,在中間位置及碳端換上帶有陽離子側鏈的精胺酸與芳香環側鏈的酪胺酸組合,嘗試引入cation-π作用力,探討是否能夠有效形成同源及異源三股螺旋。另外,我們也在此序列氮端處將其中一個甘胺酸置換為肌胺酸與丙胺酸,觀察置換後對三股螺旋穩定度的影響。由實驗結果發現某些置換為肌胺酸的胜肽仍能夠形成三股螺旋,但置換為丙胺酸後結構變得不穩定,無法形成三股螺旋。由此顯示置換丙胺酸所造成的影響比起置換肌胺酸時來得大。
Collagen is the most abundant protein in the human body. It is a triple helix composed of three polyproline II (PPII) strands, each of which often consists of proline-hydroxyproline-glycine (Pro-Hyp-Gly) as a repetitive sequence. Triple helices can be homotrimers, which are comprised of three identical strands, or heterotrimers, with two or three different strands. In the recent years, collagen-mimetic peptides (CMPs) are commonly used to help understand the structures and functions of collagen, and have been applied to supramolecular structures and biomaterials. Our previous studies have shown that cation-π interactions can be used to induce the folding of heterotrimers.To understand the mutation effects on heterotrimers, in the first part, we replaced the glycine residue of the backbone with a sarcosine or alanine in the cation-π induced heterotrimeric structure to study the consequences on the triple helix. The contribution of hydrogen bonds and the impact of steric effects were also discussed in this work. In the second part, we used (Pro-Hyp-Gly)9 as the template, and installed arginine (with the cationic side chain) and tyrosine (with the aromatic ring side chain) in the center part and C-terminus to observe whether it would form homotrimers or heterotrimers via cation-π interactions. In addition, we also replaced one of the glycines at the N-terminal fragment of this sequence with a sarcosine or alanine to examine the effect of the replacement on the triple helix stability. The results showed that some peptides substituted with sarcosine could still form a triple helix, but being replaced with an alanine would make the peptides fail to form trimers. From the data, we found that the impact of replacing alanine is greater than replacing sarcosine.
中文摘要 I
Abstract II
序言 III
第一章 緒論 1
1.1. 膠原蛋白 1
1.1.1. 膠原蛋白組成 2
1.1.2. 膠原蛋白結構 2
1.1.3. 膠原蛋白作用力 4
1.1.4. 膠原蛋白模擬胜肽胺基酸置換的穩定性 6
1.1.5. 膠原蛋白中胺基酸的置換 7
1.2. Cation-π作用力(Cation-π interaction) 8
1.2.1. 影響Cation-π作用力的因素 9
1.2.2. 水溶液中的Cation-π作用力 9
1.2.3. 帶電荷與芳香環側鏈之胺基酸 11
1.2.4. 胺基酸與芳香環側鏈間的作用力 12
1.2.5. 徑向與軸向作用力 14
1.3. 研究動機 15
第二章 實驗部分 18
2.1. 實驗儀器 18
2.2. 實驗藥品 19
2.3. 實驗流程 20
2.4. 固相胜肽合成法(Solid-Phase Peptide Synthesis, SPPS) 21
2.4.1. 酯化/醯胺化反應 23
2.4.2. 去保護 23
2.4.3. 活化 25
2.4.4. 耦合 25
2.4.5. 切除 26
2.5. 胜肽合成 26
2.5.1. 用自動胜肽合成儀合成B1_Sar, B1_Ala, CR3_Ala 27
2.5.2. 手動合成B2_Sar, B2_Ala, B3, B4, CF3, D1, D2, D1_Sar, D1_Ala, B3* 28
2.5.3. 切除胜肽 28
2.5.4. 以HPLC純化胜肽 29
2.5.5. 以HPLC和MALDI-TOF MS鑑定胜肽純度 29
2.6. 圓二色光譜儀 30
2.7. 圓二色光譜儀之量測 31
2.7.1. 製備胜肽溶液 31
2.7.2. Far-UV CD光譜量測 32
2.7.3. 變溫CD光譜量測 32
2.7.4. 變溫實驗數據處理 32
2.8. 1H, 15N-HSQC(Heteronuclear single quantum coherence)光譜 33
2.8.1. 1H, 15N-HSQC樣品配製 34
2.9. 差式掃描量熱法(Differential scanning calorimetry, DSC) 35
2.9.1. DSC樣品配製 35
2.9.2. 熱力學實驗數據處理 35
第三章 結果與討論 37
第一部分、肌胺酸與丙胺酸置換之探討 37
3.1. 置換位置設計 37
3.2. CD光譜之探討 38
3.2.1. Far-UV之CD光譜 39
3.2.2. 變溫實驗之CD光譜 41
3.3. 1H, 15N-HSQC光譜 47
第二部分、中間位置與碳端置換精胺酸與酪胺酸之探討 50
3.4. 胜肽序列設計 50
3.5. CD光譜之探討 50
3.5.1. Far-UV之CD光譜 50
3.5.2. 變溫實驗之CD光譜 51
3.6. 熱力學性質之探討 58
第四章 結論 60
參考文獻 62
附錄 68
1. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958.
2. Zeugolis, D. I.; Paul, G. R.; Attenburrow, G., Cross-linking of extruded collagen fibers—A biomimetic three-dimensional scaffold for tissue engineering applications. J. Biomed. Mater. Res. Part A 2009, 89A, 895-908.
3. Lim, J.; Grafe, I.; Alexander, S.; Lee, B., Genetic causes and mechanisms of Osteogenesis Imperfecta. Bone 2017, 102, 40-49.
4. Nuytinck, L.; Freund, M.; Lagae, L.; Pierard, G. E.; Hermanns-Le, T.; De Paepe, A., Classical Ehlers-Danlos syndrome caused by a mutation in type I collagen. Am. J. Hum. Genet. 2000, 66, 1398-1402.
5. Curtis, R. W.; Chmielewski, J., A comparison of the collagen triple helix and coiled-coil peptide building blocks on metal ion-mediated supramolecular assembly. Pept. Sci. 2021, 113, e24190.
6. Ramshaw, J. A. M.; Shah, N. K.; Brodsky, B., Gly-X-Y tripeptide frequencies in collagen: A context for host–guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86-91.
7. Highberger, J. H.; Gross, J.; Schmitt, F. O., Electron microscope observations of certain fibrous structures obtained from connective tissue extracts. J. Am. Chem. Soc. 1950, 72, 3321-3322.
8. Pauling, L.; Corey, R. B.; Branson, H. R., The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 1951, 37, 205-211.
9. Ramachandran, G. N.; Kartha, G., Structure of collagen. Nature 1954, 174, 269-270.
10. Rich, A.; Crick, F. H. C., The structure of collagen. Nature 1955, 176, 915-916.
11. Rich, A.; Crick, F. H. C., The molecular structure of collagen. J. Mol. Biol. 1961, 3, 483-506, IN1-IN4.
12. Okuyama, K.; Takayanagi, M.; Ashida, T.; Kakudo, M., A new structural model for collagen. Polym. J. 1977, 9, 341-343.
13. Okuyama, K.; Xu, X.; Iguchi, M.; Noguchi, K., Revision of collagen molecular structure. Pept. Sci. 2006, 84, 181-191.
14. Moradi, M.; Babin, V.; Roland, C.; Sagui, C., A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. J. Chem. Phys. 2010, 133, 125104.
15. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554.
16. Shoulders, M. D.; Raines, R. T., Interstrand dipole-dipole interactions can stabilize the collagen triple helix. J. Biol. Chem. 2011, 286, 22905-22912.
17. Hinderaker, M. P.; Raines, R. T., An electronic effect on protein structure. Protein Sci. 2003, 12, 1188-1194.
18. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967.
19. Marini, J. C.; Forlino, A.; Cabral, W. A.; Barnes, A. M.; San Antonio, J. D.; Milgrom, S.; Hyland, J. C.; Körkkö, J.; Prockop, D. J.; De Paepe, A.; Coucke, P.; Symoens, S.; Glorieux, F. H.; Roughley, P. J.; Lund, A. M.; Kuurila-Svahn, K.; Hartikka, H.; Cohn, D. H.; Krakow, D.; Mottes, M.; Schwarze, U.; Chen, D.; Yang, K.; Kuslich, C.; Troendle, J.; Dalgleish, R.; Byers, P. H., Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 2007, 28, 209-221.
20. Bodian, D. L.; Madhan, B.; Brodsky, B.; Klein, T. E., Predicting the clinical lethality of Osteogenesis Imperfecta from collagen glycine mutations. Biochemistry 2008, 47, 5424-5432.
21. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M., Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 1994, 266, 75-81.
22. Madhan, B.; Xiao, J.; Thiagarajan, G.; Baum, J.; Brodsky, B., NMR monitoring of chain-specific stability in heterotrimeric collagen peptides. J. Am. Chem. Soc. 2008, 130, 13520-13521.
23. Acevedo-Jake, A. M.; Clements, K. A.; Hartgerink, J. D., Synthetic, register-specific, AAB heterotrimers to investigate single point glycine mutations in Osteogenesis Imperfecta. Biomacromolecules 2016, 17, 914-921.
24. Clements, K. A.; Acevedo-Jake, A. M.; Walker, D. R.; Hartgerink, J. D., Glycine substitutions in collagen heterotrimers alter triple helical assembly. Biomacromolecules 2017, 18, 617-624.
25. Sunner, J.; Nishizawa, K.; Kebarle, P., Ion-solvent molecule interactions in the gas phase. The potassium ion and benzene. J. Phys. Chem. 1981, 85, 1814-1820.
26. Burley, S. K.; Petsko, G. A., Amino-aromatic interactions in proteins. FEBS Lett. 1986, 203, 139-143.
27. Shepodd, T. J.; Petti, M. A.; Dougherty, D. A., Tight, oriented binding of an aliphatic guest by a new class of water-soluble molecules with hydrophobic binding sites. J. Am. Chem. Soc. 1986, 108, 6085-6087.
28. Ma, J. C.; Dougherty, D. A., The cation−π interaction. Chem. Rev. 1997, 97, 1303-1324.
29. Dougherty, D. A., Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-168.
30. Kearney, P. C.; Mizoue, L. S.; Kumpf, R. A.; Forman, J. E.; McCurdy, A.; Dougherty, D. A., Molecular recognition in aqueous media. New binding studies provide further insights into the cation-π interaction and related phenomena. J. Am. Chem. Soc. 1993, 115, 9907-9919.
31. Shepodd, T. J.; Petti, M. A.; Dougherty, D. A., Molecular recognition in aqueous media: donor-acceptor and ion-dipole interactions produce tight binding for highly soluble guests. J. Am. Chem. Soc. 1988, 110, 1983-1985.
32. Petti, M. A.; Shepodd, T. J.; Barrans, R. E.; Dougherty, D. A., "Hydrophobic" binding of water-soluble guests by high-symmetry, chiral hosts. An electron-rich receptor site with a general affinity for quaternary ammonium compounds and electron-deficient π systems. J. Am. Chem. Soc. 1988, 110, 6825-6840.
33. Schneider, H. J.; Schiestel, T.; Zimmermann, P., Host-guest supramolecular chemistry. 34. The incremental approach to noncovalent interactions: coulomb and van der Waals effects in organic ion pairs. J. Am. Chem. Soc. 1992, 114, 7698-7703.
34. Schneider, H.-J., Linear free energy relationships and pairwise interactions in supramolecular chemistry. Chem. Soc. Rev. 1994, 23, 227-234.
35. Chipot, C.; Maigret, B.; Pearlman, D. A.; Kollman, P. A., Molecular dynamics potential of mean force calculations:  a study of the toluene−ammonium π-cation interactions. J. Am. Chem. Soc. 1996, 118, 2998-3005.
36. Duffy, E. M.; Kowalczyk, P. J.; Jorgensen, W. L., Do denaturants interact with aromatic hydrocarbons in water? J. Am. Chem. Soc. 1993, 115, 9271-9275.
37. Mecozzi, S.; West, A. P., Jr.; Dougherty, D. A., Cation-π interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566-10571.
38. Singh, J.; Thornton, J. M., SIRIUS: An automated method for the analysis of the preferred packing arrangements between protein groups. J. Mol. Biol. 1990, 211, 595-615.
39. Zheng, H.; Lu, C.; Lan, J.; Fan, S.; Nanda, V.; Xu, F., How electrostatic networks modulate specificity and stability of collagen. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 6207-6212.
40. Chen, C.-C.; Hsu, W.; Hwang, K.-C.; Hwu, J. R.; Lin, C.-C.; Horng, J.-C., Contributions of cation–π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53.
41. Chiang, C.-H.; Horng, J.-C., Cation−π interaction induced folding of AAB-type collagen heterotrimers. J. Phys. Chem. B 2016, 120, 1205-1211.
42. Bhate, M.; Wang, X.; Baum, J.; Brodsky, B., Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. Biochemistry 2002, 41, 6539-6547.
43. Chiang, C.-H.; Fu, Y.-H.; Horng, J.-C., Formation of AAB-type collagen heterotrimers from designed cationic and aromatic collagen-mimetic peptides: evaluation of the C-terminal cation−π interactions. Biomacromolecules 2017, 18, 985-993.
44. 李育昇(2017)。膠原蛋白模擬胜肽與硼烷共軛化合物的製備及雙硫鍵與cation-π作用力對膠原蛋白異源三股螺旋摺疊探討。國立清華大學化學研究所碩士論文,新竹市。
45. Ting, Y.-H.; Chen, H.-J.; Cheng, W.-J.; Horng, J.-C., Zinc(II)–Histidine induced collagen peptide assemblies: morphology modulation and hydrolytic catalysis evaluation. Biomacromolecules 2018, 19, 2629-2637.
46. 傅懿萲(2017)。Cation-π作用力及甘胺酸變異對AAB型膠原蛋白異源三股螺旋穩定性之探討。國立清華大學化學研究所碩士論文,新竹市。
47. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.
48. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876-2890.
49. Chen, Y.-S.; Chen, C.-C.; Horng, J.-C., Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Pept. Sci. 2011, 96, 60-68.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *