|
1. Krauss, G., Basics of Cell Signaling. In Biochemistry of Signal Transduction and Regulation., 5th Edition ed.; WILEY-VCH Verlag GmbH & Co.: 2014; pp 978-3. 2. Heldin, C.-H., Signal Transduction: Multiple Pathways, Multiple Options for Therapy. Stem cells 2001, 19 (4), 295-303. 3. van der Geer, P., Signal Transduction. In Brenner's Encyclopedia of Genetics (Second Edition), Maloy, S.; Hughes, K., Eds. Academic Press: San Diego, 2013; pp 436-439. 4. Berridge, M. J.; Irvine, R. F., Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984, 312 (5992), 315-321. 5. Kodis, E. J., et al., First Messengers. eLS: 2012. 6. Clark, E.; Brugge, J., Integrins and signal transduction pathways: the road taken. Science 1995, 268 (5208), 233-239. 7. Yaneeporn Signal Transduction Pathways Model. https://commons.wikimedia.org/wiki/File:1Signal_Transduction_Pathways_Model.svg. 8. Alberts, B., Molecular biology of the cell. Garland science: 2008. 9. Thingholm, T. E.; Rönnstrand, L.; Rosenberg, P. A., Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell. Mol. Life Sci. 2020, 77 (16), 3085-3102. 10. Fukami, Y.; Lipmann, F., Reversal of Rous sarcoma-specific immunoglobulin phosphorylation on tyrosine (ADP as phosphate acceptor) catalyzed by the src gene kinase. Proc. Natl. Acad. Sci. U.S.A. 1983, 80 (7), 1872-1876. 11. Kole, H.; Abdel-Ghany, M.; Racker, E., Specific dephosphorylation of phosphoproteins by protein-serine and-tyrosine kinases. Proc. Natl. Acad. Sci. U.S.A. 1988, 85 (16), 5849-5853. 12. Graves, J. D.; Krebs, E. G., Protein phosphorylation and signal transduction. Pharmacol. Ther. 1999, 82 (2-3), 111-121. 13. McCance, K. L.; Huether, S. E., Pathophysiology-E-book: the biologic basis for disease in adults and children. Elsevier Health Sciences: 2018. 14. Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L., The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40 (2), 271-280. 15. Cohen, P., The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem. Sci. 2000, 25 (12), 596-601. 16. Heinrich, R.; Neel, B. G.; Rapoport, T. A., Mathematical models of protein kinase signal transduction. Mol. Cell 2002, 9 (5), 957-970. 17. Liebl, M. C.; Hofmann, T. G., Cell Fate Regulation upon DNA Damage: p53 Serine 46 Kinases Pave the Cell Death Road. BioEssays 2019, 41 (12), 1900127. 18. Ohtsubo, K.; Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126 (5), 855-67. 19. Lowe, J. B.; Marth, J. D., A Genetic Approach to Mammalian Glycan Function. Annu. Rev. Biochem. 2003, 72 (1), 643-691. 20. Lawson, C. A.; Martin, D. R., Animal models of GM2 gangliosidosis: utility and limitations. Appl. Clin. Genet. 2016, 9, 111. 21. Donohue Jr, T. M.; Osna, N. A., Intracellular proteolytic systems in alcohol-induced tissue injury. Alcohol Res Health 2003, 27 (4), 317. 22. Ye, Y.; Fortini, M. E. In Proteolysis and developmental signal transduction, Semin. Cell Dev. Biol., Elsevier: 2000; pp 211-221. 23. Jenal, U.; Hengge-Aronis, R., Regulation by proteolysis in bacterial cells. Curr. Opin. Microbiol. 2003, 6 (2), 163-172. 24. Malik, I. T.; Brötz-Oesterhelt, H., Conformational control of the bacterial Clp protease by natural product antibiotics. Nat. Prod. Rep. 2017, 34 (7), 815-831. 25. Ehrmann, M.; Clausen, T., Proteolysis as a Regulatory Mechanism. Annu. Rev. Genet. 2004, 38 (1), 709-724. 26. Brown, M. S.; Ye, J.; Rawson, R. B.; Goldstein, J. L., Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 2000, 100 (4), 391-398. 27. Jorissen, E.; De Strooper, B., γ-Secretase and the intramembrane proteolysis of Notch. Curr. Top. Dev. Biol. 2010, 92, 201-230. 28. Lichtenthaler, S. F.; Lemberg, M. K.; Fluhrer, R., Proteolytic ectodomain shedding of membrane proteins in mammals—hardware, concepts, and recent developments. EMBO J. 2018, 37 (15), e99456. 29. Müller, S. A.; Scilabra, S. D.; Lichtenthaler, S. F., Proteomic Substrate Identification for Membrane Proteases in the Brain. Front. Mol. Neurosci. 2016, 9, 96. 30. Clark, P., Protease-mediated ectodomain shedding. Thorax 2014, 69 (7), 682-684. 31. Chow, F. L.; Fernandez‐Patron, C., Many membrane proteins undergo ectodomain shedding by proteolytic cleavage. Does one sheddase do the job on all of these proteins? IUBMB Life 2007, 59 (1), 44-47. 32. Ehlers, M. R.; Riordan, J. F., Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry 1991, 30 (42), 10065-10074. 33. Reiss, K.; Saftig, P., The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: Physiological and cellular functions. Semin. Cell Dev. Biol. 2009, 20 (2), 126-137. 34. Bartsch, J. W., et al., Tumor necrosis factor-α (TNF-α) regulates shedding of TNF-α receptor 1 by the metalloprotease-disintegrin ADAM8: evidence for a protease-regulated feedback loop in neuroprotection. J. Neurosci. 2010, 30 (36), 12210-12218. 35. Monaco, C.; Nanchahal, J.; Taylor, P.; Feldmann, M., Anti-TNF therapy: past, present and future. Int. Immunol. 2015, 27 (1), 55-62. 36. Benjannet, S., et al., Post-translational processing of β-secretase (β-amyloid-converting enzyme) and its ectodomain shedding: the pro-and transmembrane/cytosolic domains affect its cellular activity and amyloid-β production. J. Biol. Chem. 2001, 276 (14), 10879-10887. 37. Ristori, E.; Donnini, S.; Ziche, M., New Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature. Front. Physiol. 2020, 11, 1056. 38. Hardy, J.; Allsop, D., Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci. 1991, 12, 383-388. 39. Migliorini, P., Immunoprecipitation. In Antibody Usage in the Lab, Caponi, L.; Migliorini, P., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; pp 47-60. 40. Lin, J.-S.; Lai, E.-M., Protein–Protein Interactions: Co-Immunoprecipitation. In Bacterial Protein Secretion Systems: Methods and Protocols, Journet, L.; Cascales, E., Eds. Springer New York: New York, NY, 2017; pp 211-219. 41. Immunoprecipitation (IP). https://rockland-inc.com/ip-method.aspx. 42. Holmström, P.; Syrjänen, S.; Laine, P.; Valle, S. L.; Suni, J., HIV antibodies in whole saliva detected by ELISA and Western blot assays. J. Med. Virol. 1990, 30 (4), 245-248. 43. Hill, A. F., et al., The same prion strain causes vCJD and BSE. Nature 1997, 389 (6650), 448-450. 44. Tian, X., et al., Hepatitis B Virus (HBV) Surface Antigen Interacts with and Promotes Cyclophilin A Secretion: Possible Link to Pathogenesis of HBV Infection. J. Virol. 2010, 84 (7), 3373-3381. 45. Kurien, B. T.; Scofield, R. H., Western blotting. Methods 2006, 38 (4), 283-293. 46. Wang, Y.; Sul, H. S., Ectodomain Shedding of Preadipocyte Factor 1 (Pref-1) by Tumor Necrosis Factor Alpha Converting Enzyme (TACE) and Inhibition of Adipocyte Differentiation. Mol. Cell. Biol. 2006, 26 (14), 5421-5435. 47. Rennie, M. J., An introduction to the use of tracers in nutrition and metabolism. Proc Nutr Soc 1999, 58 (4), 935-944. 48. Sanderson, M. P., et al., ADAM10 Mediates Ectodomain Shedding of the Betacellulin Precursor Activated by p-Aminophenylmercuric Acetate and Extracellular Calcium Influx*. J. Biol. Chem. 2005, 280 (3), 1826-1837. 49. Jia, L.-J.; Krüger, T.; Blango, M. G.; Kniemeyer, O.; Brakhage, A. A., Biotinylated Surfome Profiling Identifies Potential Biomarkers for Diagnosis and Therapy of Aspergillus fumigatus Infection. mSphere 2020, 5 (4), e00535-20. 50. Kunishima, M., et al., Convenient modular method for affinity labeling (MoAL method) based on a catalytic amidation. Chem. Commun. 2009, (37), 5597-5599. 51. Penders-van Elk, N. J. M. C.; Versteeg, G. F., 10 - Enzyme-enhanced CO2 absorption. In Absorption-Based Post-combustion Capture of Carbon Dioxide, Feron, P. H. M., Ed. Woodhead Publishing: 2016; pp 225-258. 52. Berg, J. M.; Stryer, L.; Tymoczko, J. L., Stryer Biochemie. Springer-Verlag: 2015. 53. Fu, Y., et al., Ultra-thin enzymatic liquid membrane for CO 2 separation and capture. Nat. Commun. 2018, 9 (1), 1-12. 54. Chiche, J., et al., Hypoxia-Inducible Carbonic Anhydrase IX and XII Promote Tumor Cell Growth by Counteracting Acidosis through the Regulation of the Intracellular pH. Cancer Res. 2009, 69 (1), 358-368. 55. Mboge, M. Y.; Mahon, B. P.; McKenna, R.; Frost, S. C., Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites 2018, 8 (1), 19. 56. Chiche, J., et al., Hypoxia-Inducible Carbonic Anhydrase IX and XII Promote Tumor Cell Growth by Counteracting Acidosis through the Regulation of the Intracellular pH. Cancer Res. 2009, 69 (1), 358-368. 57. Kajanova, I., et al., Impairment of carbonic anhydrase IX ectodomain cleavage reinforces tumorigenic and metastatic phenotype of cancer cells. Br. J. Cancer 2020, 122 (11), 1590-1603. 58. Zatovicova, M., et al., Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17. Br. J. Cancer 2005, 93 (11), 1267-76. 59. Kobayashi, M., et al., CAXII Is a sero-diagnostic marker for lung cancer. PLoS One 2012, 7 (3), e33952. 60. Güttler, A., et al., Cellular and radiobiological effects of carbonic anhydrase IX in human breast cancer cells. Oncol. Rep. 2019, 41 (4), 2585-2594. 61. Bleibaum, F., et al., ADAM10 sheddase activation is controlled by cell membrane asymmetry. J. Mol. Cell Biol 2019, 11 (11), 979-993. 62. Herzog, C.; Haun, R. S.; Ludwig, A.; Shah, S. V.; Kaushal, G. P., ADAM10 is the major sheddase responsible for the release of membrane-associated meprin A. J. Biol. Chem. 2014, 289 (19), 13308-22. 63. Moss, M. L.; Minond, D., Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediators Inflamm. 2017, 2017, 9673537. 64. Li, S., et al., Copper depletion inhibits CoCl 2-induced aggressive phenotype of MCF-7 cells via downregulation of HIF-1 and inhibition of Snail/Twist-mediated epithelial-mesenchymal transition. Sci. Rep 2015, 5 (1), 1-17
|