|
第一章 1] Cao, J.; Sun, T.; Grattan, K. T. V. Gold Nanorod-Based Localized Surface Plasmon Resonance Biosensors: A Review. Sens. Actuators B Chem. 2014, 195, 332–351. [2] Eustis, S.; El-Sayed, M. A. Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chem. Soc. Rev. 2006, 35, 209–217. [3] Petryayeva, E.; Krull, U. J. Localized Surface Plasmon Resonance Nanostructures, Bioassays and Biosensing: A Review. Anal. Chim. Acta 2011, 706, 8–24. [4] Ghosh, S. K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862. [5] Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [6] Link, S.; El-Sayed, M. A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453. [7] Mayer, K. M.; Hafner, J. H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [8] Ekici, O.; Harrison, R. K.; Durr, N. J.; Eversole, D. S.; Lee, M.; Ben-Yakar, A. Thermal Analysis of Gold Nanorods Heated with Femtosecond Laser Pulses. J. Phys. D: Appl. Phys. 2008, 41, 185501. [9] Qiu, J.; Wei, W. D. Surface Plasmon-Mediated Photothermal Chemistry. J. Phys. Chem. C 2014, 118, 20735–20749. [10] Hartland, G. V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887. [11] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [12] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; García de Abajo, F. J. Modelling the Optical Response of Gold Nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805. [13] Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for Photothermal Therapies. Nanoscale 2014, 6, 9494–9530. [14] Tang, H.; Chen, C.-J.; Huang, Z.; Bright, J.; Meng, G.; Liu, R.-S.; Wu, N. Plasmonic Hot Electrons for Sensing, Photodetection, and Solar Energy Applications: A Perspective. J. Chem. Phys. 2020, 152, 220901. [15] Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168–184. [16] Chan, M.-H.; Chen, S.-P.; Chen, C.-W.; Chan, Y.-C.; Lin, R. J.; Tsai, D. P.; Hsiao, M.; Chung, R.-J.; Chen, X.; Liu, R.-S. Single 808 nm Laser Treatment Comprising Photothermal and Photodynamic Therapies by Using Gold Nanorods Hybrid Upconversion Particles. J. Phys. Chem. C 2018, 122, 2402–2412. [17] Li, Z.; Huang, H.; Tang, S.; Li, Y.; Yu, X.-F.; Wang, H.; Li, P.; Sun, Z.; Zhang, H.; Liu, C.; Chu, P. K. Small Gold Nanorods Laden Macrophages for Enhanced Tumor Coverage in Photothermal Therapy. Biomaterials 2016, 74, 144–154. [18] Zheng, C.; Zhu, H.; Xu, Z.; Sinha, R. K.; Li, Q.; Ghosh, P. High-Efficient Photoacoustic Generation with an Ultrathin Metallic Multilayer Broadband Absorber. Opt. Express 2021, 29, 8490–8497. [19] Zhang, Z.; Wang, L.; Wang, J.; Jiang, X.; Li, X.; Hu, Z.; Ji, Y.; Wu, X.; Chen, C. Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Adv. Mater. 2012, 24, 1418–1423. [20] Ding, D.; Xu, Y.; Zou, Y.; Chen, L.; Chen, Z.; Tan, W. Graphitic Nanocapsules: Design, Synthesis and Bioanalytical Applications. Nanoscale 2017, 9, 10529–10543. [21] Qin, Z.; Bischof, J. C. Thermophysical and Biological Responses of Gold Nanoparticle Laser Heating. Chem. Soc. Rev. 2012, 41, 1191–1217. [22] Cui, X.; Cheng, W.; Han, X. Lipid Bilayer Modified Gold Nanorod@Mesoporous Silica Nanoparticles for Controlled Drug Delivery Triggered by Near-Infrared Light. J. Mater. Chem. B 2018, 6, 8078–8084. [23] Liu, J.; Liang, H.; Li, M.; Luo, Z.; Zhang, J.; Guo, X.; Cai, K. Tumor Acidity Activating Multifunctional Nanoplatform for NIR-Mediated Multiple Enhanced Photodynamic and Photothermal Tumor Therapy. Biomaterials 2018, 157, 107–124. [24] Shan, C.; Huang, Y.; Wei, J.; Chen, M.; Wu, L. Ultra-High Thermally Stable Gold Nanorods/Radial Mesoporous Silica and Their Application in Enhanced Chemo-Photothermal Therapy. RSC Adv. 2021, 11, 10416–10424. [25] Peleg, M.; Normand, M. D.; Corradini, M. G. The Arrhenius Equation Revisited. Crit. Rev. Food Sci. Nutr. 2012, 52, 830–851. [26] Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L.-D.; Li, Q.; Wang, J.; Yu, J. C.; Yan, C.-H. Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601. [27] Fasciani, C.; Alejo, C. J. B.; Grenier, M.; Netto-Ferreira, J. C.; Scaiano, J. C. High-Temperature Organic Reactions at Room Temperature Using Plasmon Excitation: Decomposition of Dicumyl Peroxide. Org. Lett. 2011, 13, 204–207. [28] Adleman, J. R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D. Heterogenous Catalysis Mediated by Plasmon Heating. Nano Lett. 2009, 9, 4417–4423. [29] Alper, J.; Hamad-Schifferli, K. Effect of Ligands on Thermal Dissipation from Gold Nanorods. Langmuir 2010, 26, 3786–3789. [30] Schmidt, A. J.; Alper, J. D.; Chiesa, M.; Chen, G.; Das, S. K.; Hamad-Schifferli, K. Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay. J. Phys. Chem. C 2008, 112, 13320–13323. [31] Polavarapu, L.; Xu, Q.-H. A Simple Method for Large Scale Synthesis of Highly Monodisperse Gold Nanoparticles at Room Temperature and Their Electron Relaxation Properties. Nanotechnology 2009, 20, 185606. [32] Mohamed, M. B.; Ahmadi, T. S.; Link, S.; Braun, M.; El-Sayed, M. A. Hot Electron and Phonon Dynamics of Gold Nanoparticles Embedded in a Gel Matrix. Chem. Phys. Lett. 2001, 343, 55–63. [33] Hu, M.; Wang, X.; Hartland, G. V.; Salgueiriño-Maceira, V.; Liz-Marzán, L. M. Heat Dissipation in Gold-Silica Core-Shell Nanoparticles. Chem. Phys. Lett. 2003, 372, 767–772. [34] Link, S.; Furube, A.; Mohamed, M. B.; Asahi, T.; Masuhara, H.; El-Sayed, M. A. Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared to Solution: The Effect of the Surrounding Medium. J. Phys. Chem. B 2002, 106, 945–955. [35] Link, S.; Hathcock, D. J.; Nikoobakht, B.; El-Sayed, M. A. Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra. Adv. Mater. 2003, 15, 393–396. [36] Halté, V.; Bigot, J. Y.; Palpant, B.; Broyer, M.; Prével, B.; Pérez, A. Size Dependence of the Energy Relaxation in Silver Nanoparticles Embedded in Dielectric Matrices. Appl. Phys. Lett. 1999, 75, 3799–3801. [37] Manzano, M.; Vallet-Regí, M. Ultrasound Responsive Mesoporous Silica Nanoparticles for Biomedical Applications. Chem. Commun. 2019, 55, 2731–2740. [38] Wang, X.; He, B.; Hu, Z.; Zeng, Z.; Han, S. Current Advances in Precious Metal Core-Shell Catalyst Design. Adv. Mater. Technol. 2014, 15, 043502. [39] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.; Weller, H.; Alivisatos, A. P. Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy. ACS Nano 2016, 10, 2144–2151. [40] Guo, S.-S.; Chu, L.-K. Radiative Cooling of Surface-Modified Gold Nanorods upon Pulsed Infrared Photoexcitation. J. Phys. Chem. Lett. 2018, 9, 5110–5115. 第二章 [1] Cao, J.; Sun, T.; Grattan, K. T. V. Gold Nanorod-Based Localized Surface PlasmonResonance Biosensors: A Review. Sens. Actuators B Chem. 2014, 195, 332–351. [2] Eustis, S.; El-Sayed, M. A. Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chem. Soc. Rev. 2006, 35, 209–217. [3] Petryayeva, E.; Krull, U. J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing: A Review. Anal. Chim. Acta 2011, 706, 8–24. [4] Ghosh, S. K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862. [5] Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [6] Hutter, E.; Fendler, J. H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706. [7] Link, S.; El-Sayed, M. A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453. [8] Mayer, K. M.; Hafner, J. H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [9] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [10] Bonacic-Koutecky, V.; Fantucci, P.; Koutecky, J. Quantum Chemistry of Small Clusters of Elements of Groups IA, IB, and IIA: Fundamental Concepts, Predictions, and Interpretation of Experiments. Chem. Rev. 1991, 91, 1035–1108. [11] Charlé, K. P.; Frank, F.; Schulze, W. The Optical Properties of Silver Microcrystallites in Dependence on Size and the Influence of the Matrix Environment. Ber. Bunsen. Phys. Chem. 1984, 88, 350–354. [12] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; García de Abajo, F. J. Modelling the Optical Response of Gold Nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805. [13] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [14] Ekici, O.; Harrison, R. K.; Durr, N. J.; Eversole, D. S.; Lee, M.; Ben-Yakar, A. Thermal Analysis of Gold Nanorods Heated with Femtosecond Laser Pulses. J. Phys. D: Appl. Phys. 2008, 41, 185501. [15] Webb, J. A.; Bardhan, R. Emerging Advances in Nanomedicine with Engineered Gold Nanostructures. Nanoscale 2014, 6, 2502–2530. [16] Chen, X.; Chen, Y.; Yan, M.; Qiu, M. Nanosecond Photothermal Effects in Plasmonic Nanostructures. ACS Nano 2012, 6, 2550–2557. [17] Hartland, G. V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887. [18] Qiu, J.; Wei, W. D. Surface Plasmon-Mediated Photothermal Chemistry. J. Phys. Chem. C 2014, 118, 20735–20749. [19] Tang, H.; Chen, C.-J.; Huang, Z.; Bright, J.; Meng, G.; Liu, R.-S.; Wu, N. Plasmonic Hot Electrons for Sensing, Photodetection, and Solar Energy Applications: A Perspective. J. Chem. Phys. 2020, 152, 220901. [20] Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M. A. Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses. J. Phys. Chem. B 2000, 104, 6152–6163. [21] Halté, V.; Bigot, J. Y.; Palpant, B.; Broyer, M.; Prével, B.; Pérez, A. Size Dependence of the Energy Relaxation in Silver Nanoparticles Embedded in Dielectric Matrices. Appl. Phys. Lett. 1999, 75, 3799–3801. [22] Schmidt, A. J.; Alper, J. D.; Chiesa, M.; Chen, G.; Das, S. K.; Hamad-Schifferli, K. Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay. J. Phys. Chem. C 2008, 112, 13320–13323. [23] Link, S.; Furube, A.; Mohamed, M. B.; Asahi, T.; Masuhara, H.; El-Sayed, M. A. Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared to Solution: The Effect of the Surrounding Medium. J. Phys. Chem. B 2002, 106, 945–955. [24] Eesley, G. L. Observation of Nonequilibrium Electron Heating in Copper. Phys. Rev. Lett. 1983, 51, 2140–2143. [25] Brorson, S. D.; Fujimoto, J. G.; Ippen, E. P. Femtosecond Electronic Heat-Transport Dynamics in Thin Gold Films. Phys. Rev. Lett. 1987, 59, 1962–1965. [26] Mohamed, M. B.; Ahmadi, T. S.; Link, S.; Braun, M.; El-Sayed, M. A. Hot Electron and Phonon Dynamics of Gold Nanoparticles Embedded in a Gel Matrix. Chem. Phys. Lett. 2001, 343, 55–63. [27] Link, S.; Hathcock, D. J.; Nikoobakht, B.; El-Sayed, M. A. Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra. Adv. Mater. 2003, 15, 393–396. [28] Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallée, F.; Prével, B.; Cottancin, E.; Lermé, J.; Pellarin, M.; Broyer, M. Size-Dependent Electron-Electron Interactions in Metal Nanoparticles. Phys. Rev. Lett. 2000, 85, 2200–2203. [29] Arbouet, A.; Voisin, C.; Christofilos, D.; Langot, P.; Fatti, N. D.; Vallée, F.; Lermé, J.; Celep, G.; Cottancin, E.; Gaudry, M.; Pellarin, M.; Broyer, M.; Maillard, M.; Pileni, M. P.; Treguer, M. Electron-Phonon Scattering in Metal Clusters. Phys. Rev. Lett. 2003, 90, 177401. [30] Tokizaki, T.; Nakamura, A.; Kaneko, S.; Uchida, K.; Omi, S.; Tanji, H.; Asahara, Y. Subpicosecond Time Response of Third‐Order Optical Nonlinearity of Small Copper Particles in Glass. Appl. Phys. Lett. 1994, 65, 941–943. [31] Stella, A.; Nisoli, M.; De Silvestri, S.; Svelto, O.; Lanzani, G.; Cheyssac, P.; Kofman, R. Size Effects in the Ultrafast Electronic Dynamics of Metallic Tin Nanoparticles. Phys. Rev. B 1996, 53, 15497–15500. [32] Darugar, Q.; Qian, W.; El-Sayed, M. A.; Pileni, M.-P. Size-Dependent Ultrafast Electronic Energy Relaxation and Enhanced Fluorescence of Copper Nanoparticles. J. Phys. Chem. B 2006, 110, 143–149. [33] Knappenberger, K. L.; Schwartzberg, A. M.; Dowgiallo, A.-M.; Lowman, C. A. Electronic Relaxation Dynamics in Isolated and Aggregated Hollow Gold Nanospheres. J. Am. Chem. Soc. 2009, 131, 13892–13893. [34] Huang, W.; Qian, W.; El-Sayed, M. A.; Ding, Y.; Wang, Z. L. Effect of the Lattice Crystallinity on the Electron-Phonon Relaxation Rates in Gold Nanoparticles. J. Phys. Chem. C 2007, 111, 10751–10757. [35] Nisoli, M.; Stagira, S.; De Silvestri, S.; Stella, A.; Tognini, P.; Cheyssac, P.; Kofman, R. Ultrafast Electronic Dynamics in Solid and Liquid Gallium Nanoparticles. Phys. Rev. Lett. 1997, 78, 3575–3578. [36] Link, S.; Burda, C.; Mohamed, M. B.; Nikoobakht, B.; El-Sayed, M. A. Femtosecond Transient-Absorption Dynamics of Colloidal Gold Nanorods: Shape Independence of the Electron-Phonon Relaxation Time. Phys. Rev. B 2000, 61, 6086–6090. [37] Wang, S.; Fu, L.; Zhang, Y.; Wang, J.; Zhang, Z. Quantitative Evaluation and Optimization of Photothermal Bubble Generation around Overheated Nanoparticles Excited by Pulsed Lasers. J. Phys. Chem. C 2018, 122, 24421–24435. [38] Liu, J.-L.; Yang, Y.-T.; Lin, C.-T.; Yu, Y.-J.; Chen, J.-K.; Chu, L.-K. Monitoring the Transient Thermal Infrared Emission of Gold Nanoparticles upon Photoexcitation with a Step-Scan Fourier-Transform Spectrometer. J. Phys. Chem. C 2017, 121, 878–885. [39] Alex, T. L.; Farouk, N.; Michael, M.; Turkay, K.; Gultekin, G. In Monitoring Gold Nanoparticle Distribution with High Resolution Using Photo-Magnetic Imaging, Proc. SPIE, 2016. [40] Jiang, K.; Smith, D. A.; Pinchuk, A. Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles. J. Phys. Chem. C 2013, 117, 27073–27080. [41] Gally, J. A.; Edelman, G. M. The Effect of Temperature on the Fluorescence of Some Aromatic Amino Acids and Proteins. Biochim. Biophys. Acta 1962, 60, 499–509. [42] Chiu, M.-J.; Chu, L.-K. Quantifying the Photothermal Efficiency of Gold Nanoparticles Using Tryptophan as an in Situ Fluorescent Thermometer. Phys. Chem. Chem. Phys. 2015, 17, 17090–17100. [43] Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K. Spatially and Temporally-Resolved Tryptophan Fluorescence Thermometry for Monitoring the Photothermal Processes of Gold Nanorod Suspensions. Sens. Actuators B Chem. 2018, 255, 1285–1290. [44] Chen, Y.-S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers. Nano Lett. 2011, 11, 348–354. [45] Kumar, D.; Soni, R. K.; Ghai, D. P. Pulsed Photoacoustic and Photothermal Response of Gold Nanoparticles. Nanotechnology 2019, 31, 035704. [46] Maksimova, I. L.; Akchurin, G. G.; Khlebtsov, B. N.; Terentyuk, G. S.; Akchurin, G. G.; Ermolaev, I. A.; Skaptsov, A. A.; Soboleva, E. P.; Khlebtsov, N. G.; Tuchin, V. V. Near-Infrared Laser Photothermal Therapy of Cancer by Using Gold Nanoparticles: Computer Simulations and Experiment. Med. Laser Appl. 2007, 22, 199–206. [47] Georgy Sergeevich, T.; Galina, N. M.; Leyla, V. S.; Nikolay Grigorievich, K.; Boris Nokolaevich, K.; Garif Gazizovich, A.; Irina Leonidovna, M.; Valery, V. T. Laser-Induced Tissue Hyperthermia Mediated by Gold Nanoparticles: Toward Cancer Phototherapy. J. Biomed. Opt. 2009, 14, 1–9. [48] Polavarapu, L.; Xu, Q.-H. A Simple Method for Large Scale Synthesis of Highly Monodisperse Gold Nanoparticles at Room Temperature and Their Electron Relaxation Properties. Nanotechnology 2009, 20, 185606. [49] Hu, M.; Hartland, G. V. Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time Versus Size. J. Phys. Chem. B 2002, 106, 7029–7033. [50] Cahill, D. G. Thermal Conductivity Measurement from 30 to 750 K: The 3ω Method. Rev. Sci. Instrum. 1990, 61, 802–808. [51] Coquil, T.; Richman, E. K.; Hutchinson, N. J.; Tolbert, S. H.; Pilon, L. Thermal Conductivity of Cubic and Hexagonal Mesoporous Silica Thin Films. J. Appl. Phys. 2009, 106, 034910. [52] Shenogin, S.; Bodapati, A.; Keblinski, P.; McGaughey, A. J. H. Predicting the Thermal Conductivity of Inorganic and Polymeric Glasses: The Role of Anharmonicity. J. Appl. Phys. 2009, 105, 034906. [53] Kittel, C. Interpretation of the Thermal Conductivity of Glasses. Phys. Rev. 1949, 75, 972–974. [54] Coquil, T.; Fang, J.; Pilon, L. Molecular Dynamics Study of the Thermal Conductivity of Amorphous Nanoporous Silica. Int. J. Heat Mass Transf. 2011, 54, 4540–4548. [55] Zhu, W.; Zheng, G.; Cao, S.; He, H. Thermal Conductivity of Amorphous SiO2 Thin Film: A Molecular Dynamics Study. Sci. Rep. 2018, 8, 10537–10537. [56] Tsui, B.-Y.; Yang, C.-C.; Fang, K.-L. Anisotropic Thermal Conductivity of Nanoporous Silica Film. IEEE Trans. Electron Devices 2004, 51, 20–27. [57] Cao, S.; He, H.; Zhu, W. Defect Induced Phonon Scattering for Tuning the Lattice Thermal Conductivity of SiO2 Thin Films. AIP Adv. 2017, 7, 015038. [58] Hu, C.; Morgen, M.; Ho, P. S.; Jain, A.; Gill, W. N.; Plawsky, J. L.; Wayner, P. C. Thermal Conductivity Study of Porous Low-K Dielectric Materials. Appl. Phys. Lett. 2000, 77, 145–147. [59] Choi, S. G.; Ha, T.-J.; Yu, B.-G.; Jaung, S. P.; Kwon, O.; Park, H.-H. Improvement of Uncooled Infrared Imaging Detector by Using Mesoporous Silica as a Thermal Isolation Layer. Ceram. Int. 2008, 34, 833–836. [60] Delan, A.; Rennau, M.; Schulz, S. E.; Gessner, T. Thermal Conductivity of Ultra Low-K Dielectrics. Microelectron. Eng. 2003, 70, 280–284. [61] 3 ω meaurement technique. Linseis. https://www.linseis.com/en/methods/3-omega-method/ (accessed on 2021/07/10) 第三章 [1] Faust, B. Modern Chemical Techniques: An Essential Reference for Students and Teachers. Royal Society of Chemistry, 1997, 92–115. [2] Harvey, D. Modern Analytical Chemistry. McGraw-Hill, 2000, 382. [3] Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for Photothermal Therapies. Nanoscale 2014, 6, 9494–9530. [4] 羅聖全 科學基礎研究之重要利器 掃瞄式電子顯微鏡. 科學研習 2013, 52, 1–4. [5] 陳建淼; 洪連輝 穿透式電子顯微鏡. 科學Online科技部高瞻自然科學教學資源平台, 2009. [6] Egerton, R. F., Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, Springer, 2016. [7] NanoFASE, TEM Transmission Electron Microscopy. [8] 林昆霖 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡. 奈米通訊 Nano communication 2003, 20, 34–38. [9] Kundu, S., Synthesis and Characterizations of Some Nanocrystalline Metal Oxide Semiconductors and Composites with Different Morphologies, The University of Burdwan, 2019. [10] 楊家銘 科儀新知第二十六卷第六期. 2005. 6. [11] Nishi, Y.; Inagaki, M., Chapter 11 Gas Adsorption/Desorption Isotherm for Pore Structure Characterization. Mater. Charact. 2016, 227–247. [12] P. A. Webb., C. Orr, Analytical Methods in Fine Particle Technology, Norcross: Micromeritics, 1997. 53. [13] Fellgett, P.B. les principes généraux des méthodes nouvelles en spectroscopie interférentielle. A propos de la théorie du spectromètre interférentiel multiplex. J. Phys. Radium. 1958, 19, 187–191. [14] Jacquinot, P. The Luminosity of Spectrometers with Prisms, Gratings, or Fabry-Perot Etalons. J. Opt. Soc. Am. 1954, 44, 761–765. [15] Jacquinot, P. New Developments in Interference Spectroscopy. Rep. Prog. Phys. 1960, 23, 267. [16] Connes, J.; Connes, P. Near-Infrared Planetary Spectra by Fourier Spectroscopy. I. Instruments and Results. J. Opt. Soc. Am. 1966, 56, 896–910. [17] Mertz, L. Transformations in Optics, 1965 Wiley. [18] Mertz, L. Auxiliary Computation for Fourier Spectrometry. Infrared Phys. 1967, 7, 17–23. [19] Geerts, Y.; Steyaert, M.; Sansen, W. M. C. Design of Multi-Bit Delta-Sigma A/D Converters; Springer Science & Business Media, 2002. [20] Vigderman, L.; Zubarev, E. R. High-Yield Synthesis of Gold Nanorods with Longitudinal SPR Peak Greater Than 1200 nm Using Hydroquinone as a Reducing Agent. Chem. Mater. 2013, 25, 1450–1457. [21] Yu, C.; Tian, B.; Liu, X.; Fan, J.; Yang, H.; Zhao, D. Y., Advances in Mesoporous Materials Templated by Nonionic Block Copolymers. Sci. Eng. 2004, 4, 14–46. [22] Huang, W.-C.; Lai, N.-C.; Chang, L.-L.; Yang, C.-M. Mercaptopropyl-Functionalized Helical Mesoporous Silica Nanoparticles with C2mm Symmetry: Cocondensation Synthesis and Structural Transformation in the Dilute Solution of Mixed Cationic and Nonionic Surfactants. Microporous and Mesoporous Mater. 2012, 151, 411–417. [23] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.; Weller, H.; Alivisatos, A. P. Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy. ACS Nano 2016, 10, 2144–2151. [24] Lang, N.; Tuel, A. A Fast and Efficient Ion-Exchange Procedure to Remove Surfactant Molecules from MCM–41 Materials. Chem. Mater. 2004, 16, 1961–1966. [25] Ongari, D.; Boyd, P. G.; Barthel, S.; Witman, M.; Haranczyk, M.; Smit, B. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials. Langmuir 2017, 33, 14529–14538. 第四章 [1] Brioude, A.; Jiang, X. C.; Pileni, M. P. Optical Properties of Gold Nanorods: DDA Simulations Supported by Experiments. J. Phys. Chem. B 2005, 109, 13138–13142. [2] Link, S.; Mohamed, M. B.; El-Sayed, M. A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. J. Phys. Chem. B 1999, 103, 3073–3077. [3] Patrick, L.; Choyke, W. J. Static Dielectric Constant of SiC. Phys. Rev. B 1970, 2, 2255–2256. [4] Mezza, P.; Phalippou, J.; Sempere, R. Sol-Gel Derived Porous Silica Films. J. Non-Cryst. Solids 1999, 243, 75–79. [5] He, J.; Unser, S.; Bruzas, I.; Cary, R.; Shi, Z.; Mehra, R.; Aron, K.; Sagle, L. The Facile Removal of CTAB from the Surface of Gold Nanorods. Colloids Surf. B: Biointerfaces 2018, 163, 140–145. [6] Weimer, D. R.; Lindemuth, L. D.; Groves, W. L. Refractive Index of Alcohol Nonionics. J. Am. Oil Chem. Soc. 1967, 44, 171–174. [7] Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for Photothermal Therapies. Nanoscale 2014, 6, 9494–9530. [8] González-Rubio, G.; Guerrero-Martínez, A.; Liz-Marzán, L. M. Reshaping, Fragmentation, and Assembly of Gold Nanoparticles Assisted by Pulse Lasers. Acc. Chem. Res. 2016, 49, 678–686. [9] Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Gold Nanoparticles: Interesting Optical Properties and Recent Applications in Cancer Diagnostics and Therapy. Nanomedicine 2007, 2, 681–693. [10] Zhao, P.; Ni, R.; Wang, K.; Hong, X.; Ding, Y.; Cong, T.; Liu, J.; Zhao, H. Dual-Mode Immunoassay Based on Shape Code and Infrared Absorption Fingerprint Signals of Silica Nanorods. Anal. Bioanal. Chem. 2017, 409, 4207–4213. [11] Asay, D. B.; Kim, S. H. Evolution of the Adsorbed Water Layer Structure on Silicon Oxide at Room Temperature. J. Phys. Chem. B 2005, 109, 16760–16763. [12] Ewing, G. E. Thin Film Water. J. Phys. Chem. B 2004, 108, 15953–15961. [13] Klarenaar, B. L. M.; Engeln, R.; van den Bekerom, D. C. M.; van de Sanden, M. C. M.; Morillo-Candas, A. S.; Guaitella, O. Time Evolution of Vibrational Temperatures in a CO2 glow Discharge Measured with Infrared Absorption Spectroscopy. Plasma Sources Sci. Technol. 2017, 26, 115008. [14] Baumgartner, B.; Hayden, J.; Loizillon, J.; Steinbacher, S.; Grosso, D.; Lendl, B. Pore Size-Dependent Structure of Confined Water in Mesoporous Silica Films from Water Adsorption/Desorption Using ATR-FTIR Spectroscopy. Langmuir 2019, 35, 11986–11994. [15] Yamashita, K.; Daiguji, H. Molecular Simulations of Water Adsorbed on Mesoporous Silica Thin Films. J. Phys. Chem. C 2013, 117, 2084–2095. [16] Abe, J.; Hirano, N.; Tsuchiya, N. Infrared Spectroscopic Study of Water in Mesoporous Silica under Supercritical Conditions. J. Mater. Sci. 2012, 47, 7971–7977. [17] Ekici, O.; Harrison, R. K.; Durr, N. J.; Eversole, D. S.; Lee, M.; Ben-Yakar, A. Thermal Analysis of Gold Nanorods Heated with Femtosecond Laser Pulses. J. Phys. D: Appl. Phys. 2008, 41, 185501. [18] Espinosa, A.; Castro, G. R.; Reguera, J.; Castellano, C.; Castillo, J.; Camarero, J.; Wilhelm, C.; García, M. A.; Muñoz-Noval, Á. Photoactivated Nanoscale Temperature Gradient Detection Using X-Ray Absorption Spectroscopy as a Direct Nanothermometry Method. Nano Lett. 2021, 21, 769–777. [19] Maity, S.; Wu, W.-C.; Tracy, J. B.; Clarke, L. I.; Bochinski, J. R. Nanoscale Steady-State Temperature Gradients within Polymer Nanocomposites Undergoing Continuous-Wave Photothermal Heating from Gold Nanorods. Nanoscale 2017, 9, 11605–11618. [20] Mohamed, M. B.; Ahmadi, T. S.; Link, S.; Braun, M.; El-Sayed, M. A. Hot Electron and Phonon Dynamics of Gold Nanoparticles Embedded in a Gel Matrix. Chem. Phys. Lett. 2001, 343, 55–63. [21] Polavarapu, L.; Xu, Q.-H. A Simple Method for Large Scale Synthesis of Highly Monodisperse Gold Nanoparticles at Room Temperature and Their Electron Relaxation Properties. Nanotechnology 2009, 20, 185606. [22] Hu, M.; Wang, X.; Hartland, G. V.; Salgueiriño-Maceira, V.; Liz-Marzán, L. M. Heat Dissipation in Gold-Silica Core-Shell Nanoparticles. Chem. Phys. Lett. 2003, 372, 767–772. [23] Link, S.; Hathcock, D. J.; Nikoobakht, B.; El-Sayed, M. A. Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra. Adv. Mater. 2003, 15, 393–396. [24] Link, S.; Furube, A.; Mohamed, M. B.; Asahi, T.; Masuhara, H.; El-Sayed, M. A. Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared to Solution: The Effect of the Surrounding Medium. J. Phys. Chem. B 2002, 106, 945–955. [25] Halté, V.; Bigot, J. Y.; Palpant, B.; Broyer, M.; Prével, B.; Pérez, A. Size Dependence of the Energy Relaxation in Silver Nanoparticles Embedded in Dielectric Matrices. Appl. Phys. Lett. 1999, 75, 3799–3801. [26] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.; Weller, H.; Alivisatos, A. P. Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy. ACS Nano 2016, 10, 2144–2151. [27] Rajput, D.; Costa, L.; Terekhov, A.; Lansford, K.; Hofmeister, W. Silica Coating of Polymer Nanowires Produced via Nanoimprint Lithography from Femtosecond Laser Machined Templates. Nanotechnology 2012, 23, 105304. [28] Aguiar, H.; Serra, J.; González, P.; León, B. Structural Study of Sol-Gel Silicate Glasses by IR and Raman Spectroscopies. J. Non-Cryst. Solids 2009, 355, 475–480. [29] Chen, L.; Lu, G. Direct Electrochemistry and Electrocatalysis of Hybrid Film Assembled by Polyelectrolyte-Surfactant Polymer, Carbon Nanotubes and Hemoglobin. J. Electroanal. Chem. 2006, 597, 51–59. [30] Lim, H.; Kassim, A.; Sharif, A.; Kuang, D.; Yarmo, A.; Edris, Z.; Ismail, R.; Ming, H. Palm-Based Lauryl Alcohol Ethoxylate Behavioural Study and Recommendations in Personal Care Applications. Malaysian J. Anal. Sci. 2008, 12. [31] Théorêt, A.; Sandorfy, C. Infrared Spectra and Crystalline Phase Transitions of Ammonium Nitrate. Can. J. Chem. 1964, 42, 57–62. [32] Katayama, Y.; Nattino, F.; Giordano, L.; Hwang, J.; Rao, R. R.; Andreussi, O.; Marzari, N.; Shao-Horn, Y. An in Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates. J. Phys. Chem. C 2019, 123, 5951–5963. [33] Stephan, K.; Laesecke, A. The Thermal Conductivity of Fluid Air. J. Phys. Chem. Ref. Data 1985, 14, 227–234. [34] Hori, K.; Higuchi, T.; Aoki, Y.; Miyamoto, M.; Oumi, Y.; Yogo, K.; Uemiya, S. Effect of Pore Size, Aminosilane Density and Aminosilane Molecular Length on CO2 Adsorption Performance in Aminosilane Modified Mesoporous Silica. Microporous and Mesoporous Mater. 2017, 246, 158–165. [35] Buongiorno, J.; Venerus, D. C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y. V.; Keblinski, P.; Hu, L.-w.; Alvarado, J. L.; Bang, I. C.; Bishnoi, S. W.; Bonetti, M.; Botz, F.; Cecere, A.; Chang, Y.; Chen, G.; Chen, H.; Chung, S. J.; Chyu, M. K.; Das, S. K.; Di Paola, R.; Ding, Y.; Dubois, F.; Dzido, G.; Eapen, J.; Escher, W.; Funfschilling, D.; Galand, Q.; Gao, J.; Gharagozloo, P. E.; Goodson, K. E.; Gutierrez, J. G.; Hong, H.; Horton, M.; Hwang, K. S.; Iorio, C. S.; Jang, S. P.; Jarzebski, A. B.; Jiang, Y.; Jin, L.; Kabelac, S.; Kamath, A.; Kedzierski, M. A.; Kieng, L. G.; Kim, C.; Kim, J.-H.; Kim, S.; Lee, S. H.; Leong, K. C.; Manna, I.; Michel, B.; Ni, R.; Patel, H. E.; Philip, J.; Poulikakos, D.; Reynaud, C.; Savino, R.; Singh, P. K.; Song, P.; Sundararajan, T.; Timofeeva, E.; Tritcak, T.; Turanov, A. N.; Van Vaerenbergh, S.; Wen, D.; Witharana, S.; Yang, C.; Yeh, W.-H.; Zhao, X.-Z.; Zhou, S.-Q. A Benchmark Study on the Thermal Conductivity of Nanofluids. J. Appl. Phys. 2009, 106, 094312.
|