|
1. EPA, U. S. What Are Volatile Organic Compounds (VOCs)? https://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs (accessed Aug 24, 2021). 2. European Union. Definitions. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02004L0042-20190726&from=EN (accessed Jul 9, 2021). 3. Bouwmeester, H.; Schuurink, R. C.; Bleeker, P. M.; Schiestl, F. The Role of Volatiles in Plant Communication. Plant J. 2019, 100, 892-907. 4. Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on Human Health. In Air Pollution and Control, Sharma, N. Agarwal, A. K. Eastwood, P. Gupta, T. Singh, A. P., Eds. Springer Singapore, 2018; pp 119-142. 5. EPA, U. S. Volatile Organic Compounds' Impact on Indoor Air Quality. https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality (accessed Aug 24, 2021). 6. Kwon, J.-W.; Park, H.-W.; Kim, W. J.; Kim, M.-G.; Lee, S.-J. Exposure to Volatile Organic Compounds and Airway Inflammation. Environ. Health 2018, 17, 65. 7. Cakmak, S.; Dales, R. E.; Liu, L.; Kauri, L. M.; Lemieux, C. L.; Hebbern, C.; Zhu, J. Residential Exposure to Volatile Organic Compounds and Lung Function: Results from a Population-Based Cross-Sectional Survey. Environ. Pollut. 2014, 194, 145-151. 8. Lang, A. L.; Beier, J. I. Interaction of Volatile Organic Compounds and Underlying Liver Disease: A New Paradigm for Risk. Biol. Chem. 2018, 399, 1237-1248. 9. Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938-50. 10. Sater, H. M.; Bizzio, L. N.; Tieman, D. M.; Muñoz, P. D. A Review of the Fruit Volatiles Found in Blueberry and Other Vaccinium Species. J. Agric. Food. Chem. 2020, 68, 5777-5786. 11. Banach, U.; Tiebe, C.; Hübert, T. Multigas Sensors for the Quality Control of Spice Mixtures. Food Control 2012, 26, 23-27. 12. Balasubramanian, S.; Panigrahi, S. Solid-Phase Microextraction (SPME) Techniques for Quality Characterization of Food Products: A Review. Food Bioproc. Tech. 2011, 4, 1-26. 13. Roy, M.; Yadav, B. K. Electronic Nose for Detection of Food Adulteration: A Review. J. Food Sci. Technol. 2021. 14. Karim, N. A.; Muhamad, I. I. Detection Methods and Advancement in Analysis of Food and Beverages: A Short Review on Adulteration and Halal Authentication, In Proceedings of the 3rd International Halal Conference (INHAC 2016), Singapore, 2018; Muhammad Hashim, N. Md Shariff, N. N. Mahamood, S. F. Fathullah Harun, H. M. Shahruddin, M. S. Bhari, A., Eds. Springer Singapore: 2018; pp 397-414. 15. Shi, H.; Zhang, M.; Adhikari, B. Advances of Electronic Nose and Its Application in Fresh Foods: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2700-2710. 16. Ch, R.; Chevallier, O.; McCarron, P.; McGrath, T. F.; Wu, D.; Nguyen Doan Duy, L.; Kapil, A. P.; McBride, M.; Elliott, C. T. Metabolomic Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from China, Vietnam and India. Food Chem. 2021, 334, 127553. 17. Ruiz-Samblás, C.; Tres, A.; Koot, A.; van Ruth, S. M.; González-Casado, A.; Cuadros-Rodríguez, L. Proton Transfer Reaction-Mass Spectrometry Volatile Organic Compound Fingerprinting for Monovarietal Extra Virgin Olive Oil Identification. Food Chem. 2012, 134, 589-596. 18. Makhoul, S.; Yener, S.; Khomenko, I.; Capozzi, V.; Cappellin, L.; Aprea, E.; Scampicchio, M.; Gasperi, F.; Biasioli, F. Rapid Non-Invasive Quality Control of Semi-Finished Products for the Food Industry by Direct Injection Mass Spectrometry Headspace Analysis: The Case of Milk Powder, Whey Powder and Anhydrous Milk Fat. J. Mass Spectrom. 2016, 51, 782-791. 19. Majchrzak, T.; Wojnowski, W.; Wasik, A. Revealing Dynamic Changes of the Volatile Profile of Food Samples Using PTR-MS. Food Chem. 2021, 364, 130404. 20. Armenta, S.; Alcala, M.; Blanco, M. A Review of Recent, Unconventional Applications of Ion Mobility Spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114-123. 21. Heikes, D. L. Purge and Trap Method for Determination of Volatile Halocarbons and Carbon Disulfide in Table-Ready Foods. J. Assoc. Off. Anal. Chem. 1987, 70, 215-26. 22. Zheng, G.; Liu, J.; Shao, Z.; Chen, T. Emission Characteristics and Health Risk Assessment of VOCs from a Food Waste Anaerobic Digestion Plant: A Case Study of Suzhou, China. Environ. Pollut. 2020, 257, 113546. 23. Vinci, R. M.; Jacxsens, L.; De Meulenaer, B.; Deconink, E.; Matsiko, E.; Lachat, C.; de Schaetzen, T.; Canfyn, M.; Van Overmeire, I.; Kolsteren, P.; Van Loco, J. Occurrence of Volatile Organic Compounds in Foods from the Belgian Market and Dietary Exposure Assessment. Food Control 2015, 52, 1-8. 24. Becalski, A.; Seaman, S. Furan Precursors in Food: A Model Study and Development of a Simple Headspace Method for Determination of Furan. J. AOAC Int. 2005, 88, 102-6. 25. Panseri, S.; Chiesa, L. M.; Zecconi, A.; Soncini, G.; De Noni, I. Determination of Volatile Organic Compounds (VOCs) from Wrapping Films and Wrapped PDO Italian Cheeses by Using HS-SPME and GC/MS. Molecules 2014, 19, 8707-8724. 26. Qian, S.; Ji, H.; Wu, X.; Li, N.; Yang, Y.; Bu, J.; Zhang, X.; Qiao, L.; Yu, H.; Xu, N.; Zhang, C. Detection and Quantification Analysis of Chemical Migrants in Plastic Food Contact Products. PLoS One 2018, 13, e0208467. 27. Hodgson, S. C.; Casey, R. J.; Bigger, S. W.; Scheirs, J. Review of Volatile Organic Compounds Derived from Polyethylene. Polymer Plast. Tech. Eng. 2000, 39, 845-874. 28. Wang, Y.; Qian, H. Phthalates and Their Impacts on Human Health. Healthcare (Basel) 2021, 9, 603. 29. Kertes, A. S. Chapter 2 - the Chemistry of Solvent Extraction. In Recent Advances in Liquid–Liquid Extraction, Hanson, C., Ed.; Pergamon Press, 1971; pp 15-92. 30. Zhang, J.; Hu, B. Liquid-Liquid Extraction (LLE). In Separation and Purification Technologies in Biorefineries, John Wiley & Sons, 2013; pp 61-78. 31. Libretexts 4.2: Overview of Extraction. https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_Lab_Techniques_(Nichols)/04%3A_Extraction/4.02%3A_Overview_of_Extraction (accessed June 29, 2021). 32. Clement, R. E.; Hao, C. 2.03 - Liquid–Liquid Extraction: Basic Principles and Automation. In Comprehensive Sampling and Sample Preparation, Pawliszyn, J., Ed.; Academic Press, 2012; pp 51-63. 33. Rawa‐Adkonis, M.; Wolska, L.; Przyjazny, A.; Namieśnik, J. Sources of Errors Associated with the Determination of PAH and PCB Analytes in Water Samples. Anal. Lett. 2006, 39, 2317-2331. 34. Silvestre, C. I. C.; Santos, J. L. M.; Lima, J. L. F. C.; Zagatto, E. A. G. Liquid–Liquid Extraction in Flow Analysis: A Critical Review. Anal. Chim. Acta 2009, 652, 54-65. 35. Liska, I. Fifty Years of Solid-Phase Extraction in Water Analysis--Historical Development and Overview. J. Chromatogr. A 2000, 885, 3-16. 36. Berrueta, L. A.; Gallo, B.; Vicente, F. A Review of Solid Phase Extraction: Basic Principles and New Developments. Chromatographia 1995, 40, 474-483. 37. Buszewski, B.; Szultka, M. Past, Present, and Future of Solid Phase Extraction: A Review. Crit. Rev. Anal. Chem. 2012, 42, 198-213. 38. DK, S.; Kumar, A.; Mahender A Simple and Fast Solid-Phase Extraction GC-ECD Method for the Routine Assessment of Atrazine Residues in Agricultural Produces. J. Chromatogr. 2017, 8, 1000353. 39. Prado, C.; Marín, P.; Simon, P.; Periago, J. F. SPE–GC–MS for the Sampling and Determination of Unmetabolized Styrene in Urine. J. Chromatogr. B 2006, 830, 18-24. 40. Chen, L.; Wang, H.; Zeng, Q.; Xu, Y.; Sun, L.; Xu, H.; Ding, L. On-Line Coupling of Solid-Phase Extraction to Liquid Chromatography—a Review. J. Chromatogr. Sci. 2009, 47, 614-623. 41. Ötles, S.; Kartal, C. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples. Acta Sci. Pol. Technol. Aliment. 2016, 15, 5-15. 42. Khatibi, S. A.; Hamidi, S.; Siahi-Shadbad, M. R. Current Trends in Sample Preparation by Solid-Phase Extraction Techniques for the Determination of Antibiotic Residues in Foodstuffs: A Review. Crit. Rev. Food Sci. Nutr. 2020, 1-22. 43. Estévez-Danta, A.; Rodil, R.; Pérez-Castaño, B.; Cela, R.; Quintana, J. B.; González-Mariño, I. Comprehensive Determination of Phthalate, Terephthalate and Di-Iso-Nonyl Cyclohexane-1,2-Dicarboxylate Metabolites in Wastewater by Solid-Phase Extraction and Ultra(High)-Performance Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2021, 224, 121912. 44. Azzouz, A.; Kailasa, S. K.; Lee, S. S.; J. Rascón, A.; Ballesteros, E.; Zhang, M.; Kim, K.-H. Review of Nanomaterials as Sorbents in Solid-Phase Extraction for Environmental Samples. TrAC, Trends Anal. Chem. 2018, 108, 347-369. 45. Scheurer, J.; Moore, C. M. Solid-Phase Extraction of Drugs from Biological Tissues—a Review. J. Anal. Toxicol. 1992, 16, 264-269. 46. Wan Ibrahim, W. A.; Abd Ali, L. I.; Sulaiman, A.; Sanagi, M. M.; Aboul-Enein, H. Y. Application of Solid-Phase Extraction for Trace Elements in Environmental and Biological Samples: A Review. Crit. Rev. Anal. Chem. 2014, 44, 233-54. 47. Merkle, S.; Kleeberg, K. K.; Fritsche, J. Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—a Review. Chromatography 2015, 2. 48. Avismelsi, P.; Lilia, A.; Alberto, N.; Jose, L. V. Comparison of Solid-Phase Extraction and Solid-Phase Microextraction Using Octadecylsilane Phase for the Determination of Pesticides in Water Samples. Curr. Anal. Chem. 2009, 5, 219-224. 49. Risticevic, S.; Lord, H.; Górecki, T.; Arthur, C. L.; Pawliszyn, J. Protocol for Solid-Phase Microextraction Method Development. Nat. Protoc. 2010, 5, 122-139. 50. Bicchi, C.; Cordero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P. 4.01 - Headspace Sampling in Flavor and Fragrance Field. In Comprehensive Sampling and Sample Preparation, 1st ed.; Pawliszyn, J., Ed.; Academic Press, 2012; pp 1-25. 51. Sampson, M. M.; Chambers, D. M.; Pazo, D. Y.; Moliere, F.; Blount, B. C.; Watson, C. H. Simultaneous Analysis of 22 Volatile Organic Compounds in Cigarette Smoke Using Gas Sampling Bags for High-Throughput Solid-Phase Microextraction. Anal. Chem. 2014, 86, 7088-7095. 52. Wang, Z.; Hennion, B.; Urruty, L.; Montury, M. Solid-Phase Microextraction Coupled with High Performance Liquid Chromatography: A Complementary Technique to Solid-Phase Microextraction-Gas Chromatography for the Analysis of Pesticide Residues in Strawberries. Food Addit. Contam. 2000, 17, 915-23. 53. Kataoka, H.; Lord, H. L.; Pawliszyn, J. Applications of Solid-Phase Microextraction in Food Analysis. J. Chromatogr. A 2000, 880, 35-62. 54. Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J Biomark 2015, 2015, 981458. 55. Green, J. D. Headspace Analysis | Static. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P. Townshend, A. Poole, C., Eds. Elsevier, 2005; pp 229-236. 56. Theoretical Background of HS-GC and Its Applications. In Static Headspace–Gas Chromatography, Wiley, 2006; pp 19-50. 57. Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Dynamic Headspace Sampling as an Initial Step for Sample Preparation in Chromatographic Analysis. J. AOAC Int. 2017, 100, 1599-1606. 58. Brusseau, M. L.; Maier, R. M. 18 - Soil and Groundwater Remediation. In Environmental Monitoring and Characterization, Artiola, J. F. Pepper, I. L. Brusseau, M. L., Eds. Academic Press, 2004; pp 335-356. 59. Gvirtzman, H.; Gorelick, S. M. The Concept of In-Situ Vapor Stripping for Removing VOCs from Groundwater. Transp. Porous Media 1992, 8, 71-92. 60. Srinivasan, A.; Chowdhury, P.; Viraraghavan, T. Air Stripping in Industrial Waste Water Treatment. In Waste Water Treatment Technologies, Vigneswaran, S., Ed.; Encyclopedia of Life Support Systems (EOLSS), 2008. 61. Harries, M. E.; Bruno, T. J. Headspace Analysis | Purge and Trap. In Encyclopedia of Analytical Science (Third Edition), Worsfold, P. Poole, C. Townshend, A. Miró, M., Eds. Academic Press, 2019; pp 379-384. 62. Abeel, S. M.; Vickers, A. K.; Decker, D. Trends in Purge and Trap. J. Chromatogr. Sci. 1994, 32, 328-338. 63. Fernandez-Villarrenaga, V.; Lopez-Mahia, P.; Muniategui-Lorenzo, S.; Prada-Rodriguez, D. Optimisation of Purge-and-Trap Gas Chromatography-Mass Spectrometry Analysis of Volatile Organic 343 Compounds in Water. Chem. Anal-Warsaw 2006, 51, 89-98. 64. Zhou, M.; Lee, J.; Zhu, H.; Nidetz, R.; Kurabayashi, K.; Fan, X. A Fully Automated Portable Gas Chromatography System for Sensitive and Rapid Quantification of Volatile Organic Compounds in Water. RSC Adv. 2016, 6, 49416-49424. 65. Roberto, R. M.; García, N. P.; Hevia, A. G.; Valles, B. S. Application of Purge and Trap Extraction and Gas Chromatography for Determination of Minor Esters in Cider. J. Chromatogr. A 2005, 1069, 245-251. 66. Lara-Gonzalo, A.; Sánchez-Uría, J. E.; Segovia-García, E.; Sanz-Medel, A. Critical Comparison of Automated Purge and Trap and Solid-Phase Microextraction for Routine Determination of Volatile Organic Compounds in Drinking Waters by GC–MS. Talanta 2008, 74, 1455-1462. 67. Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J. Biomark. 2015, 2015, 981458. 68. May, J. C.; McLean, J. A. Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation. Anal. Chem. 2015, 87, 1422-1436. 69. Eiceman, G. A.; Karpas, Z.; Hill, H. H. Ion Mobility Spectrometry. 3rd ed.; Taylor & Francis, 2013. 70. Tyndall, A. M. The Mobility of Positive Ions in Gases. Cambridge University Press, 1938. 71. Cohen, M. J.; Karasek, F. W. Plasma Chromatography™—a New Dimension for Gas Chromatography and Mass Spectrometry. J. Chromatogr. Sci. 1970, 8, 330-337. 72. Cumeras, R.; Figueras, E.; Davis, C. E.; Baumbach, J. I.; Gràcia, I. Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation. Analyst 2015, 140, 1376-1390. 73. Shvartsburg, A. A.; Smith, R. D. Fundamentals of Traveling Wave Ion Mobility Spectrometry. Anal. Chem. 2008, 80, 9689-9699. 74. Michelmann, K.; Silveira, J. A.; Ridgeway, M. E.; Park, M. A. Fundamentals of Trapped Ion Mobility Spectrometry. J. Am. Soc. Mass. Spectrom. 2015, 26, 14-24. 75. Sacristan, E.; Solis, A. A. A Swept-Field Aspiration Condenser as an Ion-Mobility Spectrometer. IEEE Trans. Instrum. Meas. 1998, 47, 769-775. 76. Intra, P. T., N. An Overview of Differential Mobility Analyzers for Size Classification of Nanometer-Sized Aerosol Particles. Songklanakarin J. Sci. Technol. 2008, 30, 243−256. 77. Vidal-de-Miguel, G.; Macía, M.; Cuevas, J. Transversal Modulation Ion Mobility Spectrometry (TM-IMS), a New Mobility Filter Overcoming Turbulence Related Limitations. Anal. Chem. 2012, 84, 7831-7837. 78. Eiceman, G. A.; Nazarov, E. G.; Rodriguez, J. E.; Bergloff, J. F. Positive Reactant Ion Chemistry for Analytical, High Temperature Ion Mobility Spectrometry (IMS): Effects of Electric Field of the Drift Tube and Moisture, Temperature, and Flow of the Drift Gas. IJIMS 1998, 11, 28-37. 79. Creaser, C. S.; Griffiths, J. R.; Bramwell, C. J.; Noreen, S.; Hill, C. A.; Thomas, C. L. P. Ion Mobility Spectrometry: A Review. Part 1. Structural Analysis by Mobility Measurement. Analyst 2004, 129, 984-994. 80. Mellon, F. A. Mass Spectrometry | Principles and Instrumentation. In Encyclopedia of Food Sciences and Nutrition 2nd ed.; Caballero, B., Ed.; Academic Press, 2003; pp 3739-3749. 81. Guharay, S. K.; Dwivedi, P.; Hill, H. H. Ion Mobility Spectrometry: Ion Source Development and Applications in Physical and Biological Sciences. IEEE Trans. Plasma Sci. 2008, 36, 1458-1470. 82. OwlstoneMedical https://www.owlstonemedical.com/media/uploads/files/01Introduction_83X2kxR.pdf (accessed Oct. 6, 2021). 83. Desfontaine, V.; Veuthey, J. L.; Guillarme, D. Chapter 8 - Hyphenated Detectors: Mass Spectrometry. In Supercritical Fluid Chromatography, Poole, C. F., Ed.; Elsevier, 2017; pp 213-244. 84. Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N. New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal. Chem. 1973, 45, 936-943. 85. Sabo, M.; Klas, M.; Wang, H.; Huang, C.; Chu, Y.; Matejčík, Š. Positive Corona Discharge Ion Source with IMS/MS to Detect Impurities in High Purity Nitrogen. Eur. Phys. J. Appl. Phys. 2011, 55. 86. Borsdorf, H.; Eiceman, G. A. Ion Mobility Spectrometry: Principles and Applications. Appl. Spectrosc. Rev. 2006, 41, 323-375. 87. Peng, L.; Hua, L.; Wang, W.; Zhou, Q.; Li, H. On-Site Rapid Detection of Trace Non-Volatile Inorganic Explosives by Stand-Alone Ion Mobility Spectrometry Via Acid-Enhanced Evaporization. Sci. Rep. 2014, 4, 6631. 88. Tabrizchi, M.; Khayamian, T.; Taj, N. Design and Optimization of a Corona Discharge Ionization Source for Ion Mobility Spectrometry. Rev. Sci. Instrum. 2000, 71, 2321-2328. 89. Bahrami, H.; Tabrizchi, M. Combined Corona Discharge and UV Photoionization Source for Ion Mobility Spectrometry. Talanta 2012, 97, 400-405. 90. Shumate, C. B.; Hill, H. H. Coronaspray Nebulization and Ionization of Liquid Samples for Ion Mobility Spectrometry. Anal. Chem. 1989, 61, 601-606. 91. Cross, J. H. Application of 63 Ni, Photo- and Corona Discharge Ionization for the Analysis of Chemical Warfare Agent and Toxic Wastes, In Third International Workshop on Ion Mobility Spectrometry, Galveston, Texas, October 16-19; 1994; pp 71-78. 92. Johansson, K. S. 20 - Surface Modification of Plastics. In Applied Plastics Engineering Handbook (Second Edition), Kutz, M., Ed.; William Andrew Publishing, 2017; pp 443-487. 93. Ebnesajjad, S. 8 - Surface Treatment of Polyvinyl Fluoride Films and Coatings. In Polyvinyl Fluoride, Ebnesajjad, S., Ed.; William Andrew Publishing, 2013; pp 193-212. 94. Chapter 3 - Material Surface Preparation Techniques. In Adhesives Technology Handbook (Second Edition), Ebnesajjad, S., Ed.; William Andrew Publishing, 2009; pp 37-46. 95. Chang, J.; Lawless, P. A.; Yamamoto, T. Corona Discharge Processes. IEEE Trans. Plasma Sci. 1991, 19, 1152-1166. 96. Sabo, M.; Páleník, J.; Kučera, M.; Han, H.; Wang, H.; Chu, Y.; Matejčík, Š. Atmospheric Pressure Corona Discharge Ionisation and Ion Mobility Spectrometry/Mass Spectrometry Study of the Negative Corona Discharge in High Purity Oxygen and Oxygen/Nitrogen Mixtures. Int. J. Mass spectrom. 2010, 293, 23-27. 97. Hong, Y.; Niu, W.; Gao, H.; Xia, L.; Huang, C.; Shen, C.; Jiang, H.; Chu, Y. Rapid Identification of False Peaks in the Spectrum of Hadamard Transform Ion Mobility Spectrometry with Inverse Gating Technique. RSC Adv. 2015, 5, 56103-56109. 98. McCulloch, R. D.; Amo-González, M. Rapid Detection of Explosive Vapors by Thermal Desorption Atmospheric Pressure Photoionization Differential Mobility Analysis Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 1455-1463. 99. Walendzik, G.; Baumbach, J. I.; Klockow, D. Coupling of SPME with MCC/UV-IMS as a Tool for Rapid on-Site Detection of Groundwater and Surface Water Contamination. Anal. Bioanal. Chem. 2005, 382, 1842-7. 100. Criado- García, L.; Almofti, N.; Arce, L. Photoionization-Ion Mobility Spectrometer for Non-Targeted Screening Analysis or for Targeted Analysis Coupling a Tenax TA Column. Sens. Actuators B Chem. 2016, 235, 370-377. 101. Mendes Siqueira, A. L.; Beaumesnil, M.; Hubert-Roux, M.; Loutelier-Bourhis, C.; Afonso, C.; Pondaven, S.; Bai, Y.; Racaud, A. Characterization of Polyalphaolefins Using Halogen Anion Attachment in Atmospheric Pressure Photoionization Coupled with Ion Mobility Spectrometry-Mass Spectrometry. Analyst 2018, 143, 3934-3940. 102. Marchi, I.; Rudaz, S.; Veuthey, J.-L. Atmospheric Pressure Photoionization for Coupling Liquid-Chromatography to Mass Spectrometry: A Review. Talanta 2009, 78, 1-18. 103. Roetering, S.; Nazarov, E. G.; Borsdorf, H.; Weickhardt, C. Effect of Dopants on the Analysis of Pesticides by Means of Differential Mobility Spectrometry with Atmospheric Pressure Photoionization. Int. J. Ion Mobi.l Spectrom. 2010, 13, 47-54. 104. Bacaloni, A.; Cavaliere, C.; Faberi, A.; Foglia, P.; Marino, A.; Samperi, R.; Laganà, A. Evaluation of the Atmospheric Pressure Photoionization Source for the Determination of Benzidines and Chloroanilines in Water and Industrial Effluents by High Performance Liquid Chromatography–Tandem Mass Spectrometry. Talanta 2007, 72, 419-426. 105. Ehrenhauser, F. S.; Wornat, M. J.; Valsaraj, K. T.; Rodriguez, P. Design and Evaluation of a Dopant-Delivery System for an Orthogonal Atmospheric-Pressure Photoionization Source and Its Performance in the Analysis of Polycyclic Aromatic Hydrocarbons. Rapid Commun. Mass Spectrom. 2010, 24, 1351-7. 106. Nazarov, E. G.; Miller, R. A.; Eiceman, G. A.; Stone, J. A. Miniature Differential Mobility Spectrometry Using Atmospheric Pressure Photoionization. Anal. Chem. 2006, 78, 4553-4563. 107. Robb, D. B.; Smith, D. R.; Blades, M. W. Investigation of Substituted-Benzene Dopants for Charge Exchange Ionization of Nonpolar Compounds by Atmospheric Pressure Photoionization. J. Am. Soc. Mass. Spectrom. 2008, 19, 955-963. 108. Bagag, A.; Giuliani, A.; Laprévote, O. Atmospheric Pressure Photoionization Mass Spectrometry of Nucleic Bases, Ribonucleosides and Ribonucleotides. Int. J. Mass spectrom. 2007, 264, 1-9. 109. Chen, C.; Jiang, D.; Li, H. UV Photoionization Ion Mobility Spectrometry: Fundamentals and Applications. Anal. Chim. Acta 2019, 1077, 1-13. 110. Zeleny, J. Instability of Electrified Liquid Surfaces. Phys. Rev. 1917, 10, 1-6. 111. Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Molecular Beams of Macroions. J. Chem. Phys. 1968, 49, 2240-2249. 112. Gieniec J.; Cox, H. L., Jr.; Teer, D.; Dole, M. Application of the Ion-Drift Spectrometer to Macromass Spectrometry, In 20th Annual Conference on MS and Allied Topics, Dallas, TX, American Society for Mass Spectrometry: 1972. 113. Parr, M. K.; Wüst, B.; Teubel, J.; Joseph, J. F. Splitless Hyphenation of SFC with MS by APCI, APPI, and ESI Exemplified by Steroids as Model Compounds. J. Chromatogr. B 2018, 1091, 67-78. 114. Awad, H.; Khamis, M. M.; El-Aneed, A. Mass Spectrometry, Review of the Basics: Ionization. Appl. Spectrosc. Rev. 2015, 50, 158-175. 115. Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information Beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 282574. 116. El-Aneed, A.; Cohen, A.; Banoub, J. Mass Spectrometry, Review of the Basics: Electrospray, Maldi, and Commonly Used Mass Analyzers. Appl. Spectrosc. Rev. 2009, 44, 210-230. 117. Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S. Unraveling the Mechanism of Electrospray Ionization. Anal. Chem. 2013, 85, 2-9. 118. Wilm, M. Principles of Electrospray Ionization. Mol. Cell Proteomics 2011, 10, M111.009407-M111.009407. 119. O’Donnell, R. M.; Sun, X.; Harrington, P. d. B. Pharmaceutical Applications of Ion Mobility Spectrometry. TrAC, Trends Anal. Chem. 2008, 27, 44-53. 120. Midey, A. J.; Camacho, A.; Sampathkumaran, J.; Krueger, C. A.; Osgood, M. A.; Wu, C. High-Performance Ion Mobility Spectrometry with Direct Electrospray Ionization (ESI-HPIMS) for the Detection of Additives and Contaminants in Food. Anal. Chim. Acta 2013, 804, 197-206. 121. Karpas, Z. Applications of Ion Mobility Spectrometry (IMS) in the Field of Foodomics. Food Res. Int. 2013, 54, 1146-1151. 122. Kafle, G. K.; Khot, L. R.; Sankaran, S.; Bahlol, H. Y.; Tufariello, J. A.; Hill, H. H. State of Ion Mobility Spectrometry and Applications in Agriculture: A Review. Eng. Agric. Environ. Food. 2016, 9, 346-357. 123. Márquez-Sillero, I.; Aguilera-Herrador, E.; Cárdenas, S.; Valcárcel, M. Ion-Mobility Spectrometry for Environmental Analysis. TrAC, Trends Anal. Chem. 2011, 30, 677-690. 124. Hill, H. H.; Siems, W. F.; Louis, R. H. S.; McMinn, D. G. Ion Mobility Spectrometry. Anal. Chem. 1990, 62, 1201A-1209A. 125. Kanu, A. B.; Hill, H. H., Jr. Ion Mobility Spectrometry Detection for Gas Chromatography. J. Chromatogr. A 2008, 1177, 12-27. 126. Baim, M. A.; Hill, H. H. Tunable Selective Detection for Capillary Gas Chromatography by Ion Mobility Monitoring. Anal. Chem. 1982, 54, 38-43. 127. Leonhardt, J. W. A New ppb-Gas Analyzer by Means of GC-Ion Mobility Spectrometry (GC-IMS). J. Radioanal. Nucl. Chem. 2003, 257, 133-139. 128. Haley, L. V.; Romeskie, J. M. GC-IMS: A Technology for Many Applications, In Proceedings of SPIE, Boston, MA, U.S., December 28, 1998; SPIE: Boston, MA, U.S., 1998; pp 375-383. 129. Othman, A.; Goggin, K. A.; Tahir, N. I.; Brodrick, E.; Singh, R.; Sambanthamurthi, R.; Parveez, G. K. A.; Davies, A. N.; Murad, A. J.; Muhammad, N. H.; Ramli, U. S.; Murphy, D. J. Use of Headspace–Gas Chromatography–Ion Mobility Spectrometry to Detect Volatile Fingerprints of Palm Fibre Oil and Sludge Palm Oil in Samples of Crude Palm Oil. BMC Res. Notes 2019, 12, 229. 130. Yang, L.; Liu, J.; Wang, X.; Wang, R.; Ren, F.; Zhang, Q.; Shan, Y.; Ding, S. Characterization of Volatile Component Changes in Jujube Fruits During Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules (Basel, Switzerland) 2019, 24, 3904. 131. Thompson, R.; Perry, J. D.; Stanforth, S. P.; Dean, J. R. Rapid Detection of Hydrogen Sulfide Produced by Pathogenic Bacteria in Focused Growth Media Using SHS-MCC-GC-IMS. Microchem. J. 2018, 140, 232-240. 132. Allers, M.; Langejuergen, J.; Gaida, A.; Holz, O.; Schuchardt, S.; Hohlfeld, J. M.; Zimmermann, S. Measurement of Exhaled Volatile Organic Compounds from Patients with Chronic Obstructive Pulmonary Disease (COPD) Using Closed Gas Loop GC-IMS and GC-APCI-MS. J Breath Res 2016, 10, 026004. 133. Snyder, A. P.; Maswadeh, W. M.; Parsons, J. A.; Tripathi, A.; Meuzelaar, H. L. C.; Dworzanski, J. P.; Kim, M.-G. Field Detection of Bacillus Spore Aerosols with Stand-Alone Pyrolysis–Gas Chromatography–Ion Mobility Spectrometry. Field Anal. Chem. Technol. 1999, 3, 315-326. 134. Cumeras, R.; Figueras, E.; Davis, C. E.; Baumbach, J. I.; Gràcia, I. Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation. The Analyst 2015, 140, 1376-1390. 135. Barnes, W. S.; Martin, D. W.; McDaniel, E. W. Mass Spectrographic Identification of the Ion Observed in Hydrogen Mobility Experiments. Phys. Rev. Lett. 1961, 6, 110-111. 136. Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill Jr, H. H. Ion Mobility–Mass Spectrometry. J. Mass Spectrom. 2008, 43, 1-22. 137. Lapthorn, C.; Pullen, F.; Chowdhry, B. Z. Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) of Small Molecules: Separating and Assigning Structures to Ions. Mass Spectrom. Rev. 2013, 32, 43-71. 138. Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. The Power of Ion Mobility-Mass Spectrometry for Structural Characterization and the Study of Conformational Dynamics. Nat. Chem. 2014, 6, 281-294. 139. Clowers, B. H.; Dwivedi, P.; Steiner, W. E.; Hill, H. H.; Bendiak, B. Separation of Sodiated Isobaric Disaccharides and Trisaccharides Using Electrospray Ionization-Atmospheric Pressure Ion Mobility-Time of Flight Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2005, 16, 660-669. 140. Kliman, M.; May, J. C.; McLean, J. A. Lipid Analysis and Lipidomics by Structurally Selective Ion Mobility-Mass Spectrometry. Biochim. Biophys. Acta 2011, 1811, 935-945. 141. McLean, J. R.; McLean, J. A.; Wu, Z.; Becker, C.; Pérez, L. M.; Pace, C. N.; Scholtz, J. M.; Russell, D. H. Factors That Influence Helical Preferences for Singly Charged Gas-Phase Peptide Ions: The Effects of Multiple Potential Charge-Carrying Sites. J. Phys. Chem. B 2010, 114, 809-816. 142. Jurneczko, E.; Barran, P. E. How Useful Is Ion Mobility Mass Spectrometry for Structural Biology? The Relationship between Protein Crystal Structures and Their Collision Cross Sections in the Gas Phase. Analyst 2011, 136, 20-28. 143. Dear, G. J.; Munoz-Muriedas, J.; Beaumont, C.; Roberts, A.; Kirk, J.; Williams, J. P.; Campuzano, I. Sites of Metabolic Substitution: Investigating Metabolite Structures Utilising Ion Mobility and Molecular Modelling. Rapid Commun. Mass Spectrom. 2010, 24, 3157-3162. 144. Takebayashi, K.; Hirose, K.; Izumi, Y.; Bamba, T.; Fukusaki, E. Application of Ion Mobility-Mass Spectrometry to microRNA Analysis. J. Biosci. Bioeng. 2013, 115, 332-338. 145. Zhang, X.; Romm, M.; Zheng, X.; Zink, E. M.; Kim, Y.-M.; Burnum-Johnson, K. E.; Orton, D. J.; Apffel, A.; Ibrahim, Y. M.; Monroe, M. E.; Moore, R. J.; Smith, J. N.; Ma, J.; Renslow, R. S.; Thomas, D. G.; Blackwell, A. E.; Swinford, G.; Sausen, J.; Kurulugama, R. T.; Eno, N.; Darland, E.; Stafford, G.; Fjeldsted, J.; Metz, T. O.; Teeguarden, J. G.; Smith, R. D.; Baker, E. S. SPE-IMS-MS: An Automated Platform for Sub-Sixty Second Surveillance of Endogenous Metabolites and Xenobiotics in Biofluids. Clin. Mass Spectrom. 2016, 2, 1-10. 146. Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K. Identification of Carbohydrate Anomers Using Ion Mobility–Mass Spectrometry. Nature 2015, 526, 241-244. 147. Groessl, M.; Graf, S.; Knochenmuss, R. High Resolution Ion Mobility-Mass Spectrometry for Separation and Identification of Isomeric Lipids. Analyst 2015, 140, 6904-6911. 148. Krechmer, J. E.; Groessl, M.; Zhang, X.; Junninen, H.; Massoli, P.; Lambe, A. T.; Kimmel, J. R.; Cubison, M. J.; Graf, S.; Lin, Y. H.; Budisulistiorini, S. H.; Zhang, H.; Surratt, J. D.; Knochenmuss, R.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.; Canagaratna, M. R. Ion Mobility Spectrometry–Mass Spectrometry (IMS–MS) for on- and Offline Analysis of Atmospheric Gas and Aerosol Species. Atmos. Meas. Tech. 2016, 9, 3245-3262. 149. Steiner, W. E.; Clowers, B. H.; Matz, L. M.; Siems, W. F.; Hill, H. H. Rapid Screening of Aqueous Chemical Warfare Agent Degradation Products: Ambient Pressure Ion Mobility Mass Spectrometry. Anal. Chem. 2002, 74, 4343-4352. 150. Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120, 9482-9553. 151. Lutkevich, B. What Is a Microcontroller and How Does It Work? https://internetofthingsagenda.techtarget.com/definition/microcontroller (accessed Sep. 25, 2021). 152. Yida 20 Awesome Arduino Projects That You Must Try 2021! - Lastest Open Tech from Seeed https://www.seeedstudio.com/blog/2020/01/16/20-awesome-arduino-projects-that-you-must-try-2020/ (accessed Sep. 25, 2021). 153. Abd, M.; Mowad, E.-l.; Fathy, A.; Hafez, A. Smart Home Automated Control System Using Android Application and Microcontroller. Int. J. Eng. Res. 2014, 5, 935-939. 154. Kubínová, Š.; Šlégr, J. Chemduino: Adapting Arduino for Low-Cost Chemical Measurements in Lecture and Laboratory. J. Chem. Educ. 2015, 92, 1751-1753. 155. Kim, S.-M.; Choi, Y.; Suh, J. Applications of the Open-Source Hardware Arduino Platform in the Mining Industry: A Review. Appl. Sci. 2020, 10, 5018. 156. Kondaveeti, H. K.; Kumaravelu, N. K.; Vanambathina, S. D.; Mathe, S. E.; Vappangi, S. A Systematic Literature Review on Prototyping with Arduino: Applications, Challenges, Advantages, and Limitations. Comput. Sci. Rev. 2021, 40, 100364. 157. Arduino What Is Arduino? https://www.arduino.cc/en/Guide/Introduction (accessed Sep. 27, 2021). 158. Adafruit Adafruit Huzzah Esp8266 Breakout. https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout (accessed Oct. 2, 2021). 159. Choi, K.; Ng, A. H. C.; Fobel, R.; Chang-Yen, D. A.; Yarnell, L. E.; Pearson, E. L.; Oleksak, C. M.; Fischer, A. T.; Luoma, R. P.; Robinson, J. M.; Audet, J.; Wheeler, A. R. Automated Digital Microfluidic Platform for Magnetic-Particle-Based Immunoassays with Optimization by Design of Experiments. Anal. Chem. 2013, 85, 9638-9646. 160. Delaney, C.; McCluskey, P.; Coleman, S.; Whyte, J.; Kent, N.; Diamond, D. Precision Control of Flow Rate in Microfluidic Channels Using Photoresponsive Soft Polymer Actuators. Lab on a Chip 2017, 17, 2013-2021. 161. Hu, J.-B.; Chen, T.-R.; Chang, C.-H.; Cheng, J.-Y.; Chen, Y.-C.; Urban, P. L. A Compact 3d-Printed Interface for Coupling Open Digital Microchips with Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry. Analyst 2015, 140, 1495-1501. 162. Jiang, T.; Zhang, H.; Tang, Y.; Zhai, Y.; Xu, W.; Xu, H.; Zhao, X.; Li, D.; Xu, W. A “Brick Mass Spectrometer” Driven by a Sinusoidal Frequency Scanning Technique. Anal. Chem. 2017, 89, 5578-5584. 163. Industries, A. Adafruit Huzzah Esp8266 Breakout. https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout (accessed Sep. 28, 2021). 164. Arduino https://store-usa.arduino.cc/products/arduino-due (accessed Sep. 28, 2021). 165. Isikdag, U. Internet of Things: Single-Board Computers. In Enhanced Building Information Models: Using Iot Services and Integration Patterns, Isikdag, U., Ed.; Springer International Publishing, 2015; pp 43-53. 166. Sebastian Introduction to Microcontrollers and Single-Board Computers. https://medium.com/geekculture/introduction-to-microcontrollers-and-single-board-computers-5e2fa3011279 (accessed Sep. 28, 2021). 167. Board, U. UP Squared Series. https://up-board.org/upsquared/specifications/ (accessed Sep. 28, 2021). 168. Jornet-Martínez, N.; Moliner-Martínez, Y.; Molins-Legua, C.; Campíns-Falcó, P. Trends for the Development of In Situ Analysis Devices. In Encyclopedia of Analytical Chemistry, 2017; pp 1-23. 169. Capitán-Vallvey, L. F.; Palma, A. J. Recent Developments in Handheld and Portable Optosensing—a Review. Anal. Chim. Acta 2011, 696, 27-46. 170. Overton, E. B.; Dharmasena, H. P.; Ehrmann, U.; Carney, K. R. Trends and Advances in Portable Analytical Instrumentation. Field Anal. Chem. Technol. 1996, 1, 87-92. 171. Gałuszka, A.; Migaszewski, Z. M.; Namieśnik, J. Moving Your Laboratories to the Field – Advantages and Limitations of the Use of Field Portable Instruments in Environmental Sample Analysis. Environ. Res. 2015, 140, 593-603. 172. Wang, J. Portable Electrochemical Systems. TrAC, Trends Anal. Chem. 2002, 21, 226-232. 173. Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R. Electrochemical Biosensors. Chem. Soc. Rev. 2010, 39, 1747-1763. 174. Khan, S.; Newport, D.; Le Calvé, S. Gas Detection Using Portable Deep-UV Absorption Spectrophotometry: A Review. Sensors 2019, 19, 5210. 175. Lemière, B. A Review of Pxrf (Field Portable X-Ray Fluorescence) Applications for Applied Geochemistry. J. Geochem. Explor. 2018, 188, 350-363. 176. Yamaguchi, S.; Asada, R.; Kishi, S.; Sekioka, R.; Kitagawa, N.; Tokita, K.; Yamamoto, S.; Seto, Y. Detection Performance of a Portable Ion Mobility Spectrometer with 63Ni Radioactive Ionization for Chemical Warfare Agents. Forensic Toxicol. 2010, 28, 84-95. 177. Sharma, R.; Zhou, M.; Hunter, M. D.; Fan, X. Rapid In Situ Analysis of Plant Emission for Disease Diagnosis Using a Portable Gas Chromatography Device. J. Agric. Food. Chem. 2019, 67, 7530-7537. 178. Ji, J.; Deng, C.; Shen, W.; Zhang, X. Field Analysis of Benzene, Toluene, Ethylbenzene and Xylene in Water by Portable Gas Chromatography–Microflame Ionization Detector Combined with Headspace Solid-Phase Microextraction. Talanta 2006, 69, 894-899. 179. Soo, J.-C.; Lee, E. G.; LeBouf, R. F.; Kashon, M. L.; Chisholm, W.; Harper, M. Evaluation of a Portable Gas Chromatograph with Photoionization Detector under Variations of VOC Concentration, Temperature, and Relative Humidity. J. Occup. Env. Hyg. 2018, 15, 351-360. 180. Snyder, D. T.; Pulliam, C. J.; Ouyang, Z.; Cooks, R. G. Miniature and Fieldable Mass Spectrometers: Recent Advances. Anal. Chem. 2016, 88, 2-29. 181. Meuzelaar, H. L. C.; Dworzanski, J. P.; Arnold, N. S.; McClennen, W. H.; Wager, D. J. Advances in Field-Portable Mobile GC/MS Instrumentation. Field Anal. Chem. Technol. 2000, 4, 3-13. 182. Wang, S.; Chen, H.; Sun, B. Recent Progress in Food Flavor Analysis Using Gas Chromatography–Ion Mobility Spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. 183. Malzahn, K.; Windmiller, J. R.; Valdés-Ramírez, G.; Schöning, M. J.; Wang, J. Wearable Electrochemical Sensors for In Situ Analysis in Marine Environments. Analyst 2011, 136, 2912-2917. 184. Zhao, G.; Liu, G. A Portable Electrochemical System for the On-Site Detection of Heavy Metals in Farmland Soil Based on Electrochemical Sensors. IEEE Sens. J. 2018, 18, 5645-5655. 185. García-Miranda Ferrari, A.; Carrington, P.; Rowley-Neale, S. J.; Banks, C. E. Recent Advances in Portable Heavy Metal Electrochemical Sensing Platforms. Environ. Sci. Water Res. Technol. 2020, 6, 2676-2690. 186. Dinh, N. X.; Pham, T. N.; Huy, T. Q.; Trung, D. Q.; Tuan, P. A.; Khue, V. Q.; Van Quy, N.; Le, V. P.; Lam, V. D.; Le, A.-T. Ultrasensitive Determination of Chloramphenicol in Pork and Chicken Meat Samples Using a Portable Electrochemical Sensor: Effects of 2D Nanomaterials on the Sensing Performance and Stability. New J. Chem. 2021, 45, 7622-7636. 187. Saisahas, K.; Soleh, A.; Promsuwan, K.; Phonchai, A.; Mohamed Sadiq, N. S.; Teoh, W. K.; Chang, K. H.; Lim Abdullah, A. F.; Limbut, W. A Portable Electrochemical Sensor for Detection of the Veterinary Drug Xylazine in Beverage Samples. J. Pharm. Biomed. Anal. 2021, 198, 113958. 188. Alam, A. U.; Clyne, D.; Jin, H.; Hu, N.-X.; Deen, M. J. Fully Integrated, Simple, and Low-Cost Electrochemical Sensor Array for In Situ Water Quality Monitoring. ACS Sensors 2020, 5, 412-422. 189. Abellán-Llobregat, A.; González-Gaitán, C.; Vidal, L.; Canals, A.; Morallón, E. Portable Electrochemical Sensor Based on 4-Aminobenzoic Acid-Functionalized Herringbone Carbon Nanotubes for the Determination of Ascorbic Acid and Uric Acid in Human Fluids. Biosens. Bioelectron. 2018, 109, 123-131. 190. Konstantinov, K. N.; Sitdikov, R. A.; Lopez, G. P.; Atanassov, P.; Rubin, R. L. Rapid Detection of Anti-Chromatin Autoantibodies in Human Serum Using a Portable Electrochemical Biosensor. Biosens. Bioelectron. 2009, 24, 1949-1954. 191. Agati, G.; D’Onofrio, C.; Ducci, E.; Cuzzola, A.; Remorini, D.; Tuccio, L.; Lazzini, F.; Mattii, G. Potential of a Multiparametric Optical Sensor for Determining In Situ the Maturity Components of Red and White Vitis Vinifera Wine Grapes. J. Agric. Food. Chem. 2013, 61, 12211-12218. 192. Massie, C.; Stewart, G.; McGregor, G.; Gilchrist, J. R. Design of a Portable Optical Sensor for Methane Gas Detection. Sens. Actuators B Chem. 2006, 113, 830-836. 193. Gillanders, R. N.; Samuel, I. D. W.; Turnbull, G. A. A Low-Cost, Portable Optical Explosive-Vapour Sensor. Sens. Actuators B Chem. 2017, 245, 334-340. 194. Al-omari, M.; Liu, G.; Mueller, A.; Mock, A.; Ghosh, R. N.; Smith, K.; Kaya, T. A Portable Optical Human Sweat Sensor. J. Appl. Phys. 2014, 116, 183102. 195. Agati, G.; D'Onofrio, C.; Ducci, E.; Cuzzola, A.; Remorini, D.; Tuccio, L.; Lazzini, F.; Mattii, G. Potential of a Multiparametric Optical Sensor for Determining in Situ the Maturity Components of Red and White Vitis Vinifera Wine Grapes. J. Agric. Food. Chem. 2013, 61, 12211-8. 196. Agati, G.; D'Onofrio, C.; Ducci, E.; Cuzzola, A.; Remorini, D.; Tuccio, L.; Lazzini, F.; Mattii, G. Potential of a Multiparametric Optical Sensor for Determining the Maturity Components of Red and White Vitis Vinifera Wine Grapes. J. Agric. Food. Chem. 2013, 61, 12211-8. 197. Chai, C.; Liu, G.; Yao, B. A Portable Optical Sensor Based on a One-Off Test Strip for Fast Evaluation of Bacterial Contamination in Raw Tofu. Sens. Actuators B Chem. 2011, 152, 1-7. 198. Lantam, A.; Limbut, W.; Thiagchanya, A.; Phonchai, A. A Portable Optical Colorimetric Sensor for the Determination of Promethazine in Lean Cocktail and Pharmaceutical Doses. Microchem. J. 2020, 159, 105519. 199. Soparawalla, S.; Tadjimukhamedov, F. K.; Wiley, J. S.; Ouyang, Z.; Cooks, R. G. In Situ Analysis of Agrochemical Residues on Fruit Using Ambient Ionization on a Handheld Mass Spectrometer. Analyst 2011, 136, 4392-6. 200. Huang, G.; Xu, W.; Visbal-Onufrak, M. A.; Ouyang, Z.; Cooks, R. G. Direct Analysis of Melamine in Complex Matrices Using a Handheld Mass Spectrometer. Analyst 2010, 135, 705-711. 201. Ayvaz, H.; Rodriguez-Saona, L. E. Application of Handheld and Portable Spectrometers for Screening Acrylamide Content in Commercial Potato Chips. Food Chem. 2015, 174, 154-162. 202. Brennwald, M. S.; Schmidt, M.; Oser, J.; Kipfer, R. A Portable and Autonomous Mass Spectrometric System for On-Site Environmental Gas Analysis. Environ. Sci. Technol. 2016, 50, 13455-13463. 203. Jjunju, F. P. M.; Giannoukos, S.; Marshall, A.; Taylor, S. In-Situ Analysis of Essential Fragrant Oils Using a Portable Mass Spectrometer. Int. J. Anal. Chem. 2019, 2019, 1780190-1780190. 204. Short, R. T.; Toler, S. K.; Kibelka, G. P. G.; Rueda Roa, D. T.; Bell, R. J.; Byrne, R. H. Detection and Quantification of Chemical Plumes Using a Portable Underwater Membrane Introduction Mass Spectrometer. TrAC, Trends Anal. Chem. 2006, 25, 637-646. 205. Shih, C.-P.; Yu, K.-C.; Ou, H.-T.; Urban, P. L. Portable Pen-Probe Analyzer Based on Ion Mobility Spectrometry for In Situ Analysis of Volatile Organic Compounds Emanating from Surfaces and Wireless Transmission of the Acquired Spectra. Anal. Chem. 2021, 93, 2424-2432. 206. Dunn, J. D.; Gryniewicz-Ruzicka, C. M.; Kauffman, J. F.; Westenberger, B. J.; Buhse, L. F. Using a Portable Ion Mobility Spectrometer to Screen Dietary Supplements for Sibutramine. J. Pharm. Biomed. Anal. 2011, 54, 469-474. 207. Anand, S. S.; Philip, B. K.; Mehendale, H. M. Volatile Organic Compounds. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press, 2014; pp 967-970. 208. Volatile Organic Compounds in the Atmosphere. 1st ed.; Koppmann, R., Ed.; Wiley-Blackwell, 2007. 209. Fleming-Jones, M. E.; Smith, R. E. Volatile Organic Compounds in Foods: A Five Year Study. J. Agric. Food. Chem. 2003, 51, 8120-8127. 210. Cao, X.-L.; Sparling, M.; Dabeka, R. Occurrence of 13 Volatile Organic Compounds in Foods from the Canadian Total Diet Study. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2016, 33, 373-382. 211. Analysis of Foods and Beverages: Headspace Techniques. 1st ed.; Charalambous, G., Ed.; Academic Press, 1978. 212. Wang, Y.; McCaffrey, J.; Norwood, D. L. Recent Advances in Headspace Gas Chromatography. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 1823-1851. 213. Jalili, V.; Barkhordari, A.; Ghiasvand, A. A Comprehensive Look at Solid-Phase Microextraction Technique: A Review of Reviews. Microchem. J. 2020, 152, 104319. 214. Gherghel, S.; Morgan, R. M.; Arrebola-Liébanas, J.; Romero-González, R.; Blackman, C. S.; Garrido-Frenich, A.; Parkin, I. P. Development of a HS-SPME/GC–MS Method for the Analysis of Volatile Organic Compounds from Fabrics for Forensic Reconstruction Applications. Forensic Sci. Int. 2018, 290, 207-218. 215. Jornet-Martínez, N.; Moliner-Martínez, Y.; Molins-Legua, C.; Campíns-Falcó, P. Trends for the Development of In Situ Analysis Devices. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, Meyers, R. A., Ed.; John Wiley & Sons, 2000; pp 1-23. 216. Hill, H. H.; Siems, W. F.; St. Louis, R. H. Ion Mobility Spectrometry. Anal. Chem. 1990, 62, 1201A-1209A. 217. Armenta, S.; Alcala, M.; Blanco, M. A Review of Recent, Unconventional Applications of Ion Mobility Spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114-23. 218. Shih, C. P.; Yu, K. C.; Ou, H. T.; Urban, P. L. Portable Pen-Probe Analyzer Based on Ion Mobility Spectrometry for in Situ Analysis of Volatile Organic Compounds Emanating from Surfaces and Wireless Transmission of the Acquired Spectra. Anal. Chem. 2021, 93, 2424-2432. 219. Chen, T.; Qi, X.; Chen, M.; Chen, B. Gas Chromatography-Ion Mobility Spectrometry Detection of Odor Fingerprint as Markers of Rapeseed Oil Refined Grade. J. Anal. Methods Chem. 2019, 2019, 3163204. 220. Metternich, S.; Zörntlein, S.; Schönberger, T.; Huhn, C. Ion Mobility Spectrometry as a Fast Screening Tool for Synthetic Cannabinoids to Uncover Drug Trafficking in Jail Via Herbal Mixtures, Paper, Food, and Cosmetics. Drug Test. Anal. 2019, 11, 833-846. 221. Ewing, R. G.; Atkinson, D. A.; Eiceman, G. A.; Ewing, G. J. A Critical Review of Ion Mobility Spectrometry for the Detection of Explosives and Explosive Related Compounds. Talanta 2001, 54, 515-29. 222. Hernández-Mesa, M.; Ropartz, D.; García-Campaña, A. M.; Rogniaux, H.; Dervilly-Pinel, G.; Le Bizec, B. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019, 24, 2706. 223. O'Dowd, C. D.; de Leeuw, G. Marine Aerosol Production: A Review of the Current Knowledge. Philos. Trans. Royal Soc. A 2007, 365, 1753-1774. 224. Liger-Belair, G.; Cilindre, C.; Gougeon, R. D.; Lucio, M.; Gebefügi, I.; Jeandet, P.; Schmitt-Kopplin, P. Unraveling Different Chemical Fingerprints between a Champagne Wine and Its Aerosols. Proc. Natl. Acad. Sci. 2009, 106, 16545. 225. Chingin, K.; Cai, Y.; Liang, J.; Chen, H. Simultaneous Preconcentration and Desalting of Organic Solutes in Aqueous Solutions by Bubble Bursting. Anal. Chem. 2016, 88, 5033-5036. 226. Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S. Effervescence-Assisted Microextraction—One Decade of Developments. Molecules 2020, 25, 6053. 227. An, S.; Ranaweera, R.; Luo, L. Harnessing Bubble Behaviors for Developing New Analytical Strategies. Analyst 2020, 145, 7782-7795. 228. Resch, F. J.; Darrozes, J. S.; Afeti, G. M. Marine Liquid Aerosol Production from Bursting of Air Bubbles. J. Geophys. Res. Oceans 1986, 91, 1019-1029. 229. Speight, J. G. 8 - Remediation Technologies. In Natural Water Remediation, Speight, J. G., Ed.; Butterworth-Heinemann, 2020; pp 263-303. 230. Wang, T.; Lenahan, R. Determination of Volatile Halocarbons in Water by Purge-Closed Loop Gas Chromatography. Bull. Environ. Contam. Toxicol. 1984, 32, 429-438. 231. Osemwengie, L. I.; Steinberg, S. Closed-Loop Stripping Analysis of Synthetic Musk Compounds from Fish Tissues with Measurement by Gas Chromatography-Mass Spectrometry with Selected-Ion Monitoring. J. Chromatogr. A 2003, 993, 1-15. 232. Elpa, D. P.; Wu, S.-P.; Urban, P. L. Rapid Extraction and Analysis of Volatile Solutes with an Effervescent Tablet. Anal. Chem. 2020, 92, 2756-2763. 233. Raju, C. M.; Yu, K.-C.; Shih, C.-P.; Elpa, D. P.; Prabhu, G. R. D.; Urban, P. L. Catalytic Oxygenation-Mediated Extraction as a Facile and Green Way to Analyze Volatile Solutes. Anal. Chem. 2021, 93, 8923-8930. 234. Chang, C.-H.; Urban, P. L. Fizzy Extraction of Volatile and Semivolatile Compounds into the Gas Phase. Anal. Chem. 2016, 88, 8735-8740. 235. Yang, H. C.; Chang, C. H.; Urban, P. L. Fizzy Extraction of Volatile Organic Compounds Combined with Atmospheric Pressure Chemical Ionization Quadrupole Mass Spectrometry. J. Vis. Exp. 2017, 125, e56008. 236. Yang, H.-C.; Urban, P. L. On-Line Coupling of Fizzy Extraction with Gas Chromatography. Anal. Bioanal. Chem. 2019, 411, 2511-2520. 237. Yang, H.-C.; Chang, C.-M.; Urban, P. L. Automation of Fizzy Extraction Enabled by Inexpensive Open-Source Modules. Heliyon 2019, 5, e01639. 238. Chang, C.-M.; Yang, H.-C.; Urban, P. L. On the Mechanism of Automated Fizzy Extraction. PeerJ 2019, 1, e2. 239. Prabhu, G. R. D.; Yang, T.-H.; Hsu, C.-Y.; Shih, C.-P.; Chang, C.-M.; Liao, P.-H.; Ni, H.-T.; Urban, P. L. Facilitating Chemical and Biochemical Experiments with Electronic Microcontrollers and Single-Board Computers. Nat. Protoc. 2020, 15, 925-990. 240. Jiao, F.; Gao, H.-W. On-Site Solid-Phase Extraction and Application to in Situ Preconcentration of Heavy Metals in Surface Water. Environ. Monit. Assess. 2013, 185, 39-44. 241. Hu, X.; Wang, R.; Guo, J.; Ge, K.; Li, G.; Fu, F.; Ding, S.; Shan, Y. Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules (Basel, Switzerland) 2019, 24, 3053. 242. Michalczuk, B.; Moravský, L.; Hrdá, J.; Matejčík, Š. Atmospheric Pressure Chemical Ionisation Study of Selected Volatile Organic Compounds (VOCs) by Ion Mobility Spectrometry Coupled with Orthogonal Acceleration Time of Flight Mass Spectrometry. Int. J. Mass spectrom. 2020, 449, 116275. 243. Mäkinen, M.; Sillanpää, M.; Viitanen, A. K.; Knap, A.; Mäkelä, J. M.; Puton, J. The Effect of Humidity on Sensitivity of Amine Detection in Ion Mobility Spectrometry. Talanta 2011, 84, 116-21. 244. Capitani, D.; Sobolev, A. P.; Di Tullio, V.; Mannina, L.; Proietti, N. Portable NMR in Food Analysis. Chem. Biol. Technol. Agric. 2017, 4, 17. 245. Kim, Y. S.; Ha, S.-C.; Yang, Y.; Kim, Y. J.; Cho, S. M.; Yang, H.; Kim, Y. T. Portable Electronic Nose System Based on the Carbon Black–Polymer Composite Sensor Array. Sens. Actuators B Chem. 2005, 108, 285-291. 246. Lu, Y.; Shi, Z.; Liu, Q. Smartphone-Based Biosensors for Portable Food Evaluation. Curr. Opin. Food Sci. 2019, 28, 74-81. 247. Michalczuk, B.; Sabo, M.; Jatzová, K.; Moravský, L.; Gregorová, M.; Matejčík, Š. Fast Quantification of Whisky Lactone in Oak Wood by Ion Mobility Spectrometer. Talanta 2020, 209, 120567. 248. Câmara, J. S.; Marques, J. C.; Perestrelo, R. M.; Rodrigues, F.; Oliveira, L.; Andrade, P.; Caldeira, M. Comparative Study of the Whisky Aroma Profile Based on Headspace Solid Phase Microextraction Using Different Fibre Coatings. J. Chromatogr. A 2007, 1150, 198-207. 249. Zhao, Y. P.; Zheng, X. P.; Song, P.; Sun, Z. L.; Tian, T. T. Characterization of Volatiles in the Six Most Well-Known Distilled Spirits. J. Am. Soc. Brew. Chem. 2013, 71, 161-169. 250. Global Ethyl Acetate Market 2020-2024| Increasing Demand for Ethyl Acetate from Food Processing Industry to Boost Market Growth | Technavio. https://www.businesswire.com/news/home/20200205005463/en/Global-Ethyl-Acetate-Market-2020-2024-Increasing-Demand-for-Ethyl-Acetate-from-Food-Processing-Industry-to-Boost-Market-Growth-Technavio (accessed Oct. 7, 2021). 251. Han, H. Y.; Huang, G. D.; Jin, S. P.; Zheng, P. C.; Xu, G. H.; Li, J. Q.; Wang, H. M.; Chu, Y. N. Determination of Alcohol Compounds Using Corona Discharge Ion Mobility Spectrometry. J. Environ. Sci. (China) 2007, 19, 751-5. 252. LCG. Preparation of calibration curves: A guide to best practice. UK. National Measurable Laboratory, 2003.https://www.lgcgroup.com/media/1876/preparation-of-calibration-curves_a-guide-to-best-practice.pdf (accessed Oct. 6, 2021). 253. Nascimento, E. S. P.; Cardoso, D. R.; Franco, D. W. Quantitative Ester Analysis in Cachaça and Distilled Spirits by Gas Chromatography−Mass Spectrometry (GC−MS). J. Agric. Food. Chem. 2008, 56, 5488-5493. 254. Fitzgerald, G.; James, K. J.; MacNamara, K.; Stack, M. A. Characterisation of Whiskeys Using Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2000, 896, 351-9. 255. Lapthorn, C.; Pullen, F.; Chowdhry, B. Z. Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) of Small Molecules: Separating and Assigning Structures to Ions. Mass Spectrom. Rev. 2013, 32, 43-71.
|