|
1. Slominski, A.; Wortsman, J.; Paus, R.; Elias, P. M.; Tobin, D. J.; Feingold, K. R. Skin as an Endocrine Organ: Implications for Its Function. Drug Discov. Today Dis. Mech. 2008, 5, e137-e144. 2. Suskind, R. R. Environment and the Skin. Environ. Health Perspect. 1977, 20, 27-37. 3. Losquadro, W. D. Anatomy of the Skin and the Pathogenesis of Nonmelanoma Skin Cancer. Facial Plast. Surg. Clin. North Am. 2017, 25, 283-289. 4. Del Rosso, J. Q.; Levin, J. The Clinical Relevance of Maintaining the Functional Integrity of the Stratum Corneum in Both Healthy and Disease-Affected Skin. J. Clin. Aesthet. Dermatol. 2011, 4, 22-42. 5. Cui, C.-Y.; Schlessinger, D. Eccrine Sweat Gland Development and Sweat Secretion. Exp. Dermatol. 2015, 24, 644-650. 6. Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V. A.; Singh, S. R. Advances in Skin Regeneration Using Tissue Engineering. Int. J. Mol. Sci. 2017, 18, 789. 7. Hussain, J. N.; Mantri, N.; Cohen, M. M. Working up a Good Sweat — the Challenges of Standardising Sweat Collection for Metabolomics Analysis. Clin. Biochem. Rev. 2017, 38, 13-34. 8. Baker, L. B. Physiology of Sweat Gland Function: The Roles of Sweating and Sweat Composition in Human Health. Temperature (Austin) 2019, 6, 211-259. 9. Shirreffs, S. M.; Maughan, R. J. Whole Body Sweat Collection in Humans: An Improved Method with Preliminary Data on Electrolyte Content. J. Appl. Physiol. 1997, 82, 336-341. 10. Jadoon, S.; Karim, S.; Akram, M. R.; Kalsoom Khan, A.; Zia, M. A.; Siddiqi, A. R.; Murtaza, G. Recent Developments in Sweat Analysis and Its Applications. Int. J. Anal. Chem. 2015, 2015, 164974. 11. Wilke, K.; Martin, A.; Terstegen, L.; Biel, S. S. A Short History of Sweat Gland Biology. Int. J. Cosmet. Sci. 2007, 29, 169-179. 12. Stefaniak, A. B.; Harvey, C. J. Dissolution of Materials in Artificial Skin Surface Film Liquids. Toxicol. In Vitro 2006, 20, 1265-1283. 13. Dunstan, R. H.; Sparkes, D. L.; Dascombe, B. J.; Macdonald, M. M.; Evans, C. A.; Stevens, C. J.; Crompton, M. J.; Gottfries, J.; Franks, J.; Murphy, G.; et al. Sweat Facilitated Amino Acid Losses in Male Athletes During Exercise at 32-34°C. PLoS One 2016, 11, e0167844. 14. Picardo, M.; Ottaviani, M.; Camera, E.; Mastrofrancesco, A. Sebaceous Gland Lipids. Dermatoendocrinol. 2009, 1, 68-71. 15. Farrell, P. M.; Rosenstein, B. J.; White, T. B.; Accurso, F. J.; Castellani, C.; Cutting, G. R.; Durie, P. R.; LeGrys, V. A.; Massie, J.; Parad, R. B.; et al. Guidelines for Diagnosis of Cystic Fibrosis in Newborns through Older Adults: Cystic Fibrosis Foundation Consensus Report. J. Pediatr. 2008, 153, S4-S14. 16. Kintz, P.; Tracqui, A.; Mangin, P.; Edel, Y. Sweat Testing in Opioid Users with a Sweat Patch. J. Anal. Toxicol. 1996, 20, 393-397. 17. de la Torre, R.; Pichini, S. Usefulness of Sweat Testing for the Detection of Cannabis Smoke. Clin. Chem. 2004, 50, 1961-1962. 18. Elpa, D. P.; Chiu, H.-Y.; Wu, S.-P.; Urban, P. L. Skin Metabolomics. Trends Endocrinol. Metab. 2021, 32, 66-75. 19. Hammond, K. B.; Turcios, N. L.; Gibson, L. E. Clinical Evaluation of the Macroduct Sweat Collection System and Conductivity Analyzer in the Diagnosis of Cystic Fibrosis. The Journal of Pediatrics 1994, 124, 255-260. 20. Cizza, G.; Marques, A. H.; Eskandari, F.; Christie, I. C.; Torvik, S.; Silverman, M. N.; Phillips, T. M.; Sternberg, E. M. Elevated Neuroimmune Biomarkers in Sweat Patches and Plasma of Premenopausal Women with Major Depressive Disorder in Remission: The Power Study. Biol. Psychiatry 2008, 64, 907-911. 21. Calderón-Santiago, M.; Priego-Capote, F.; Turck, N.; Robin, X.; Jurado-Gámez, B.; Sanchez, J. C.; Luque de Castro, M. D. Human Sweat Metabolomics for Lung Cancer Screening. Anal. Bioanal. Chem. 2015, 407, 5381-5392. 22. Trivedi, D. K.; Sinclair, E.; Xu, Y.; Sarkar, D.; Walton-Doyle, C.; Liscio, C.; Banks, P.; Milne, J.; Silverdale, M.; Kunath, T.; et al. Discovery of Volatile Biomarkers of Parkinson’s Disease from Sebum. ACS Cent. Sci. 2019, 5, 599-606. 23. Dutkiewicz, E. P.; Hsieh, K.-T.; Wang, Y.-S.; Chiu, H.-Y.; Urban, P. L. Hydrogel Micropatch and Mass Spectrometry–Assisted Screening for Psoriasis-Related Skin Metabolites. Clin. Chem. 2016, 62, 1120-1128. 24. Smesny, S.; Schmelzer, C. E. H.; Hinder, A.; Köhler, A.; Schneider, C.; Rudzok, M.; Schmidt, U.; Milleit, B.; Milleit, C.; Nenadic, I.; et al. Skin Ceramide Alterations in First-Episode Schizophrenia Indicate Abnormal Sphingolipid Metabolism. Schizophr. Bull. 2012, 39, 933-941. 25. De Moraes, C. M.; Wanjiku, C.; Stanczyk, N. M.; Pulido, H.; Sims, J. W.; Betz, H. S.; Read, A. F.; Torto, B.; Mescher, M. C. Volatile Biomarkers of Symptomatic and Asymptomatic Malaria Infection in Humans. Proc. Natl. Acad. Sci. 2018, 115, 5780. 26. Nischal, U.; Nischal, K.; Khopkar, U. Techniques of Skin Biopsy and Practical Considerations. J. Cutan. Aesthet. Surg. 2008, 1, 107-111. 27. Lei, B. U. W.; Prow, T. W. A Review of Microsampling Techniques and Their Social Impact. Biomed. Microdevices 2019, 21, 81. 28. Wang, C. Y.; Maibach, H. I. Why Minimally Invasive Skin Sampling Techniques? A Bright Scientific Future. Cutan. Ocul. Toxicol. 2011, 30, 1-6. 29. ELITechGroup. Macroduct® Sweat Collection System. https://www.elitechgroup.com/product/macroduct-sweat-collection-system-2 (accessed Jan 04, 2021). 30. Kintz, P.; Cirimele, V.; Ludes, B. Detection of Cannabis in Oral Fluid (Saliva) and Forehead Wipes (Sweat) from Impaired Drivers. J. Anal. Toxicol. 2000, 24, 557-561. 31. Birkemeyer, C. S.; Thomsen, R.; Jänig, S.; Kücklich, M.; Slama, A.; Weiß, B. M.; Widdig, A. Sampling the Body Odor of Primates: Cotton Swabs Sample Semivolatiles Rather Than Volatiles. Chem. Senses 2016, 41, 525-535. 32. Dutkiewicz, E. P.; Lin, J.-D.; Tseng, T.-W.; Wang, Y.-S.; Urban, P. L. Hydrogel Micropatches for Sampling and Profiling Skin Metabolites. Anal. Chem. 2014, 86, 2337-2344. 33. Dutkiewicz, E. P.; Chiu, H.-Y.; Urban, P. L. Probing Skin for Metabolites and Topical Drugs with Hydrogel Micropatches. Anal. Chem. 2017, 89, 2664-2670. 34. Liao, P.-H.; Urban, P. L. Agarose-Based Gel-Phase Microextraction Technique for Quick Sampling of Polar Analytes Adsorbed on Surfaces. ACS Omega 2019, 4, 19063-19070. 35. Dutkiewicz, E. P.; Hsieh, K.-T.; Urban, P. L.; Chiu, H.-Y. Temporal Correlations of Skin and Blood Metabolites with Clinical Outcomes of Biologic Therapy in Psoriasis. J. Appl. Lab. Med. 2020, 5, 877-888. 36. Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252-267. 37. Groover, M. P. "Automation". Encyclopedia Britannica. https://www.britannica.com/technology/automation (accessed May 27, 2021). 38. Guarnieri, M. The Roots of Automation before Mechatronics [Historical]. IEEE Ind. Electron. Mag. 2010, 4, 42-43. 39. Moran, M. E. The Da Vinci Robot. J. Endourol. 2006, 20, 986-990. 40. Olsen, K. The First 110 Years of Laboratory Automation. J. Lab. Autom. 2012, 17, 469-480. 41. Boyd, J. Robotic Laboratory Automation. Science 2002, 295, 517. 42. Urban, P. L. Prototyping Instruments for the Chemical Laboratory Using Inexpensive Electronic Modules. Angew. Chem. Int. Ed. 2018, 57, 11074-11077. 43. Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120, 9482-9553. 44. Liscouski, J. G. Issues and Directions in Laboratory Automation. Anal. Chem. 1988, 60, 95A-99A. 45. Markin, R. S.; Whalen, S. A. Laboratory Automation: Trajectory, Technology, and Tactics. Clin. Chem. 2000, 46, 764-771. 46. May, M. A DIY Approach to Automating Your Lab. Nature 2019, 569, 587-588. 47. Wheeler, M. J. Overview on Robotics in the Laboratory. Ann. Clin. Biochem. 2007, 44, 209-218. 48. Holland, I.; Davies, J. A. Automation in the Life Science Research Laboratory. Front. Bioeng. Biotechnol. 2020, 8. 49. Online Etymology Dictionary Robot. https://www.etymonline.com/word/robot (accessed Jul 11, 2021). 50. Grau, A.; Indri, M.; Bello, L. L.; Sauter, T. Industrial Robotics in Factory Automation: From the Early Stage to the Internet of Things, In IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 29 Oct.-1 Nov. 2017; 2017; pp 6159-6164. 51. Miller, L. S.; Bhullar, B. S.; Moore, V. S.; Scovell, L. J.; Lamm, J.; Sawhney, A.; Smith, L. A. A Robotic Immunoassay System for Detergent Enzymes. Chemometrics Intellig. Lab. Syst. 1994, 26, 79-87. 52. Pizzamiglio, M.; Marino, A.; Portera, G.; My, D.; Bellino, C.; Garofano, L. Robotic DNA Extraction System as a New Way to Process Sweat Traces Rapidly and Efficiently. Int. Congr. Ser. 2006, 1288, 598-600. 53. Lloyd, T. L.; Perschy, T. B.; Gooding, A. E.; Tomlinson, J. J. Robotic Solid Phase Extraction and High Performance Liquid Chromatographic Analysis of Ranitidine in Serum or Plasma. Biomed. Chromatogr. 1992, 6, 311-316. 54. Arthur, C. L.; Killam, L. M.; Buchholz, K. D.; Pawliszyn, J.; Berg, J. R. Automation and Optimization of Solid-Phase Microextraction. Anal. Chem. 1992, 64, 1960-1966. 55. Prabhu, G. R. D.; Urban, P. L. The Dawn of Unmanned Analytical Laboratories. TrAC, Trends Anal. Chem. 2017, 88, 41-52. 56. Alexovič, M.; Dotsikas, Y.; Bober, P.; Sabo, J. Achievements in Robotic Automation of Solvent Extraction and Related Approaches for Bioanalysis of Pharmaceuticals. J. Chromatogr. B 2018, 1092, 402-421. 57. Chiu, S.-H.; Urban, P. L. Robotics-Assisted Mass Spectrometry Assay Platform Enabled by Open-Source Electronics. Biosens. Bioelectron. 2015, 64, 260-268. 58. Chen, C.-L.; Chen, T.-R.; Chiu, S.-H.; Urban, P. L. Dual Robotic Arm “Production Line” Mass Spectrometry Assay Guided by Multiple Arduino-Type Microcontrollers. Sens. Actuator B-Chem. 2017, 239, 608-616. 59. Choi, B. J.; Jin, S. M.; Shin, S. H.; Koo, J. C.; Ryew, S. M.; Kim, J.; Son, W. H.; Ahn, K. T.; Chung, W.; Choi, H. R. Development of Flexible Biorobot Platform for Integrated Clinical Test. J. Assoc. Lab. Autom. 2008, 13, 90-96. 60. Li, A.; Paine, M. R. L.; Zambrzycki, S.; Stryffeler, R. B.; Wu, J.; Bouza, M.; Huckaby, J.; Chang, C.-Y.; Kumar, M.; Mukhija, P.; et al. Robotic Surface Analysis Mass Spectrometry (RoSA-MS) of Three-Dimensional Objects. Anal. Chem. 2018, 90, 3981-3986. 61. Burger, B.; Maffettone, P. M.; Gusev, V. V.; Aitchison, C. M.; Bai, Y.; Wang, X.; Li, X.; Alston, B. M.; Li, B.; Clowes, R.; et al. A Mobile Robotic Chemist. Nature 2020, 583, 237-241. 62. Yachie, N.; Consortium, R. B.; Takahashi, K.; Katayama, T.; Sakurada, T.; Kanda, G. N.; Takagi, E.; Hirose, T.; Katsura, T.; Moriya, T.; et al. Robotic Crowd Biology with Maholo Labdroids. Nat. Biotechnol. 2017, 35, 310-312. 63. Augarten, S., State of the Art: A Photographic History of the Integrated Circuit. Ticknor & Fields, 1983. 64. Keim, R. What Is a Microcontroller? The Defining Characteristics and Architecture of a Common Component. https://www.allaboutcircuits.com/technical-articles/what-is-a-microcontroller-introduction-component-characteristics-component/ (accessed Apr 06, 2021). 65. McRoberts, M., Beginning Arduino. Apress, 2010. 66. Kushner, D. The Making of Arduino. https://spectrum.ieee.org/geek-life/hands-on/the-making-of-arduino (accessed April 20, 2021). 67. Taneja, S. R.; Gupta, R. C.; Kumar, J.; Thariyan, K. K.; Verma, S. Design and Development of Microcontroller-Based Clinical Chemistry Analyser for Measurement of Various Blood Biochemistry Parameters. J. Auto. Meth. Manage. Chem. 2005, 2005, 240635. 68. D’Ambrosio, M. V.; Bakalar, M.; Bennuru, S.; Reber, C.; Skandarajah, A.; Nilsson, L.; Switz, N.; Kamgno, J.; Pion, S.; Boussinesq, M.; et al. Point-of-Care Quantification of Blood-Borne Filarial Parasites with a Mobile Phone Microscope. Sci. Transl. Med. 2015, 7, 286re4. 69. Grinias, J. P.; Whitfield, J. T.; Guetschow, E. D.; Kennedy, R. T. An Inexpensive, Open-Source Usb Arduino Data Acquisition Device for Chemical Instrumentation. J. Chem. Educ. 2016, 93, 1316-1319. 70. Panneer Selvam, A.; Muthukumar, S.; Kamakoti, V.; Prasad, S. A Wearable Biochemical Sensor for Monitoring Alcohol Consumption Lifestyle through Ethyl Glucuronide (EtG) Detection in Human Sweat. Sci. Rep. 2016, 6, 23111. 71. Mercer, C.; Leech, D. Cost-Effective Wireless Microcontroller for Internet Connectivity of Open-Source Chemical Devices. J. Chem. Educ. 2018, 95, 1221-1225. 72. Isikdag, U., Internet of Things: Single-Board Computers. In Enhanced Building Information Models: Using Iot Services and Integration Patterns, Isikdag, U., Ed. Springer International Publishing, 2015; pp 43-53. 73. Johnston, S. J.; Basford, P. J.; Perkins, C. S.; Herry, H.; Tso, F. P.; Pezaros, D.; Mullins, R. D.; Yoneki, E.; Cox, S. J.; Singer, J. Commodity Single Board Computer Clusters and Their Applications. Future Gener. Comput. Syst. 2018, 89, 201-212. 74. Bougot-Robin, K.; Paget, J.; Atkins, S. C.; Edel, J. B. Optimization and Design of an Absorbance Spectrometer Controlled Using a Raspberry Pi to Improve Analytical Skills. J. Chem. Educ. 2016, 93, 1232-1240. 75. Pan, J.-Z.; Yao, B.; Fang, Q. Hand-Held Photometer Based on Liquid-Core Waveguide Absorption Detection for Nanoliter-Scale Samples. Anal. Chem. 2010, 82, 3394-3398. 76. Shih, C.-P.; Yu, K.-C.; Ou, H.-T.; Urban, P. L. Portable Pen-Probe Analyzer Based on Ion Mobility Spectrometry for in Situ Analysis of Volatile Organic Compounds Emanating from Surfaces and Wireless Transmission of the Acquired Spectra. Anal. Chem. 2021, 93, 2424-2432. 77. Prabhu, G. R. D.; Witek, H. A.; Urban, P. L. Programmable Flow Rate Scanner for Evaluating Detector Sensitivity Regime. Sens. Actuator B-Chem. 2019, 282, 992-998. 78. Prabhu, G. R. D.; Ponnusamy, V. K.; Witek, H. A.; Urban, P. L. Sample Flow Rate Scan in Electrospray Ionization Mass Spectrometry Reveals Alterations in Protein Charge State Distribution. Anal. Chem. 2020, 92, 13042-13049. 79. Yang, T. H.; Yang, H. C.; Chang, C. H.; Prabhu, G. R. D.; Urban, P. L. Microanalysis Using Acoustically Actuated Droplets Pinned onto a Thread. IEEE Access 2019, 7, 154743-154749. 80. Soong, R.; Jenne, A.; Lysak, D. H.; Ghosh Biswas, R.; Adamo, A.; Kim, K. S.; Simpson, A. Titrate over the Internet: An Open-Source Remote-Control Titration Unit for All Students. J. Chem. Educ. 2021, 98, 1037-1042. 81. Herrero, P.; Delpino-Rius, A.; Ras-Mallorquí, M. R.; Arola, L.; Canela, N., Introduction to Mass Spectrometry Instrumentation and Methods Used in Chemical Biology. In Mass Spectrometry in Chemical Biology: Evolving Applications [Online] The Royal Society of Chemistry: London, 2018; pp. 17-56. http://dx.doi.org/10.1039/9781788010399-00017. 82. Thomson, J. J. Xl. Cathode Rays. Philos. Mag. Ser. 1897, 44, 293-316. 83. Thomson, J. J. Bakerian Lecture:— Rays of Positive Electricity. Proc. R. Soc. London, Ser. A 1913, 89, 1-20. 84. Aston, F. W. The Constitution of Atmospheric Neon. Philos. Mag. Ser. 1920, 39, 449-455. 85. Dong, Y.; Liu, J.; Guo, T., Introduction of Mass Spectrometry and Ambient Ionization Techniques. In Direct Analysis in Real Time Mass Spectrometry [Online] Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2018; pp. 1-42. https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527803705.ch1. 86. Dempster, A. J. A New Method of Positive Ray Analysis. Phys. Rev. 1918, 11, 316-325. 87. Munson, M. S. B.; Field, F. H. Chemical Ionization Mass Spectrometry. I. General Introduction. J. Am. Chem. Soc. 1966, 88, 2621-2630. 88. Yamashita, M.; Fenn, J. B. Electrospray Ion Source. Another Variation on the Free-Jet Theme. J. Phys. Chem. 1984, 88, 4451-4459. 89. Taylor, G. I. Disintegration of Water Drops in an Electric Field. Proc. R. Soc. London, Ser. A 1964, 280, 383-397. 90. van den Broek, I.; Niessen, W. M. A.; van Dongen, W. D. Bioanalytical Lc–MS/MS of Protein-Based Biopharmaceuticals. J. Chromatogr. B 2013, 929, 161-179. 91. Bantscheff, M.; Lemeer, S.; Savitski, M. M.; Kuster, B. Quantitative Mass Spectrometry in Proteomics: Critical Review Update from 2007 to the Present. Anal. Bioanal. Chem. 2012, 404, 939-965. 92. Lu, W.; Bennett, B. D.; Rabinowitz, J. D. Analytical Strategies for Lc–MS-Based Targeted Metabolomics. J. Chromatogr. B 2008, 871, 236-242. 93. van der Veen, I.; de Boer, J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere 2012, 88, 1119-1153. 94. de Hoffmann, E.; Stroobant, V., Mass Spectrometry: Principles and Applications. 3rd ed.; John Wiley & Sons, 2007. 95. Paul, W.; Steinwedel, H. Notizen: Ein Neues Massenspektrometer Ohne Magnetfeld. Z. Naturforsch. A 1953, 8, 448-450. 96. He, J.; Yu, Q.; Li, L.; Hang, W.; Huang, B. Characteristics and Comparison of Different Radiofrequency-Only Multipole Cooling Cells. Rapid Commun. Mass Spectrom. 2008, 22, 3327-3333. 97. Wolff, M. M.; Stephens, W. E. A Pulsed Mass Spectrometer with Time Dispersion. Rev. Sci. Instrum. 1953, 24, 616-617. 98. Wiley, W. C.; McLaren, I. H. Time‐of‐Flight Mass Spectrometer with Improved Resolution. Rev. Sci. Instrum. 1955, 26, 1150-1157. 99. Mamyrin, B. A.; Karataev, V. I.; Shmikk, D. V.; Zagulin, V. A. The Mass-Reflectron, a New Nonmagnetic Time-of-Flight Mass Spectrometer with High Resolution. Sov. Phys. JETP 1973, 37, 45. 100. Guru, A. Life Begins at 40 – a Brief History of Lc-MS/MS. https://analyteguru.com/life-begins-at-40-a-brief-history-of-lc-msms/ (accessed June 22, 2021). 101. Soler, C.; Hamilton, B.; Furey, A.; James, K. J.; Mañes, J.; Picó, Y. Comparison of Four Mass Analyzers for Determining Carbosulfan and Its Metabolites in Citrus by Liquid Chromatography/Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 2151-2164. 102. Lai-Cheong, J. E.; McGrath, J. A. Structure and Function of Skin, Hair and Nails. Medicine (Abingdon) 2017, 45, 347-351. 103. Robinson, S.; Robinson, A. H. Chemical Composition of Sweat. Physiol. Rev. 1954, 34, 202-220. 104. Hirokawa, T.; Okamoto, H.; Gosyo, Y.; Tsuda, T.; Timerbaev, A. R. Simultaneous Monitoring of Inorganic Cations, Amines and Amino Acids in Human Sweat by Capillary Electrophoresis. Anal. Chim. Acta 2007, 581, 83-88. 105. Lima, E. d. O.; de Macedo, C. S.; Esteves, C. Z.; de Oliveira, D. N.; Pessolani, M. C. V.; Nery, J. A. d. C.; Sarno, E. N.; Catharino, R. R. Skin Imprinting in Silica Plates: A Potential Diagnostic Methodology for Leprosy Using High-Resolution Mass Spectrometry. Anal. Chem. 2015, 87, 3585-3592. 106. Schazmann, B.; Morris, D.; Slater, C.; Beirne, S.; Fay, C.; Reuveny, R.; Moyna, N.; Diamond, D. A Wearable Electrochemical Sensor for the Real-Time Measurement of Sweat Sodium Concentration. Anal. Methods 2010, 2, 342-348. 107. Kim, J.; Jeerapan, I.; Sempionatto, J. R.; Barfidokht, A.; Mishra, R. K.; Campbell, A. S.; Hubble, L. J.; Wang, J. Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices. Acc. Chem. Res. 2018, 51, 2820-2828. 108. Delgado-Povedano, M. M.; Calderón-Santiago, M.; Luque de Castro, M. D.; Priego-Capote, F. Metabolomics Analysis of Human Sweat Collected after Moderate Exercise. Talanta 2018, 177, 47-65. 109. Schneider, S.; Ait-m-bark, Z.; Schummer, C.; Lemmer, P.; Yegles, M.; Appenzeller, B.; Wennig, R. Determination of Fentanyl in Sweat and Hair of a Patient Using Transdermal Patches. J. Anal. Toxicol. 2008, 32, 260-264. 110. Webb, B. W.; Flute, P. T.; Smith, M. J. The Electrolyte Content of the Sweat in Fibrocystic Disease of the Pancreas. Arch. Dis. Child. 1957, 32, 82-84. 111. Carter, E. P.; Barrett, A. D.; Heeley, A. F.; Kuzemko, J. A. Improved Sweat Test Method for the Diagnosis of Cystic Fibrosis. Arch. Dis. Child. 1984, 59, 919-922. 112. Hammond, K. B.; Turcios, N. L.; Gibson, L. E. Clinical Evaluation of the Macroduct Sweat Collection System and Conductivity Analyzer in the Diagnosis of Cystic Fibrosis. J. Pediatr. 1994, 124, 255-260. 113. PharmChem. Pharmchek® Sweat Patch. https://www.pharmchek.com/products/pharmchek-patch (accessed Jun 04, 2021). 114. Jenkins, A. J.; Caplan, Y. H., Drug Testing in Alternate Biological Specimens. Humana Press, 2008. 115. PharmChem. Pharmchek. https://www.pharmchek.com/ (accessed Jul 17, 2021). 116. Huestis, M. A.; Cone, E. J.; Wong, C. J.; Umbricht, A.; Preston, K. L. Monitoring Opiate Use in Substance Abuse Treatment Patients with Sweat and Urine Drug Testing. J. Anal. Toxicol. 2000, 24, 509-521. 117. Concheiro, M.; Shakleya, D. M.; Huestis, M. A. Simultaneous Analysis of Buprenorphine, Methadone, Cocaine, Opiates and Nicotine Metabolites in Sweat by Liquid Chromatography Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2011, 400, 69-78. 118. Nagamine, K.; Mano, T.; Nomura, A.; Ichimura, Y.; Izawa, R.; Furusawa, H.; Matsui, H.; Kumaki, D.; Tokito, S. Noninvasive Sweat-Lactate Biosensor Emplsoying a Hydrogel-Based Touch Pad. Sci. Rep. 2019, 9, 10102. 119. Lin, S.; Wang, B.; Zhao, Y.; Shih, R.; Cheng, X.; Yu, W.; Hojaiji, H.; Lin, H.; Hoffman, C.; Ly, D.; et al. Natural Perspiration Sampling and in Situ Electrochemical Analysis with Hydrogel Micropatches for User-Identifiable and Wireless Chemo/Biosensing. ACS Sens. 2020, 5, 93-102. 120. Scarpa, E.; Mastronardi, V. M.; Guido, F.; Algieri, L.; Qualtieri, A.; Fiammengo, R.; Rizzi, F.; De Vittorio, M. Wearable Piezoelectric Mass Sensor Based on Ph Sensitive Hydrogels for Sweat Ph Monitoring. Sci. Rep. 2020, 10, 10854. 121. Yu, H.; Sun, J. Sweat Detection Theory and Fluid Driven Methods: A Review. Nanotechnol. Precis. Eng. 2020, 3, 126-140. 122. Salati, M. A.; Khazai, J.; Tahmuri, A. M.; Samadi, A.; Taghizadeh, A.; Taghizadeh, M.; Zarrintaj, P.; Ramsey, J. D.; Habibzadeh, S.; Seidi, F.; et al. Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers 2020, 12, 1150. 123. Tabor, D. P.; Roch, L. M.; Saikin, S. K.; Kreisbeck, C.; Sheberla, D.; Montoya, J. H.; Dwaraknath, S.; Aykol, M.; Ortiz, C.; Tribukait, H.; et al. Accelerating the Discovery of Materials for Clean Energy in the Era of Smart Automation. Nat. Rev. Mater. 2018, 3, 5-20. 124. Caramelli, D.; Salley, D.; Henson, A.; Camarasa, G. A.; Sharabi, S.; Keenan, G.; Cronin, L. Networking Chemical Robots for Reaction Multitasking. Nat. Commun. 2018, 9, 3406. 125. Steiner, S.; Wolf, J.; Glatzel, S.; Andreou, A.; Granda, J. M.; Keenan, G.; Hinkley, T.; Aragon-Camarasa, G.; Kitson, P. J.; Angelone, D.; et al. Organic Synthesis in a Modular Robotic System Driven by a Chemical Programming Language. Science 2019, 363, eaav2211. 126. Bailey, A. L.; Ledeboer, N.; Burnham, C.-A. D. Clinical Microbiology Is Growing Up: The Total Laboratory Automation Revolution. Clin. Chem. 2019, 65, 634-643. 127. Alexovič, M.; Urban, P. L.; Tabani, H.; Sabo, J. Recent Advances in Robotic Protein Sample Preparation for Clinical Analysis and Other Biomedical Applications. Clin. Chim. Acta 2020, 507, 104-116. 128. Abu Bakar, N. H.; Yu, K.-C.; Urban, P. L. Robotized Noncontact Open-Space Mapping of Volatile Organic Compounds Emanating from Solid Specimens. Anal. Chem. 2021, 93, 6889-6894. 129. Urban, P. L. Universal Electronics for Miniature and Automated Chemical Assays. Analyst 2015, 140, 963-975. 130. Prabhu, G. R. D.; Yang, T.-H.; Hsu, C.-Y.; Shih, C.-P.; Chang, C.-M.; Liao, P.-H.; Ni, H.-T.; Urban, P. L. Facilitating Chemical and Biochemical Experiments with Electronic Microcontrollers and Single-Board Computers. Nat. Protoc. 2020, 15, 925-990. 131. Van Berkel, G. J.; Sanchez, A. D.; Quirke, J. M. E. Thin-Layer Chromatography and Electrospray Mass Spectrometry Coupled Using a Surface Sampling Probe. Anal. Chem. 2002, 74, 6216-6223. 132. Van Berkel, G. J.; Kertesz, V. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 1749-1756. 133. Van Berkel, G. J.; Kertesz, V.; Orcutt, M.; Bentley, A.; Glick, J.; Flarakos, J. Combined Falling Drop/Open Port Sampling Interface System for Automated Flow Injection Mass Spectrometry. Anal. Chem. 2017, 89, 12578-12586. 134. Ovchinnikova, O. S.; Bhandari, D.; Lorenz, M.; Van Berkel, G. J. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging. Rapid Commun. Mass Spectrom. 2014, 28, 1665-1673. 135. Gómez-Ríos, G. A.; Liu, C.; Tascon, M.; Reyes-Garcés, N.; Arnold, D. W.; Covey, T. R.; Pawliszyn, J. Open Port Probe Sampling Interface for the Direct Coupling of Biocompatible Solid-Phase Microextraction to Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 2017, 89, 3805-3809. 136. Liu, C.; Gómez-Ríos, G. A.; Schneider, B. B.; Le Blanc, J. C. Y.; Reyes-Garcés, N.; Arnold, D. W.; Covey, T. R.; Pawliszyn, J. Fast Quantitation of Opioid Isomers in Human Plasma by Differential Mobility Spectrometry/Mass Spectrometry Via Spme/Open-Port Probe Sampling Interface. Anal. Chim. Acta 2017, 991, 89-94. 137. UFACTORY. Uarm Swift & Uarm Swift Pro Specifications. https://cdn.sparkfun.com/assets/9/8/a/c/0/uArm-Swift-Specifications-en.pdf (accessed Jan 11, 2021). 138. Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627-1639. 139. Casiez, G.; Roussel, N.; Vogel, D. 1 € Filter: A Simple Speed-Based Low-Pass Filter for Noisy Input in Interactive Systems, In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems - CHI ’12, ACM Press: New York, New York, USA, 2012. 140. Chandran, S.; Singh, R. S. P. Comparison of Various International Guidelines for Analytical Method Validation. Pharmazie 2007, 62, 4-14. 141. Rousseau, L. Pcsclite Project. https://pcsclite.apdu.fr/ (accessed Jun 13, 2021). 142. Socha, E.; Koba, M.; Kośliński, P. Amino Acid Profiling as a Method of Discovering Biomarkers for Diagnosis of Neurodegenerative Diseases. Amino Acids 2019, 51, 367-371. 143. E.M.A. Method Validation. Guideline on Bioanalytical Method Validation;. 2009, (EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2). 144. Fatin-Rouge, N.; Milon, A.; Buffle, J.; Goulet, R. R.; Tessier, A. Diffusion and Partitioning of Solutes in Agarose Hydrogels: The Relative Influence of Electrostatic and Specific Interactions. J. Phys. Chem. B 2003, 107, 12126-12137. 145. Islam, M. A. Einstein–Smoluchowski Diffusion Equation: A Discussion. Phys. Scr. 2004, 70, 120-125. 146. Holland, J.; Kingston, L.; McCarthy, C.; Armstrong, E.; O’Dwyer, P.; Merz, F.; McConnell, M. Service Robots in the Healthcare Sector. Robotics 2021, 10, 47. 147. Leipheimer, J. M.; Balter, M. L.; Chen, A. I.; Pantin, E. J.; Davidovich, A. E.; Labazzo, K. S.; Yarmush, M. L. First-in-Human Evaluation of a Hand-Held Automated Venipuncture Device for Rapid Venous Blood Draws. Technology (Singap. World Sci.) 2019, 7, 98-107. 148. Li, S.-Q.; Guo, W.-L.; Liu, H.; Wang, T.; Zhou, Y.-Y.; Yu, T.; Wang, C.-Y.; Yang, Y.-M.; Zhong, N.-S.; Zhang, N.-F.; et al. Clinical Application of an Intelligent Oropharyngeal Swab Robot: Implication for the Covid-19 Pandemic. Eur. Respir. J. 2020, 56, 2001912. 149. Balter, M. L.; Leipheimer, J. M.; Chen, A. I.; Shrirao, A.; Maguire, T. J.; Yarmush, M. L. Automated End-to-End Blood Testing at the Point-of-Care: Integration of Robotic Phlebotomy with Downstream Sample Processing. Technology (Singap. World Sci.) 2018, 6, 59-66. 150. Wang, Y.; Gu, M. The Concept of Spectral Accuracy for MS. Anal. Chem. 2010, 82, 7055-7062. 151. Röst, H. L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.-C.; Gutenbrunner, P.; Kenar, E.; et al. Openms: A Flexible Open-Source Software Platform for Mass Spectrometry Data Analysis. Nat. Methods 2016, 13, 741-748. 152. Calderón-Santiago, M.; Priego-Capote, F.; Jurado-Gámez, B.; Luque de Castro, M. D. Optimization Study for Metabolomics Analysis of Human Sweat by Liquid Chromatography–Tandem Mass Spectrometry in High Resolution Mode. J. Chromatogr. A 2014, 1333, 70-78. 153. Gallagher, M.; Wysocki, C. J.; Leyden, J. J.; Spielman, A. I.; Sun, X.; Preti, G. Analyses of Volatile Organic Compounds from Human Skin. Br. J. Dermatol. 2008, 159, 780-791. 154. Imani, S.; Bandodkar, A. J.; Mohan, A. M. V.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P. P. A Wearable Chemical–Electrophysiological Hybrid Biosensing System for Real-Time Health and Fitness Monitoring. Nat. Commun. 2016, 7, 11650. 155. Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z. A.; Yin Yin Nyein, H.; Challa, S.; Ryan, S. P.; Fahad, H. M.; Chen, K.; Shahpar, Z.; et al. Autonomous Sweat Extraction and Analysis Applied to Cystic Fibrosis and Glucose Monitoring Using a Fully Integrated Wearable Platform. Proc. Natl. Acad. Sci. 2017, 114, 4625.
|