帳號:guest(3.149.234.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂俊毅
作者(外文):Lu, Jun-Yi
論文名稱(中文):以時間解析紅外放光光譜法研究不同二氧化矽殼層孔隙率包覆之金奈米棒受光激發後之輻射緩解過程
論文名稱(外文):Radiative relaxation of SiO2-coated Au nanorods of different shell porosities upon photoexcitation monitored by time-resolved infrared emission spectroscopy
指導教授(中文):朱立岡
指導教授(外文):Chu, Li-Kang
口試委員(中文):陳仁焜
楊家銘
口試委員(外文):Chen, Jen-Kun
Yang, Chia-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:108023554
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:137
中文關鍵詞:金奈米棒二氧化矽孔隙率時間解析紅外放光光譜法輻射緩解
外文關鍵詞:gold nanorodsilicaporositytime-resolved infrared emission spectroscopyradiative relaxation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:406
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
金奈米棒(gold nanorod,AuNR)以二氧化矽包覆所組成之奈米粒子具有高度熱穩定性及光熱轉換效率,且其中二氧化矽殼層可提升生物相容性及提供優異的表面修飾潛力而被廣泛應用於光熱催化、光熱治療及藥物投遞等領域。吾人合成三種不同孔隙率之二氧化矽殼層修飾的金奈米棒,使用時間解析傅立葉轉換光譜儀擷取樣品受脈衝寬度7 ns之1064 nm雷射激發後於微秒時域的紅外放光光譜。樣品之熱輻射訊號波形包含矽氧橋鍵(Si-O-Si)聲子模(1000–1250 cm–1)與水分子彎曲振動模(1600–1650 cm–1)貢獻,推測金奈米棒受光激發後產生之熱能傳遞至二氧化矽殼層後,二氧化矽及其孔洞吸附水分子可受激發躍遷至較高振動能階,並以振動輻射緩解途徑將能量釋放。此外,樣品放光峰相較於二氧化矽吸收峰於 > 1250 cm–1有些微增寬現象,推測此訊號包含黑體輻射之貢獻。積分1000–1250 cm–1及1500–1750 cm–1放光強度之時間側寫皆顯示隨樣品孔隙率提高其放光訊號衰減速率較快。吾人皆以雙指數函數擬合兩波數區間的衰減曲線,得以分析Si-O-Si聲子及水分子彎曲振動能量之緩解動力學過程。結果顯示二氧化矽聲子緩解速率(k_SiO"2" )與水分子彎曲振動模緩解速率(k_(H"2" O))皆與樣品之孔隙率相依,且兩者皆包含輻射緩解(k_r)與非輻射緩解(k_nr)能量釋放途徑的貢獻。而穿透式顯微影像結果顯示僅有孔隙率最低之樣品受雷射激發後其二氧化矽殼層及金奈米棒核產生形貌變化,吾人推測係因其熱傳導效率最差,使奈米粒子因侷域高溫而熱致變形。吾人期望本論文探討二氧化矽與金奈米棒組成之核殼奈米粒子的光熱緩解過程及熱致形貌變化的研究成果,能協助了解金屬奈米粒子受光激發後與其周遭環境的能量傳遞過程。
Gold nanorods (AuNRs) manifested efficient conversion of light to heat. The SiO2 shell coating can further improve the thermal stability and the biocompatibility. The porous SiO2 shell also serves as a platform for chemical modification to advance the functionality of nanoparticles. All of these advantages enable AuNR@SiO2 to be widely utilized in miscellaneous photothermal studies. In this work, AuNR@SiO2 with different shell porosities (AuNR@SiO2_Y, Y = 711, 539 and 468, denoted the surface area in a unit of SiO2 shell (m2 g–1)) were synthesized. The transient infrared emissions of AuNR@SiO2_Y upon pulsed excitation of their longitudinal plasmonic bands were collected with a time-resolved Fourier-transform spectrometer. The infrared emission contours included the phonon mode of Si-O-Si bridge (1000–1250 cm–1) and the bending mode of adsorbed molecular water (1600–1650 cm–1) within the SiO2 pore surface. These observations revealed that SiO2 and water could be heated up and populated to their vibrationally excited states via the photothermal energy of AuNRs, partially followed by the thermalization through the radiative process. On top of that, the broadening emission contours > 1250 cm–1 comparing with the infrared absorption spectra of AuNR@SiO2_Y could be attributed to the blackbody radiation. The temporal profiles of the emission at 1000–1250 cm–1 and 1500–1750 cm–1 were characterized with the relaxation kinetics of Si-O-Si phonon mode and bending mode of adsorbed water, respectively. The decaying parts of these two modes were accelerated as the porosity of SiO2 increased. Upon bi-exponential fitting, the relaxation processes of both modes include intrinsic spontaneous emission and non-radiative process. The TEM images of AuNR@SiO2_468 after laser irradiation depicted that nanoparticles manifested a morphological alteration, suggesting that poor heat transfer might lead to local heating, which causes annealing. Thus, the heat transfer dynamics and reshaping phenomena of AuNR@SiO2 are expected to be applied in photothermal researches.
第一章 緒論 1
1.1 前言 1
1.2 金屬奈米粒子光致侷域加熱的應用 1
1.2.1 生醫領域之光熱應用 1
1.2.2 化學催化領域之光熱應用 2
1.3 光熱效應中之聲子–聲子耦合過程與環境介質的關係 3
1.3.1 介面熱傳導係數 3
1.3.2 環境介質之熱傳導係數 4
1.4 二氧化矽核殼奈米粒子光熱緩解過程分析 5
1.5 研究動機 6
參考文獻 14
第二章 金屬奈米粒子之光熱性質及二氧化矽之熱傳導特性 19
2.1 侷域性表面電漿共振 19
2.1.1 米氏理論 19
2.1.2 甘斯理論 22
2.2 光熱效應 23
2.2.1 光熱效應過程 23
2.2.2 時間解析法偵測光熱現象 24
2.2.3 偵測光熱效應造成周遭環境介質之溫度變化 26
2.3 二氧化矽之熱傳導特性 27
參考文獻 44
第三章 儀器原理、樣品製備、實驗系統架設與儀器參數設定 51
3.1 紫外–可見–近紅外光靜態吸收光譜 51
3.2 電子顯微鏡 52
3.2.1 穿透式電子顯微鏡 53
3.2.2 掃描式電子顯微鏡 53
3.3 氮氣等溫吸附/脫附 54
3.3.1 氣體吸脫附曲線 54
3.3.2 氣體吸脫附曲線數據分析 55
3.4 傅立葉轉換紅外光譜儀 57
3.4.1 麥克森干涉儀 57
3.4.2 單色光與多色光干涉 58
3.4.3 傅立葉轉換 59
3.4.4 截斷函數與削足函數 59
3.4.5 相位誤差與相位校正 61
3.4.6 連續掃描模式 62
3.5 步進式掃描時間解析紅外放光光譜法 62
3.5.1 工作原理 62
3.5.2 跳點取樣 63
3.5.3 放光光譜數據擷取原理 64
3.6 實驗樣品製備 64
3.6.1 金奈米棒合成 64
3.6.2 修飾不同孔隙率之二氧化矽殼層於金奈米棒表面 65
3.6.3 移除二氧化矽包覆之金奈米棒中的介面活性劑 66
3.6.4 樣品薄膜製備 67
3.6.5 實驗樣品 68
3.7 實驗系統架設 68
3.7.1 雷射激發系統 68
3.7.2 樣品槽 68
3.7.3 步進式掃描傅立葉轉換紅外光譜儀 68
3.7.4 數據擷取系統 69
3.7.5 黑體輻射偵測系統 69
3.8 儀器參數設定 70
3.8.1 吸收光譜儀 70
3.8.2 掃描式電子顯微鏡 70
3.8.3 穿透式電子顯微鏡 70
3.8.4 連續掃描式傅立葉轉換紅外光譜儀 70
3.8.5 步進式掃描傅立葉轉換紅外光譜儀 71
參考文獻 94
第四章 實驗結果與討論 97
4.1 樣品之定性分析 97
4.1.1 靜態可見–近紅外消光光譜 97
4.1.2 氮氣等溫吸附/脫附量測 98
4.1.3 電子顯微影像 99
4.1.4 以能量散射X射線譜求樣品孔隙率 100
4.1.5 靜態紅外光吸收光譜 101
4.1.5.1 樣品吸收峰指認 101
4.1.5.2 定量二氧化矽孔洞中之物理吸附水分子 101
4.1.5.3 不同抽真空時間對二氧化矽孔洞吸附水分子含量之影響 102
4.2 樣品受雷射激發後之輻射緩解過程 102
4.2.1 時間解析紅外放光光譜之再現性 102
4.2.2 瞬態紅外放光峰指認 103
4.2.3 紅外放光時間側寫分析 104
參考文獻 132
第五章 結論 137

第一章
1] Cao, J.; Sun, T.; Grattan, K. T. V. Gold Nanorod-Based Localized Surface Plasmon Resonance Biosensors: A Review. Sens. Actuators B Chem. 2014, 195, 332–351.
[2] Eustis, S.; El-Sayed, M. A. Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chem. Soc. Rev. 2006, 35, 209–217.
[3] Petryayeva, E.; Krull, U. J. Localized Surface Plasmon Resonance Nanostructures, Bioassays and Biosensing: A Review. Anal. Chim. Acta 2011, 706, 8–24.
[4] Ghosh, S. K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862.
[5] Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.
[6] Link, S.; El-Sayed, M. A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453.
[7] Mayer, K. M.; Hafner, J. H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857.
[8] Ekici, O.; Harrison, R. K.; Durr, N. J.; Eversole, D. S.; Lee, M.; Ben-Yakar, A. Thermal Analysis of Gold Nanorods Heated with Femtosecond Laser Pulses. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[9] Qiu, J.; Wei, W. D. Surface Plasmon-Mediated Photothermal Chemistry. J. Phys. Chem. C 2014, 118, 20735–20749.
[10] Hartland, G. V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887.
[11] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677.
[12] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; García de Abajo, F. J. Modelling the Optical Response of Gold Nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805.
[13] Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for Photothermal Therapies. Nanoscale 2014, 6, 9494–9530.
[14] Tang, H.; Chen, C.-J.; Huang, Z.; Bright, J.; Meng, G.; Liu, R.-S.; Wu, N. Plasmonic Hot Electrons for Sensing, Photodetection, and Solar Energy Applications: A Perspective. J. Chem. Phys. 2020, 152, 220901.
[15] Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168–184.
[16] Chan, M.-H.; Chen, S.-P.; Chen, C.-W.; Chan, Y.-C.; Lin, R. J.; Tsai, D. P.; Hsiao, M.; Chung, R.-J.; Chen, X.; Liu, R.-S. Single 808 nm Laser Treatment Comprising Photothermal and Photodynamic Therapies by Using Gold Nanorods Hybrid Upconversion Particles. J. Phys. Chem. C 2018, 122, 2402–2412.
[17] Li, Z.; Huang, H.; Tang, S.; Li, Y.; Yu, X.-F.; Wang, H.; Li, P.; Sun, Z.; Zhang, H.; Liu, C.; Chu, P. K. Small Gold Nanorods Laden Macrophages for Enhanced Tumor Coverage in Photothermal Therapy. Biomaterials 2016, 74, 144–154.
[18] Zheng, C.; Zhu, H.; Xu, Z.; Sinha, R. K.; Li, Q.; Ghosh, P. High-Efficient Photoacoustic Generation with an Ultrathin Metallic Multilayer Broadband Absorber. Opt. Express 2021, 29, 8490–8497.
[19] Zhang, Z.; Wang, L.; Wang, J.; Jiang, X.; Li, X.; Hu, Z.; Ji, Y.; Wu, X.; Chen, C. Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Adv. Mater. 2012, 24, 1418–1423.
[20] Ding, D.; Xu, Y.; Zou, Y.; Chen, L.; Chen, Z.; Tan, W. Graphitic Nanocapsules: Design, Synthesis and Bioanalytical Applications. Nanoscale 2017, 9, 10529–10543.
[21] Qin, Z.; Bischof, J. C. Thermophysical and Biological Responses of Gold Nanoparticle Laser Heating. Chem. Soc. Rev. 2012, 41, 1191–1217.
[22] Cui, X.; Cheng, W.; Han, X. Lipid Bilayer Modified Gold Nanorod@Mesoporous Silica Nanoparticles for Controlled Drug Delivery Triggered by Near-Infrared Light. J. Mater. Chem. B 2018, 6, 8078–8084.
[23] Liu, J.; Liang, H.; Li, M.; Luo, Z.; Zhang, J.; Guo, X.; Cai, K. Tumor Acidity Activating Multifunctional Nanoplatform for NIR-Mediated Multiple Enhanced Photodynamic and Photothermal Tumor Therapy. Biomaterials 2018, 157, 107–124.
[24] Shan, C.; Huang, Y.; Wei, J.; Chen, M.; Wu, L. Ultra-High Thermally Stable Gold Nanorods/Radial Mesoporous Silica and Their Application in Enhanced Chemo-Photothermal Therapy. RSC Adv. 2021, 11, 10416–10424.
[25] Peleg, M.; Normand, M. D.; Corradini, M. G. The Arrhenius Equation Revisited. Crit. Rev. Food Sci. Nutr. 2012, 52, 830–851.
[26] Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L.-D.; Li, Q.; Wang, J.; Yu, J. C.; Yan, C.-H. Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601.
[27] Fasciani, C.; Alejo, C. J. B.; Grenier, M.; Netto-Ferreira, J. C.; Scaiano, J. C. High-Temperature Organic Reactions at Room Temperature Using Plasmon Excitation: Decomposition of Dicumyl Peroxide. Org. Lett. 2011, 13, 204–207.
[28] Adleman, J. R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D. Heterogenous Catalysis Mediated by Plasmon Heating. Nano Lett. 2009, 9, 4417–4423.
[29] Alper, J.; Hamad-Schifferli, K. Effect of Ligands on Thermal Dissipation from Gold Nanorods. Langmuir 2010, 26, 3786–3789.
[30] Schmidt, A. J.; Alper, J. D.; Chiesa, M.; Chen, G.; Das, S. K.; Hamad-Schifferli, K. Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay. J. Phys. Chem. C 2008, 112, 13320–13323.
[31] Polavarapu, L.; Xu, Q.-H. A Simple Method for Large Scale Synthesis of Highly Monodisperse Gold Nanoparticles at Room Temperature and Their Electron Relaxation Properties. Nanotechnology 2009, 20, 185606.
[32] Mohamed, M. B.; Ahmadi, T. S.; Link, S.; Braun, M.; El-Sayed, M. A. Hot Electron and Phonon Dynamics of Gold Nanoparticles Embedded in a Gel Matrix. Chem. Phys. Lett. 2001, 343, 55–63.
[33] Hu, M.; Wang, X.; Hartland, G. V.; Salgueiriño-Maceira, V.; Liz-Marzán, L. M. Heat Dissipation in Gold-Silica Core-Shell Nanoparticles. Chem. Phys. Lett. 2003, 372, 767–772.
[34] Link, S.; Furube, A.; Mohamed, M. B.; Asahi, T.; Masuhara, H.; El-Sayed, M. A. Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared to Solution:  The Effect of the Surrounding Medium. J. Phys. Chem. B 2002, 106, 945–955.
[35] Link, S.; Hathcock, D. J.; Nikoobakht, B.; El-Sayed, M. A. Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra. Adv. Mater. 2003, 15, 393–396.
[36] Halté, V.; Bigot, J. Y.; Palpant, B.; Broyer, M.; Prével, B.; Pérez, A. Size Dependence of the Energy Relaxation in Silver Nanoparticles Embedded in Dielectric Matrices. Appl. Phys. Lett. 1999, 75, 3799–3801.
[37] Manzano, M.; Vallet-Regí, M. Ultrasound Responsive Mesoporous Silica Nanoparticles for Biomedical Applications. Chem. Commun. 2019, 55, 2731–2740.
[38] Wang, X.; He, B.; Hu, Z.; Zeng, Z.; Han, S. Current Advances in Precious Metal Core-Shell Catalyst Design. Adv. Mater. Technol. 2014, 15, 043502.
[39] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.; Weller, H.; Alivisatos, A. P. Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy. ACS Nano 2016, 10, 2144–2151.
[40] Guo, S.-S.; Chu, L.-K. Radiative Cooling of Surface-Modified Gold Nanorods upon Pulsed Infrared Photoexcitation. J. Phys. Chem. Lett. 2018, 9, 5110–5115.
第二章
[1] Cao, J.; Sun, T.; Grattan, K. T. V. Gold Nanorod-Based Localized Surface PlasmonResonance Biosensors: A Review. Sens. Actuators B Chem. 2014, 195, 332–351.
[2] Eustis, S.; El-Sayed, M. A. Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chem. Soc. Rev. 2006, 35, 209–217.
[3] Petryayeva, E.; Krull, U. J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing: A Review. Anal. Chim. Acta 2011, 706, 8–24.
[4] Ghosh, S. K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862.
[5] Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.
[6] Hutter, E.; Fendler, J. H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706.
[7] Link, S.; El-Sayed, M. A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453.
[8] Mayer, K. M.; Hafner, J. H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857.
[9] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677.
[10] Bonacic-Koutecky, V.; Fantucci, P.; Koutecky, J. Quantum Chemistry of Small Clusters of Elements of Groups IA, IB, and IIA: Fundamental Concepts, Predictions, and Interpretation of Experiments. Chem. Rev. 1991, 91, 1035–1108.
[11] Charlé, K. P.; Frank, F.; Schulze, W. The Optical Properties of Silver Microcrystallites in Dependence on Size and the Influence of the Matrix Environment. Ber. Bunsen. Phys. Chem. 1984, 88, 350–354.
[12] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; García de Abajo, F. J. Modelling the Optical Response of Gold Nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805.
[13] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.
[14] Ekici, O.; Harrison, R. K.; Durr, N. J.; Eversole, D. S.; Lee, M.; Ben-Yakar, A. Thermal Analysis of Gold Nanorods Heated with Femtosecond Laser Pulses. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[15] Webb, J. A.; Bardhan, R. Emerging Advances in Nanomedicine with Engineered Gold Nanostructures. Nanoscale 2014, 6, 2502–2530.
[16] Chen, X.; Chen, Y.; Yan, M.; Qiu, M. Nanosecond Photothermal Effects in Plasmonic Nanostructures. ACS Nano 2012, 6, 2550–2557.
[17] Hartland, G. V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887.
[18] Qiu, J.; Wei, W. D. Surface Plasmon-Mediated Photothermal Chemistry. J. Phys. Chem. C 2014, 118, 20735–20749.
[19] Tang, H.; Chen, C.-J.; Huang, Z.; Bright, J.; Meng, G.; Liu, R.-S.; Wu, N. Plasmonic Hot Electrons for Sensing, Photodetection, and Solar Energy Applications: A Perspective. J. Chem. Phys. 2020, 152, 220901.
[20] Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M. A. Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses. J. Phys. Chem. B 2000, 104, 6152–6163.
[21] Halté, V.; Bigot, J. Y.; Palpant, B.; Broyer, M.; Prével, B.; Pérez, A. Size Dependence of the Energy Relaxation in Silver Nanoparticles Embedded in Dielectric Matrices. Appl. Phys. Lett. 1999, 75, 3799–3801.
[22] Schmidt, A. J.; Alper, J. D.; Chiesa, M.; Chen, G.; Das, S. K.; Hamad-Schifferli, K. Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay. J. Phys. Chem. C 2008, 112, 13320–13323.
[23] Link, S.; Furube, A.; Mohamed, M. B.; Asahi, T.; Masuhara, H.; El-Sayed, M. A. Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared to Solution:  The Effect of the Surrounding Medium. J. Phys. Chem. B 2002, 106, 945–955.
[24] Eesley, G. L. Observation of Nonequilibrium Electron Heating in Copper. Phys. Rev. Lett. 1983, 51, 2140–2143.
[25] Brorson, S. D.; Fujimoto, J. G.; Ippen, E. P. Femtosecond Electronic Heat-Transport Dynamics in Thin Gold Films. Phys. Rev. Lett. 1987, 59, 1962–1965.
[26] Mohamed, M. B.; Ahmadi, T. S.; Link, S.; Braun, M.; El-Sayed, M. A. Hot Electron and Phonon Dynamics of Gold Nanoparticles Embedded in a Gel Matrix. Chem. Phys. Lett. 2001, 343, 55–63.
[27] Link, S.; Hathcock, D. J.; Nikoobakht, B.; El-Sayed, M. A. Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra. Adv. Mater. 2003, 15, 393–396.
[28] Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallée, F.; Prével, B.; Cottancin, E.; Lermé, J.; Pellarin, M.; Broyer, M. Size-Dependent Electron-Electron Interactions in Metal Nanoparticles. Phys. Rev. Lett. 2000, 85, 2200–2203.
[29] Arbouet, A.; Voisin, C.; Christofilos, D.; Langot, P.; Fatti, N. D.; Vallée, F.; Lermé, J.; Celep, G.; Cottancin, E.; Gaudry, M.; Pellarin, M.; Broyer, M.; Maillard, M.; Pileni, M. P.; Treguer, M. Electron-Phonon Scattering in Metal Clusters. Phys. Rev. Lett. 2003, 90, 177401.
[30] Tokizaki, T.; Nakamura, A.; Kaneko, S.; Uchida, K.; Omi, S.; Tanji, H.; Asahara, Y. Subpicosecond Time Response of Third‐Order Optical Nonlinearity of Small Copper Particles in Glass. Appl. Phys. Lett. 1994, 65, 941–943.
[31] Stella, A.; Nisoli, M.; De Silvestri, S.; Svelto, O.; Lanzani, G.; Cheyssac, P.; Kofman, R. Size Effects in the Ultrafast Electronic Dynamics of Metallic Tin Nanoparticles. Phys. Rev. B 1996, 53, 15497–15500.
[32] Darugar, Q.; Qian, W.; El-Sayed, M. A.; Pileni, M.-P. Size-Dependent Ultrafast Electronic Energy Relaxation and Enhanced Fluorescence of Copper Nanoparticles. J. Phys. Chem. B 2006, 110, 143–149.
[33] Knappenberger, K. L.; Schwartzberg, A. M.; Dowgiallo, A.-M.; Lowman, C. A. Electronic Relaxation Dynamics in Isolated and Aggregated Hollow Gold Nanospheres. J. Am. Chem. Soc. 2009, 131, 13892–13893.
[34] Huang, W.; Qian, W.; El-Sayed, M. A.; Ding, Y.; Wang, Z. L. Effect of the Lattice Crystallinity on the Electron-Phonon Relaxation Rates in Gold Nanoparticles. J. Phys. Chem. C 2007, 111, 10751–10757.
[35] Nisoli, M.; Stagira, S.; De Silvestri, S.; Stella, A.; Tognini, P.; Cheyssac, P.; Kofman, R. Ultrafast Electronic Dynamics in Solid and Liquid Gallium Nanoparticles. Phys. Rev. Lett. 1997, 78, 3575–3578.
[36] Link, S.; Burda, C.; Mohamed, M. B.; Nikoobakht, B.; El-Sayed, M. A. Femtosecond Transient-Absorption Dynamics of Colloidal Gold Nanorods: Shape Independence of the Electron-Phonon Relaxation Time. Phys. Rev. B 2000, 61, 6086–6090.
[37] Wang, S.; Fu, L.; Zhang, Y.; Wang, J.; Zhang, Z. Quantitative Evaluation and Optimization of Photothermal Bubble Generation around Overheated Nanoparticles Excited by Pulsed Lasers. J. Phys. Chem. C 2018, 122, 24421–24435.
[38] Liu, J.-L.; Yang, Y.-T.; Lin, C.-T.; Yu, Y.-J.; Chen, J.-K.; Chu, L.-K. Monitoring the Transient Thermal Infrared Emission of Gold Nanoparticles upon Photoexcitation with a Step-Scan Fourier-Transform Spectrometer. J. Phys. Chem. C 2017, 121, 878–885.
[39] Alex, T. L.; Farouk, N.; Michael, M.; Turkay, K.; Gultekin, G. In Monitoring Gold Nanoparticle Distribution with High Resolution Using Photo-Magnetic Imaging, Proc. SPIE, 2016.
[40] Jiang, K.; Smith, D. A.; Pinchuk, A. Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles. J. Phys. Chem. C 2013, 117, 27073–27080.
[41] Gally, J. A.; Edelman, G. M. The Effect of Temperature on the Fluorescence of Some Aromatic Amino Acids and Proteins. Biochim. Biophys. Acta 1962, 60, 499–509.
[42] Chiu, M.-J.; Chu, L.-K. Quantifying the Photothermal Efficiency of Gold Nanoparticles Using Tryptophan as an in Situ Fluorescent Thermometer. Phys. Chem. Chem. Phys. 2015, 17, 17090–17100.
[43] Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K. Spatially and Temporally-Resolved Tryptophan Fluorescence Thermometry for Monitoring the Photothermal Processes of Gold Nanorod Suspensions. Sens. Actuators B Chem. 2018, 255, 1285–1290.
[44] Chen, Y.-S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers. Nano Lett. 2011, 11, 348–354.
[45] Kumar, D.; Soni, R. K.; Ghai, D. P. Pulsed Photoacoustic and Photothermal Response of Gold Nanoparticles. Nanotechnology 2019, 31, 035704.
[46] Maksimova, I. L.; Akchurin, G. G.; Khlebtsov, B. N.; Terentyuk, G. S.; Akchurin, G. G.; Ermolaev, I. A.; Skaptsov, A. A.; Soboleva, E. P.; Khlebtsov, N. G.; Tuchin, V. V. Near-Infrared Laser Photothermal Therapy of Cancer by Using Gold Nanoparticles: Computer Simulations and Experiment. Med. Laser Appl. 2007, 22, 199–206.
[47] Georgy Sergeevich, T.; Galina, N. M.; Leyla, V. S.; Nikolay Grigorievich, K.; Boris Nokolaevich, K.; Garif Gazizovich, A.; Irina Leonidovna, M.; Valery, V. T. Laser-Induced Tissue Hyperthermia Mediated by Gold Nanoparticles: Toward Cancer Phototherapy. J. Biomed. Opt. 2009, 14, 1–9.
[48] Polavarapu, L.; Xu, Q.-H. A Simple Method for Large Scale Synthesis of Highly Monodisperse Gold Nanoparticles at Room Temperature and Their Electron Relaxation Properties. Nanotechnology 2009, 20, 185606.
[49] Hu, M.; Hartland, G. V. Heat Dissipation for Au Particles in Aqueous Solution:  Relaxation Time Versus Size. J. Phys. Chem. B 2002, 106, 7029–7033.
[50] Cahill, D. G. Thermal Conductivity Measurement from 30 to 750 K: The 3ω Method. Rev. Sci. Instrum. 1990, 61, 802–808.
[51] Coquil, T.; Richman, E. K.; Hutchinson, N. J.; Tolbert, S. H.; Pilon, L. Thermal Conductivity of Cubic and Hexagonal Mesoporous Silica Thin Films. J. Appl. Phys. 2009, 106, 034910.
[52] Shenogin, S.; Bodapati, A.; Keblinski, P.; McGaughey, A. J. H. Predicting the Thermal Conductivity of Inorganic and Polymeric Glasses: The Role of Anharmonicity. J. Appl. Phys. 2009, 105, 034906.
[53] Kittel, C. Interpretation of the Thermal Conductivity of Glasses. Phys. Rev. 1949, 75, 972–974.
[54] Coquil, T.; Fang, J.; Pilon, L. Molecular Dynamics Study of the Thermal Conductivity of Amorphous Nanoporous Silica. Int. J. Heat Mass Transf. 2011, 54, 4540–4548.
[55] Zhu, W.; Zheng, G.; Cao, S.; He, H. Thermal Conductivity of Amorphous SiO2 Thin Film: A Molecular Dynamics Study. Sci. Rep. 2018, 8, 10537–10537.
[56] Tsui, B.-Y.; Yang, C.-C.; Fang, K.-L. Anisotropic Thermal Conductivity of Nanoporous Silica Film. IEEE Trans. Electron Devices 2004, 51, 20–27.
[57] Cao, S.; He, H.; Zhu, W. Defect Induced Phonon Scattering for Tuning the Lattice Thermal Conductivity of SiO2 Thin Films. AIP Adv. 2017, 7, 015038.
[58] Hu, C.; Morgen, M.; Ho, P. S.; Jain, A.; Gill, W. N.; Plawsky, J. L.; Wayner, P. C. Thermal Conductivity Study of Porous Low-K Dielectric Materials. Appl. Phys. Lett. 2000, 77, 145–147.
[59] Choi, S. G.; Ha, T.-J.; Yu, B.-G.; Jaung, S. P.; Kwon, O.; Park, H.-H. Improvement of Uncooled Infrared Imaging Detector by Using Mesoporous Silica as a Thermal Isolation Layer. Ceram. Int. 2008, 34, 833–836.
[60] Delan, A.; Rennau, M.; Schulz, S. E.; Gessner, T. Thermal Conductivity of Ultra Low-K Dielectrics. Microelectron. Eng. 2003, 70, 280–284.
[61] 3 ω meaurement technique. Linseis.
https://www.linseis.com/en/methods/3-omega-method/
(accessed on 2021/07/10)
第三章
[1] Faust, B. Modern Chemical Techniques: An Essential Reference for Students and Teachers. Royal Society of Chemistry, 1997, 92–115.
[2] Harvey, D. Modern Analytical Chemistry. McGraw-Hill, 2000, 382.
[3] Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for Photothermal Therapies. Nanoscale 2014, 6, 9494–9530.
[4] 羅聖全 科學基礎研究之重要利器 掃瞄式電子顯微鏡. 科學研習 2013, 52, 1–4.
[5] 陳建淼; 洪連輝 穿透式電子顯微鏡. 科學Online科技部高瞻自然科學教學資源平台, 2009.
[6] Egerton, R. F., Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, Springer, 2016.
[7] NanoFASE, TEM Transmission Electron Microscopy.
[8] 林昆霖 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡. 奈米通訊 Nano communication 2003, 20, 34–38.
[9] Kundu, S., Synthesis and Characterizations of Some Nanocrystalline Metal Oxide Semiconductors and Composites with Different Morphologies, The University of Burdwan, 2019.
[10] 楊家銘 科儀新知第二十六卷第六期. 2005. 6.
[11] Nishi, Y.; Inagaki, M., Chapter 11 Gas Adsorption/Desorption Isotherm for Pore Structure Characterization. Mater. Charact. 2016, 227–247.
[12] P. A. Webb., C. Orr, Analytical Methods in Fine Particle Technology, Norcross: Micromeritics, 1997. 53.
[13] Fellgett, P.B. les principes généraux des méthodes nouvelles en spectroscopie interférentielle. A propos de la théorie du spectromètre interférentiel multiplex. J. Phys. Radium. 1958, 19, 187–191.
[14] Jacquinot, P. The Luminosity of Spectrometers with Prisms, Gratings, or Fabry-Perot Etalons. J. Opt. Soc. Am. 1954, 44, 761–765.
[15] Jacquinot, P. New Developments in Interference Spectroscopy. Rep. Prog. Phys. 1960, 23, 267.
[16] Connes, J.; Connes, P. Near-Infrared Planetary Spectra by Fourier Spectroscopy. I. Instruments and Results. J. Opt. Soc. Am. 1966, 56, 896–910.
[17] Mertz, L. Transformations in Optics, 1965 Wiley.
[18] Mertz, L. Auxiliary Computation for Fourier Spectrometry. Infrared Phys. 1967, 7, 17–23.
[19] Geerts, Y.; Steyaert, M.; Sansen, W. M. C. Design of Multi-Bit Delta-Sigma A/D Converters; Springer Science & Business Media, 2002.
[20] Vigderman, L.; Zubarev, E. R. High-Yield Synthesis of Gold Nanorods with Longitudinal SPR Peak Greater Than 1200 nm Using Hydroquinone as a Reducing Agent. Chem. Mater. 2013, 25, 1450–1457.
[21] Yu, C.; Tian, B.; Liu, X.; Fan, J.; Yang, H.; Zhao, D. Y., Advances in Mesoporous Materials Templated by Nonionic Block Copolymers. Sci. Eng. 2004, 4, 14–46.
[22] Huang, W.-C.; Lai, N.-C.; Chang, L.-L.; Yang, C.-M. Mercaptopropyl-Functionalized Helical Mesoporous Silica Nanoparticles with C2mm Symmetry: Cocondensation Synthesis and Structural Transformation in the Dilute Solution of Mixed Cationic and Nonionic Surfactants. Microporous and Mesoporous Mater. 2012, 151, 411–417.
[23] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.; Weller, H.; Alivisatos, A. P. Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy. ACS Nano 2016, 10, 2144–2151.
[24] Lang, N.; Tuel, A. A Fast and Efficient Ion-Exchange Procedure to Remove Surfactant Molecules from MCM–41 Materials. Chem. Mater. 2004, 16, 1961–1966.
[25] Ongari, D.; Boyd, P. G.; Barthel, S.; Witman, M.; Haranczyk, M.; Smit, B. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials. Langmuir 2017, 33, 14529–14538.
第四章
[1] Brioude, A.; Jiang, X. C.; Pileni, M. P. Optical Properties of Gold Nanorods:  DDA Simulations Supported by Experiments. J. Phys. Chem. B 2005, 109, 13138–13142.
[2] Link, S.; Mohamed, M. B.; El-Sayed, M. A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. J. Phys. Chem. B 1999, 103, 3073–3077.
[3] Patrick, L.; Choyke, W. J. Static Dielectric Constant of SiC. Phys. Rev. B 1970, 2, 2255–2256.
[4] Mezza, P.; Phalippou, J.; Sempere, R. Sol-Gel Derived Porous Silica Films. J. Non-Cryst. Solids 1999, 243, 75–79.
[5] He, J.; Unser, S.; Bruzas, I.; Cary, R.; Shi, Z.; Mehra, R.; Aron, K.; Sagle, L. The Facile Removal of CTAB from the Surface of Gold Nanorods. Colloids Surf. B: Biointerfaces 2018, 163, 140–145.
[6] Weimer, D. R.; Lindemuth, L. D.; Groves, W. L. Refractive Index of Alcohol Nonionics. J. Am. Oil Chem. Soc. 1967, 44, 171–174.
[7] Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for Photothermal Therapies. Nanoscale 2014, 6, 9494–9530.
[8] González-Rubio, G.; Guerrero-Martínez, A.; Liz-Marzán, L. M. Reshaping, Fragmentation, and Assembly of Gold Nanoparticles Assisted by Pulse Lasers. Acc. Chem. Res. 2016, 49, 678–686.
[9] Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Gold Nanoparticles: Interesting Optical Properties and Recent Applications in Cancer Diagnostics and Therapy. Nanomedicine 2007, 2, 681–693.
[10] Zhao, P.; Ni, R.; Wang, K.; Hong, X.; Ding, Y.; Cong, T.; Liu, J.; Zhao, H. Dual-Mode Immunoassay Based on Shape Code and Infrared Absorption Fingerprint Signals of Silica Nanorods. Anal. Bioanal. Chem. 2017, 409, 4207–4213.
[11] Asay, D. B.; Kim, S. H. Evolution of the Adsorbed Water Layer Structure on Silicon Oxide at Room Temperature. J. Phys. Chem. B 2005, 109, 16760–16763.
[12] Ewing, G. E. Thin Film Water. J. Phys. Chem. B 2004, 108, 15953–15961.
[13] Klarenaar, B. L. M.; Engeln, R.; van den Bekerom, D. C. M.; van de Sanden, M. C. M.; Morillo-Candas, A. S.; Guaitella, O. Time Evolution of Vibrational Temperatures in a CO2 glow Discharge Measured with Infrared Absorption Spectroscopy. Plasma Sources Sci. Technol. 2017, 26, 115008.
[14] Baumgartner, B.; Hayden, J.; Loizillon, J.; Steinbacher, S.; Grosso, D.; Lendl, B. Pore Size-Dependent Structure of Confined Water in Mesoporous Silica Films from Water Adsorption/Desorption Using ATR-FTIR Spectroscopy. Langmuir 2019, 35, 11986–11994.
[15] Yamashita, K.; Daiguji, H. Molecular Simulations of Water Adsorbed on Mesoporous Silica Thin Films. J. Phys. Chem. C 2013, 117, 2084–2095.
[16] Abe, J.; Hirano, N.; Tsuchiya, N. Infrared Spectroscopic Study of Water in Mesoporous Silica under Supercritical Conditions. J. Mater. Sci. 2012, 47, 7971–7977.
[17] Ekici, O.; Harrison, R. K.; Durr, N. J.; Eversole, D. S.; Lee, M.; Ben-Yakar, A. Thermal Analysis of Gold Nanorods Heated with Femtosecond Laser Pulses. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[18] Espinosa, A.; Castro, G. R.; Reguera, J.; Castellano, C.; Castillo, J.; Camarero, J.; Wilhelm, C.; García, M. A.; Muñoz-Noval, Á. Photoactivated Nanoscale Temperature Gradient Detection Using X-Ray Absorption Spectroscopy as a Direct Nanothermometry Method. Nano Lett. 2021, 21, 769–777.
[19] Maity, S.; Wu, W.-C.; Tracy, J. B.; Clarke, L. I.; Bochinski, J. R. Nanoscale Steady-State Temperature Gradients within Polymer Nanocomposites Undergoing Continuous-Wave Photothermal Heating from Gold Nanorods. Nanoscale 2017, 9, 11605–11618.
[20] Mohamed, M. B.; Ahmadi, T. S.; Link, S.; Braun, M.; El-Sayed, M. A. Hot Electron and Phonon Dynamics of Gold Nanoparticles Embedded in a Gel Matrix. Chem. Phys. Lett. 2001, 343, 55–63.
[21] Polavarapu, L.; Xu, Q.-H. A Simple Method for Large Scale Synthesis of Highly Monodisperse Gold Nanoparticles at Room Temperature and Their Electron Relaxation Properties. Nanotechnology 2009, 20, 185606.
[22] Hu, M.; Wang, X.; Hartland, G. V.; Salgueiriño-Maceira, V.; Liz-Marzán, L. M. Heat Dissipation in Gold-Silica Core-Shell Nanoparticles. Chem. Phys. Lett. 2003, 372, 767–772.
[23] Link, S.; Hathcock, D. J.; Nikoobakht, B.; El-Sayed, M. A. Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra. Adv. Mater. 2003, 15, 393–396.
[24] Link, S.; Furube, A.; Mohamed, M. B.; Asahi, T.; Masuhara, H.; El-Sayed, M. A. Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared to Solution:  The Effect of the Surrounding Medium. J. Phys. Chem. B 2002, 106, 945–955.
[25] Halté, V.; Bigot, J. Y.; Palpant, B.; Broyer, M.; Prével, B.; Pérez, A. Size Dependence of the Energy Relaxation in Silver Nanoparticles Embedded in Dielectric Matrices. Appl. Phys. Lett. 1999, 75, 3799–3801.
[26] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.; Weller, H.; Alivisatos, A. P. Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy. ACS Nano 2016, 10, 2144–2151.
[27] Rajput, D.; Costa, L.; Terekhov, A.; Lansford, K.; Hofmeister, W. Silica Coating of Polymer Nanowires Produced via Nanoimprint Lithography from Femtosecond Laser Machined Templates. Nanotechnology 2012, 23, 105304.
[28] Aguiar, H.; Serra, J.; González, P.; León, B. Structural Study of Sol-Gel Silicate Glasses by IR and Raman Spectroscopies. J. Non-Cryst. Solids 2009, 355, 475–480.
[29] Chen, L.; Lu, G. Direct Electrochemistry and Electrocatalysis of Hybrid Film Assembled by Polyelectrolyte-Surfactant Polymer, Carbon Nanotubes and Hemoglobin. J. Electroanal. Chem. 2006, 597, 51–59.
[30] Lim, H.; Kassim, A.; Sharif, A.; Kuang, D.; Yarmo, A.; Edris, Z.; Ismail, R.; Ming, H. Palm-Based Lauryl Alcohol Ethoxylate Behavioural Study and Recommendations in Personal Care Applications. Malaysian J. Anal. Sci. 2008, 12.
[31] Théorêt, A.; Sandorfy, C. Infrared Spectra and Crystalline Phase Transitions of Ammonium Nitrate. Can. J. Chem. 1964, 42, 57–62.
[32] Katayama, Y.; Nattino, F.; Giordano, L.; Hwang, J.; Rao, R. R.; Andreussi, O.; Marzari, N.; Shao-Horn, Y. An in Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates. J. Phys. Chem. C 2019, 123, 5951–5963.
[33] Stephan, K.; Laesecke, A. The Thermal Conductivity of Fluid Air. J. Phys. Chem. Ref. Data 1985, 14, 227–234.
[34] Hori, K.; Higuchi, T.; Aoki, Y.; Miyamoto, M.; Oumi, Y.; Yogo, K.; Uemiya, S. Effect of Pore Size, Aminosilane Density and Aminosilane Molecular Length on CO2 Adsorption Performance in Aminosilane Modified Mesoporous Silica. Microporous and Mesoporous Mater. 2017, 246, 158–165.
[35] Buongiorno, J.; Venerus, D. C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y. V.; Keblinski, P.; Hu, L.-w.; Alvarado, J. L.; Bang, I. C.; Bishnoi, S. W.; Bonetti, M.; Botz, F.; Cecere, A.; Chang, Y.; Chen, G.; Chen, H.; Chung, S. J.; Chyu, M. K.; Das, S. K.; Di Paola, R.; Ding, Y.; Dubois, F.; Dzido, G.; Eapen, J.; Escher, W.; Funfschilling, D.; Galand, Q.; Gao, J.; Gharagozloo, P. E.; Goodson, K. E.; Gutierrez, J. G.; Hong, H.; Horton, M.; Hwang, K. S.; Iorio, C. S.; Jang, S. P.; Jarzebski, A. B.; Jiang, Y.; Jin, L.; Kabelac, S.; Kamath, A.; Kedzierski, M. A.; Kieng, L. G.; Kim, C.; Kim, J.-H.; Kim, S.; Lee, S. H.; Leong, K. C.; Manna, I.; Michel, B.; Ni, R.; Patel, H. E.; Philip, J.; Poulikakos, D.; Reynaud, C.; Savino, R.; Singh, P. K.; Song, P.; Sundararajan, T.; Timofeeva, E.; Tritcak, T.; Turanov, A. N.; Van Vaerenbergh, S.; Wen, D.; Witharana, S.; Yang, C.; Yeh, W.-H.; Zhao, X.-Z.; Zhou, S.-Q. A Benchmark Study on the Thermal Conductivity of Nanofluids. J. Appl. Phys. 2009, 106, 094312.








 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 研究不同二氧化矽包覆厚度之金奈米棒經光激發後之熱傳遞過程及形貌變化
2. 以時間解析紅外放光光譜法研究不同二氧化矽厚度包覆之金奈米棒經光激發後之輻射緩解
3. 以步進式掃描傅立葉轉換紅外光譜儀研究不同表面修飾金奈米棒經光激發後之輻射冷卻過程
4. 界面活性劑對紫膜及細菌視紫質結構的影響
5. 在不同pH值下細菌視紫質光迴圈反應M態生成量子產率的激發波長相依性
6. 細菌視紫質受脈衝光源誘發之光電流動力學與環境pH值相依性
7. 嗜鹽古細菌H. marismortui之雙細菌視紫質系統的光化學反應-HmbRI與HmbRII
8. 以時間解析紅外差異吸收光譜法結合數學的相關性分析方法研究細菌視紫質光迴圈的質子傳遞過程與結構變化
9. 利用色胺酸作為螢光溫度計 定量金奈米粒子之光熱轉換效率
10. 藉由瞬態事件組合法擬合穩態現象並應用於細菌視紫質之光誘發質子幫浦反應
11. I. 奈米碟中脂質對細菌視紫質光迴圈動力學之調制 II. 截斷格點法對於量子波包動力學之應用
12. I. Xanthorhodopsin於可見光區的光迴圈效率與波長之相依性研究 II. 從動力學與熱力學觀點探討紫膜中細菌視紫質暗適應過程之溶劑同位素效應
13. 以步進式掃描傅氏轉換光譜儀 研究光激發金奈米粒子之瞬態紅外放光
14. 利用具空間及時間解析能力的螢光溫度計偵測金奈米棒溶液之光熱過程
15. 以二氧化矽包覆之金奈米棒光熱轉換作為溫度躍升法搭配共軛焦螢光系統研究牛血清白蛋白之去摺疊過程
 
* *