|
1. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958. 2. Pei, Y.; Jordan, K. E.; Xiang, N.; Parker, R. N.; Mu, X.; Zhang, L.; Feng, Z.; Chen, Y.; Li, C.; Guo, C.; Tang, K.; Kaplan, D. L., Liquid-exfoliated mesostructured collagen from the bovine achilles tendon as building blocks of collagen membranes. ACS Appl. Mater. Interfaces 2021, 13, 3186-3198. 3. Liu, X.; Zheng, C.; Luo, X.; Wang, X.; Jiang, H., Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. Mater. Sci. Eng. C 2019, 99, 1509-1522. 4. Chiang, C.-H.; Horng, J.-C., Cation−π interaction induced folding of AAB-type collagen heterotrimers. J. Phys. Chem. B 2016, 120, 1205-1211. 5. Cutini, M.; Bocus, M.; Ugliengo, P., Decoding collagen triple helix stability by means of hybrid DFT simulations. J. Phys. Chem. B 2019, 123, 7354-7364. 6. Pauling, L.; Corey, R. B., The Structure of fibrous proteins of the collagen-gelatin group. Proc. Natl. Acad. Sci. U.S.A. 1951, 37, 272-281. 7. Ramachandran, G. N.; Kartha, G., Structure of collagen. Nature 1955, 176, 593-595. 8. Ramachandran, G. N.; Kartha, G., Structure of collagen. Nature 1954, 174, 269-270. 9. Rich, A.; Crick, F. H. C., The molecular structure of collagen. J. Mol. Biol. 1961, 3, 483-IN4. 10. Okuyama, K.; Xu, X.; Iguchi, M.; Noguchi, K., Revision of collagen molecular structure. J. Pept. Sci. 2006, 84, 181-191. 11. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M., Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 1994, 266, 75-81. 12. Okuyama, K.; Nagarajan, V.; Kamitori, S., 7/2-Helical model for collagen - Evidence from model peptides. Proc. Indian Acad. Sci. Chem. Sci. 1999, 111, 19-34. 13. Ward, L. M.; Lalic, L.; Roughley, P. J.; Glorieux, F. H., Thirty-three novel COL1A1 and COL1A2 mutations in patients with osteogenesis imperfecta types I-IV. Hum. Mutat. 2001, 17, 434-434. 14. Lin, Z.; Zeng, J.; Wang, X., Compound phenotype of osteogenesis imperfecta and Ehlers-Danlos syndrome caused by combined mutations in COL1A1 and COL5A1. Biosci. Rep. 2019, 39, BSR20181409. 15. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554. 16. Hinderaker, M. P.; Raines, R. T., An electronic effect on protein structure. Protein Sci. 2003, 12, 1188-1194. 17. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19-25. 18. Pinheiro, S.; Soteras, I.; Gelpí, J. L.; Dehez, F.; Chipot, C.; Luque, F. J.; Curutchet, C., Structural and energetic study of cation–π interactions in proteins. Phys. Chem. Chem. Phys. 2017, 19, 9849-9861. 19. Ma, J. C.; Dougherty, D. A., The cation−π interaction. Chem. Rev. 1997, 97, 1303-1324. 20. Mahadevi, A. S.; Sastry, G. N., Cation−π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 2013, 113, 2100-2138. 21. Rao, J. S.; Zipse, H.; Sastry, G. N., Explicit solvent effect on cation−π interactions: A first principle investigation. J. Phys. Chem. B 2009, 113 22. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation−π interactions in simple aromatics: Electrostatics provide a predictive tool. J. Am. Chem. Soc. 1996, 118, 2307-2308. 23. Dougherty, D. A., Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-168. 24. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566-10571. 25. Burley, S. K.; Petsko, G. A., Amino-aromatic interactions in proteins. FEBS Lett. 1986, 203, 139-143. 26. Mitchell, J. B. O.; Nandi, C. L.; Ali, S.; McDonald, I. K.; Thornton, J. M.; Price, S. L.; Singh, J., Amino/aromatic interactions. Nature 1993, 366, 413-413. 27. Chen, C.-C.; Hsu, W.; Hwang, K.-C.; Hwu, J. R.; Lin, C.-C.; Horng, J.-C., Contributions of cation–π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53. 28. Chen, C.-C.; Hsu, W.; Kao, T.-C.; Horng, J.-C., Self-assembly of short collagen-related peptides into fibrils via cation−π interactions. Biochemistry 2011, 50, 2381-2383. 29. Gauba, V.; Hartgerink, J. D., Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 2007, 129, 2683-2690. 30. Gauba, V.; Hartgerink, J. D., Surprisingly high stability of collagen ABC heterotrimer: Evaluation of side chain charge pairs. J. Am. Chem. Soc. 2007, 129, 15034-15041. 31. Chiang, C.-H.; Fu, Y.-H.; Horng, J.-C., Formation of AAB-type collagen heterotrimers from designed cationic and aromatic collagen-mimetic peptides: Evaluation of the C-terminal cation−π interactions. Biomacromolecules 2017, 18, 985-993. 32. Chen, Y.-S.; Chen, C.-C.; Horng, J.-C., Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Biopolymers 2011, 96, 60-68. 33. 姚子柔. 碩士論文. 國立清華大學, 2019. 34. 林佑承. 碩士論文. 國立清華大學, 2020. 35. Zheng, H.; Lu, C.; Lan, J.; Fan, S.; Nanda, V.; Xu, F., How electrostatic networks modulate specificity and stability of collagen. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 6207-6212. 36. Tanrikulu, I. C.; Raines, R. T., Optimal interstrand bridges for collagen-like biomaterials. J. Am. Chem. Soc. 2014, 136, 13490-13493. 37. Tanrikulu, I. C.; Westler, W. M.; Ellison, A. J.; Markley, J. L.; Raines, R. T., Templated collagen “double helices” maintain their structure. J. Am. Chem. Soc. 2020, 142, 1137-1141. 38. Brinckmann, J., Collagens at a Glance. In Collagen: Primer in Structure, Processing and Assembly, Brinckmann, J.; Notbohm, H.; Müller, P. K., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp 1-6. 39. Bonnans, C.; Chou, J.; Werb, Z., Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786-801. 40. Page-McCaw, A.; Ewald, A. J.; Werb, Z., Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007, 8, 221-233. 41. Wahyudi, H.; Reynolds, A. A.; Li, Y.; Owen, S. C.; Yu, S. M., Targeting collagen for diagnostic imaging and therapeutic delivery. J. Control. Release 2016, 240, 323-331. 42. Kessler, J. L.; Li, Y.; Fornetti, J.; Welm, A. L.; Yu, S. M., Enrichment of collagen fragments using dimeric collagen hybridizing peptide for urinary collagenomics. J. Proteome Res. 2020, 19, 2926-2932. 43. Hwang, J.; Huang, Y.; Burwell, T. J.; Peterson, N. C.; Connor, J.; Weiss, S. J.; Yu, S. M.; Li, Y., In situ imaging of tissue remodeling with collagen hybridizing peptides. ACS Nano 2017, 11, 9825-9835. 44. Li, Y.; Yu, S. M., Targeting and mimicking collagens via triple helical peptide assembly. Curr. Opin. Chem. Biol. 2013, 17, 968-975. 45. Li, Y.; Foss, C. A.; Summerfield, D. D.; Doyle, J. J.; Torok, C. M.; Dietz, H. C.; Pomper, M. G.; Yu, S. M., Targeting collagen strands by photo-triggered triple-helix hybridization. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 14767-14772. 46. Takita, K. K.; Fujii, K. K.; Kadonosono, T.; Masuda, R.; Koide, T., Cyclic peptides for efficient detection of collagen. ChemBioChem 2018, 19, 1613-1617. 47. https://www.newton.com.tw/wiki/HATU/535970. (accessed on 2021/07/09) 48. Santos, A.; Sugon Jr, Q.; McNamara, D., Polarization ellipse and Stokes parameters in geometric algebra. J Opt Soc Am A Opt Image Sci Vis. 2012, 29, 89-98. 49. Marion, D., An Introduction to biological NMR spectroscopy. Mol. Cell. Proteom. 2013, 12, 3006-3025. 50. Gill, P.; Moghadam, T. T.; Ranjbar, B., Differential scanning calorimetry techniques: applications in biology and nanoscience. J. Biomol. Tech. 2010, 21, 167-193.
|