帳號:guest(3.148.107.229)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):倪湘婷
作者(外文):Ni, Hsiang-Ting
論文名稱(中文):皮膚代謝物採樣連接線上回萃及質譜分析法
論文名稱(外文):Sampling Skin Metabolites Followed by On-line Re-extraction and Mass Spectrometric Analysis
指導教授(中文):帕偉鄂本
指導教授(外文):Urban, Pawel L.
口試委員(中文):許馨云
杉山輝樹
口試委員(外文):Hsu, Hsin-Yun
Teruki, Sugiyama
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:108023523
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:62
中文關鍵詞:皮膚代謝物質譜分析法皮膚採樣線上分析
外文關鍵詞:skin metabolitesmass spectrometryskin samplingon-line analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
汗液分析為臨床診斷提供了一種可替代的非侵入性方法。然而,採樣並將汗液樣品轉移到分析儀器是具有一定的挑戰性。在本報告中,我們展示了一種利用扁平圓盤形採樣探針的方法,以及與萃取式電噴灑電離法 (EESI) 質譜 (MS) 在線耦合相容的二次萃取裝置。該探針可以從約 2.2 cm2 的皮膚區域採樣代謝物。隨後通過 EESI-MS 進行在線再萃取和分析進一步降低了由汗液成分引起的基質效應,從而消除了樣品製備步驟。總分析時間僅為 6 分鐘。我們對系統的關鍵參數進行了優化,包括:ESI中霧化氣體的流速、氣動樣品霧化器中的霧化氣體壓力、ESI中溶劑的流速、萃取劑的組成。標準溶液 (0.1 mL) 中添加了 0.04 M 氯化鈉以模擬汗液樣品中的基質效應。該方法進一步表徵為四種化學標準(正離子模式:組氨酸、亮氨酸、尿刊酸;負離子模式:乳酸)。檢測限範圍為 1.09 至 95.9 nmol。我們進一步從人體皮膚採樣證明了該方法對汗液分析的適用性。最後透過產物離子掃描和準確/精確質量匹配來識別一些已記錄的m/z訊號。
Sweat analysis provides an alternative and non-invasive way of clinical diagnostics. However, sampling and transferring sweat-derived samples to analytical instruments is challenging. In this report, we demonstrate a method utilizing a flat disc-shaped sampling probe, and a compatible re-extraction apparatus coupled on-line with extractive electrospray ionization (EESI) mass spectrometry (MS). The probe enables sampling of metabolites from a skin area of ~ 2.2 cm2. The subsequent on-line re-extraction and analysis by EESI-MS further mitigates matrix effects caused by sweat components, thus eliminating sample preparation steps. The total analysis time is only 6 min. We have optimized the key parameters of the system, including: flow rate of the nebulizing gas in ESI, pressure of the nebulizing gas in pneumatic sample nebulizer, flow rate of the solvent in ESI, and composition of extractant. The standard solutions (0.1 mL) were supplemented with 0.04 M sodium chloride to mimic the matrix effect in sweat samples. The methodology has further been characterized with four chemical standards (positive-ion mode: histidine, leucine, urocanic acid; negative-ion mode: lactic acid). The limits of detection range from 1.09 to 95.9 nmol. We have further demonstrated the suitability of the method for analysis of sweat. An attempt was made to identify some of the recorded signals by product-ion scan and accurate/exact mass matching.
中文摘要 i
Abstract ii
謝誌 iii
Table of Contents v
List of Tables vi
List of Figures vii
List of Acronyms x
Chapter 1: Introduction 1
1.1 Skin 1
1.1.1 Structure and function 2
1.1.2 Metabolites and metabolomics 3
1.1.3 Sweat 4
1.1.4 Biomarker in sweat 5
1.2 On-line and off-line analysis 6
1.3 Mass spectrometry 7
1.3.1 Ion source 8
1.3.2 Mass analyzer 11
1.3.3 Tandem mass spectrometry 14
1.4 Goals of the study 17
Chapter 2: Flat Disc-Shaped Sampling Probe and On-Line Re-Extraction Apparatus for Mass Spectrometric Analysis of Skin Metabolites 18
2.1 Introduction 18
2.2 Experimental section 20
2.2.1 Chemicals 20
2.2.2 Flat disc-shaped sampling probe 20
2.2.3 On-line re-extraction apparatus 22
2.2.4 Extractive electrospray ionization 23
2.2.5 Mass spectrometry 25
2.2.6 Data treatment 26
2.3 Results and discussions 27
2.3.1 Method optimization 27
2.3.2 Method characterization 30
2.3.3 Initial tests of the developed method using real specimens 32
2.3.4 Peak assignment by MS/MS with EESI-QqQ-MS and ESI-Q-ToF-MS 34
2.3.5 Final considerations 40
Chapter 3: Conclusions and Future Perspective 41
References 43
Appendix 1 62
1. Parrado, C.; Mercado-Saenz, S.; Perez-Davo, A.; Gilaberte, Y.; Gonzalez, S.; Juarranz, A. Environmental Stressors on Skin Aging. Mechanistic Insights. Front. Pharmacol. 2019, 10, 759.
2. Oltulu, P.; Ince, B.; Kokbudak, N.; Findik, S.; Kilinc, F., Measurement of Epidermis, Dermis, and Total Skin Thicknesses from Six Different Body Regions with a New Ethical Histometric Technique. Turk. J. Plast. Surg. 2018, 26, 56-61.
3. Alexander, J. O. D. Arthropods and Human Skin; Springer-Verlag: London, 1984.
4. Stamatas, G. N.; Zmudzka, B. Z.; Kollias, N.; Beer, J. Z. Non-Invasive Measurements of Skin Pigmentation in Situ. Pigment Cell Res. 2004, 17, 618-626.
5. Ghazaeian, M.; Khorsandi, K.; Hosseinzadeh, R.; Naderi, A.; Abrahamse, H. Curcumin–Silica Nanocomplex Preparation, Hemoglobin and DNA Interaction and Photocytotoxicity against Melanoma Cancer Cells. J. Biomol. Struct. Dyn. 2020, 1-11.
6. Kim, K.; Lee, Y. S.; Kim, N.; Choi, H.-D.; Kang, D.-J.; Kim, H. R.; Lim, K.-M. Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation in Vitro. Int. J. Mol. Sci. 2021, 22, 170.
7. Lefevre, C. E.; Ewbank, M. P.; Calder, A. J.; von dem Hagen, E.; Perrett, D. I. It Is All in the Face: Carotenoid Skin Coloration Loses Attractiveness Outside the Face. Biol. Lett. 2013, 9, 20130633.
8. Linares, S. N.; Beltrame, T.; Ferraresi, C.; Galdino, G. A. M.; Catai, A. M. Photobiomodulation Effect on Local Hemoglobin Concentration Assessed by Near-Infrared Spectroscopy in Humans. Lasers Med. Sci. 2020, 35, 641-649
9. Robert, L.; Labat-Robert, J.; Robert, A. M. Physiology of Skin Aging. Pathol. Biol. 2009, 57, 336-341.
10. Zhang, S.; Duan, E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplant. 2018, 27, 729-738.
11. Raju, P. V. K.; Rao, G. R.; Ramani, T. V. Skin Disease: Clinical Indicator of Immune Status in Human Immunodeficiency Virus (HIV) Infection. Int. J. Dermatol. 2005, 44, 646-649.
12. What is an inflammation? https://www.informedhealth.org/what-is-an-inflammation.html (accessed Aug 13, 2021).
13. Lupi, O.; Rezende, L.; Zangrando, M.; Sessim, M.; Silveira, C. B.; Sepulcri, M. A.; Duarte, D. J.; Cardim, P.; Fernandes, M. M.; Santos Oda, R. Cutaneous Manifestations in End-Stage Renal Disease. An. Bras. Dermatol. 2011, 86, 319-326.
14. Rigopoulos, D.; Larios, G.; Katsambas, A. Skin Signs of Systemic Diseases. Clin. Dermatol. 2011, 29, 531-540.
15. Akhtar, N.; Khan, R. A. Liposomal Systems as Viable Drug Delivery Technology for Skin Cancer Sites with an Outlook on Lipid-Based Delivery Vehicles and Diagnostic Imaging Inputs for Skin Conditions. Prog. Lipid Res. 2016, 64, 192-230.
16. Yousef, H.; Miao, J. H.; Alhajj, M.; Badri, T. Histology, Skin Appendages. In StatPearls; Publishing: Treasure Island (FL), 2021.
17. Stress and Skin Disorders: Basic and Clinical Aspects, 1st ed.; Franca, K., Jafferany, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016.
18. Schmid-Wendtner, M. H.; Korting, H. C. The pH of the Skin Surface and Its Impact on the Barrier Function. Skin Pharmacol. Physiol. 2006, 19, 296-302.
19. Lott, B.; Fraser. B. Anatomy & Physiology. Scientific e-Resources: New Delhi, 2019.
20. Sheipouri, D.; Braidy, N.; Guillemin, G. J. Kynurenine Pathway in Skin Cells: Implications for UV-Induced Skin Damage. Int. J. Tryptophan Res. 2012, 5, 15-25.
21. Honari, G.; Maibach, H. Chapter 1 — Skin Structure and Function; Applied Dermatotoxicology: Clinical Aspects; Academic Press: San Diego, CA, 2014; pp 1-10.
22. Hsieh, S. T.; Lin, W. M.; Chiang, H. Y.; Huang, I. T.; Ko, M. H.; Chang, Y. C.; Chen, W. P. Skin Innervation and Its Effects on the Epidermis. J. Biomed. Sci. 1997, 4, 264-268.
23. Kim, H. S.; Sun, X.; Lee, J.-H.; Kim, H.-W.; Fu, X.; Leong, K. W. Advanced Drug Delivery Systems and Artificial Skin Grafts for Skin Wound Healing. Adv. Drug Deliv. Rev. 2019, 146, 209-239.
24. Shamloul, G.; Khachemoune, A. An Updated Review of the Sebaceous Gland and Its Role in Health and Diseases Part 1: Embryology, Evolution, Structure, and Function of Sebaceous Glands. Dermatol. Ther. 2021, 34, e14695.
25. Patti, G. J.; Yanes, O.; Siuzdak, G. Metabolomics: The Apogee of the Omics Trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263-269.
26. McMurray, W. C. Essentials of Human Metabolism; Joanna Cotler Books: New York, NY, 1977.
27. Kouskoumvekaki, I.; Panagiotou, G. Navigating the Human Metabolome for Biomarker Identification and Design of Pharmaceutical Molecules. J. Biomed. Biotechnol. 2011, 2011, 525497.
28. Mi, K.; Jiang, Y.; Chen, J.; Lv, D.; Qian, Z.; Sun, H.; Shang, D. Construction and Analysis of Human Diseases and Metabolites Network. Front. Bioeng. Biotechnol. 2020, 8, 398.
29. Lavelle, A.; Sokol, H. Gut Microbiota-Derived Metabolites as Key Actors in Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223-237.
30. Fukai, K.; Harada, S.; Iida, M.; Kurihara, A.; Takeuchi, A.; Kuwabara, K.; Sugiyama, D.; Okamura, T.; Akiyama, M.; Nishiwaki, Y.; Oguma, Y.; Suzuki, A.; Suzuki, C.; Hirayama, A.; Sugimoto, M.; Soga, T.; Tomita, M.; Takebayashi, T. Metabolic Profiling of Total Physical Activity and Sedentary Behavior in Community-Dwelling Men. PLoS One 2016, 11, e0164877.
31. Kema, I. P.; de Vries, E. G. E.; Muskiet, F. A. J. Clinical Chemistry of Serotonin and Metabolites. J. Chromatogr. B Biomed. Appl. 2000, 747, 33-48.
32. Buness, A.; Roth, A.; Herrmann, A.; Schmitz, O.; Kamp, H.; Busch, K.; Suter, L. Identification of Metabolites, Clinical Chemistry Markers and Transcripts Associated with Hepatotoxicity. PLoS One 2014, 9, e97249.
33. Kell, D. B.; Oliver, S. G. The Metabolome 18 Years On: A Concept Comes of Age. J. Metabolomic 2016, 12, 148.
34. Baima, G.; Iaderosa, G.; Citterio, F.; Grossi, S.; Romano, F.; Berta, G. N.; Buduneli, N.; Aimetti, M. Salivary Metabolomics for the Diagnosis of Periodontal Diseases: A Systematic Review with Methodological Quality Assessment. J. Metabolomics 2021, 17, 1.
35. Nguyen, T. V.; Alfaro, A.; Arroyo, B. B.; Leon, J. A. R.; Sonnenholzner, S. Metabolic Responses of Penaeid Shrimp to Acute Hepatopancreatic Necrosis Disease Caused by Vibrio Parahaemolyticus. Aquaculture 2021, 533, 736174.
36. Clish, C. B. Metabolomics: An Emerging but Powerful Tool for Precision Medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588.
37. Wu, J.; Li, L.; Li, L.; Li, Y.; Xiao, X.; Qiao, J.; Sun, R.; Yang, D.; Yao, R.; Huang, L. Mechanism of Sqqx Decoction’s Protective Effect on Shr: A Serum Metabolomics-Based Analysis. Evid. Based Complement. Alternat. Med. 2020, 2020, 8856943
38. Chen, Y.; Michalak, M.; Agellon, L. B. Importance of Nutrients and Nutrient Metabolism on Human Health. Yale J. Biol. Med. 2018, 91, 95-103.
39. Lee, H.-J.; Kremer, D. M.; Sajjakulnukit, P.; Zhang, L.; Lyssiotis, C. A. A Large-Scale Analysis of Targeted Metabolomics Data from Heterogeneous Biological Samples Provides Insights into Metabolite Dynamics. Metabolomics 2019, 15, 103.
40. Schrimpe-Rutledge, A. C.; Codreanu, S. G.; Sherrod, S. D.; McLean, J. A. Untargeted Metabolomics Strategies-Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897-1905.
41. Elpa, D. P.; Chiu, H.-Y.; Wu, S.-P.; Urban, P. L. Skin Metabolomics. Trends Endocrinol. Metab. 2021, 32, 66-75.
42. Advanced Biosensors for Health Care Applications; Inamuddin, Khan, R., Mohammad, A., Asiri, A. M., Eds.; Elsevier Science Publishing: Philadelphia, PA, 2019.
43. Mohan, A. M. V.; Rajendran, V.; Mishra, R. K.; Jayaraman, M. Recent Advances and Perspectives in Sweat Based Wearable Electrochemical Sensors. Trends Anal. Chem. 2020, 131, 116024.
44. Baker, L. B. Physiology of Sweat Gland Function: The Roles of Sweating and Sweat Composition in Human Health. Temperature (Austin) 2019, 6, 211-259.
45. Seshadri, D. R.; Li, R. T.; Voos, J. E.; Rowbottom, J. R.; Alfes, C. M.; Zorman, C. A.; Drummond, C. K. Wearable Sensors for Monitoring the Physiological and Biochemical Profile of the Athlete. NPJ Digit. Med. 2019, 2, 72.
46. Strimbu, K.; Tavel, J. A. What Are Biomarkers? Curr. Opin. HIV AIDS. 2010, 5, 463-466.
47. Embden G, Tachau H. Über das Vorkommen von Serin im menschlichen Schweisse. Biochem. Z. 1910, 28, 230-236.
48. McSwiney, B. A. The Composition of Human Perspiration (Samuel Hyde Memorial Lecture): (Section of Physical Medicine). Proc. R. Soc. Med. 1934, 27, 839-848.
49. Greaves, M. W.; Søndergaard, J.; McDonald-Gibson, W. Recovery of Prostaglandins in Human Cutaneous Inflammation. Br. Med. J. 1971, 2, 258-260.
50. Förström, L; Goldyne, M. E.; Winkelmann, R. K. Work in Progress: Prostaglandin Activity in Human Eccrine Sweat. Prostaglandins 1974, 7, 459-464.
51. Prompt, C. A.; Quinto, P. M.; Kleeman, C. R. High Concentrations of Sweat Calcium, Magnesium and Phosphate in Chronic Renal Failure. Nephron 1978, 20, 4-9.
52. Bariya, M.; Nyein, H. Y. Y.; Javey, A. Wearable Sweat Sensors. Nat. Electron. 2018, 1, 160-171.
53. Brasier, N.; Eckstein, J. Sweat as a Source of Next-Generation Digital Biomarkers. Digit. Biomark. 2019, 3, 155-165.
54. Jiang, S.; Hinchliffe, T. E.; Wu, T. Biomarkers of an Autoimmune Skin Disease—Psoriasis. Genomics Proteomics Bioinformatics 2015, 13, 224-233.
55. Li, J.; Guan, X.; Fan, Z.; Ching, L.-M.; Li, Y.; Wang, X.; Cao, W.-M.; Liu, D.-X. Non- Invasive Biomarkers for Early Detection of Breast Cancer. Cancers (Basel) 2020, 12, 2767.
56. Dutkiewicz, E. P.; Lin, J.-D.; Tseng, T.-W.; Wang, Y.-S.; Urban, P. L. Hydrogel Micropatches for Sampling and Profiling Skin Metabolites. Anal. Chem. 2014, 86, 2337-2344.
57. Delgado-Povedano, M. M.; Castillo-Peinado, L. S.; Calderón-Santiago, M.; Luque de Castro, M. D.; Priego-Capote, F. Dry Sweat as Sample for Metabolomics Analysis. Talanta 2020, 208, 120428.
58. Han, W.; Li, L. Comprehensive and Quantitative Profiling of the Human Sweat Submetabolome Using High-Performance Chemical Isotope Labeling LC–MS. Anal. Chem. 2016, 88, 7378-7386.
59. Hooton, K.; Li, L. Nonocclusive Sweat Collection Combined with Chemical Isotope Labeling LC–MS for Human Sweat Metabolomics and Mapping the Sweat Metabolomes at Different Skin Locations. Anal. Chem. 2017, 89, 7847-7851.
60. Roseboom, I. C.; Rosing, H.; Beijnen, J. H.; Dorlo, T. P. C. Skin Tissue Sample Collection, Sample Homogenization, and Analyte Extraction Strategies for Liquid Chromatographic Mass Spectrometry Quantification of Pharmaceutical Compounds. J. Pharm. Biomed. Anal. 2020, 191, 113590.
61. Nalbantoglu, S. Metabolomics: Basic Principles and Strategies. In Molecular Medicine; Nalbantoglu, S., Amri, H., Eds.; IntechOpen: London, England, 2019.
62. Harshman, S. W.; Pitsch, R. L.; Schaeublin, N. M.; Smith, Z. K.; Strayer, K. E.; Phelps, M. S.; Qualley, A. V.; Cowan, D. W.; Rose, S. D.; O'Connor, M. L.; Eckerle, J. J.; Das, T.; Barbey, A. K.; Strang, A. J.; Martin, J. A. Metabolomic Stability of Exercise-Induced Sweat. J. Chromatogr. B 2019, 1126-1127, 121763.
63. Rogeberg, M.; Malerod, H.; Roberg-Larsen, H.; Aass, C.; Wilson, S. R. On-Line Solid Phase Extraction–Liquid Chromatography, with Emphasis on Modern Bioanalysis and Miniaturized Systems. J. Pharm. Biomed. Anal. 2014, 87, 120-129.
64. Ferreira, V. G.; Leme, G. M.; Cavalheiro, A. J.; Funari, C. S. Online Extraction Coupled to Liquid Chromatography Analysis (Ole-LC): Eliminating Traditional Sample Preparation Steps in the Investigation of Solid Complex Matrices. Anal. Chem. 2016, 88, 8421-8427.
65. Mejía-Carmona, K.; Jordan-Sinisterra, M.; Lanças, F. M. Current Trends in Fully Automated On-Line Analytical Techniques for Beverage Analysis. Beverages 2019, 5, 13.
66. Pan, J.; Zhang, C.; Zhang, Z.; Li, G. Review of Online Coupling of Sample Preparation Techniques with Liquid Chromatography. Anal. Chim. Acta. 2014, 815, 1-15.
67. Dean, J. R. Extraction Techniques in Analytical Sciences; John Wiley & Sons: Nashville, TN, 2010.
68. Chang, C.-H.; Urban, P. L. Automated Dual-Chamber Sampling System to Follow Dynamics of Volatile Organic Compounds Emitted by Biological Specimens. Anal. Chem. 2018, 90, 13848-13854.
69. Rodinkov, O. V.; Bugaichenko, A. S.; Moskvin, L. N. Static Headspace Analysis and Its Current Status. J. Anal. Chem. 2020, 75, 1-17.
70. Tsuge, S.; Kuriyama, K.; Ohtani, H. Dynamic Headspace Analysis of Trace Volatile Components in Polymeric Materials by Wide Bore Capillary Gas Chromatography. J. High Resolut. Chromatogr. 1989, 12, 727-731.
71. Boczkaj, G.; Makoś, P.; Przyjazny, A. Application of Dynamic Headspace and Gas Chromatography Coupled to Mass Spectrometry (DHS-GC-MS) for the Determination of Oxygenated Volatile Organic Compounds in Refinery Effluents. Anal. Methods 2016, 8, 3570-3577.
72. Salemi, A.; Lacorte, S.; Bagheri, H.; Barceló, D. Automated Trace Determination of Earthy-Musty Odorous Compounds in Water Samples by on-Line Purge-and-Trap-Gas Chromatography-Mass Spectrometry. J. Chromatogr. A. 2006, 1136, 170-175.
73. Manzini, S.; Durante, C.; Baschieri, C.; Cocchi, M.; Sighinolfi, S.; Totaro, S.; Marchetti, A. Optimization of a Dynamic Headspace – Thermal Desorption – Gas Chromatography/Mass Spectrometry Procedure for the Determination of Furfurals in Vinegars. Talanta 2011, 85, 863-869.
74. Alnouti, Y.; Srinivasan, K.; Waddell, D.; Bi, H.; Kavetskaia, O.; Gusev, A. I. Development and Application of a New on-Line SPE System Combined with LC–MS/MS Detection for High Throughput Direct Analysis of Pharmaceutical Compounds in Plasma. J. Chromatogr. A 2005, 1080, 99-106.
75. Lindberg, R. H.; Fedorova, G.; Blum, K. M.; Pulit-Prociak, J.; Gillman, A.; Järhult, J.; Appelblad, P.; Söderström, H. Online Solid Phase Extraction Liquid Chromatography Using Bonded Zwitterionic Stationary Phases and Tandem Mass Spectrometry for Rapid Environmental Trace Analysis of Highly Polar Hydrophilic Compounds – Application for the Antiviral Drug Zanamivir. Talanta 2015, 141, 164-169.
76. Ma, J.; Fan, S.; Sun, L.; He, L.; Zhang, Y.; Li, Q. Rapid Analysis of Fifteen Sulfonamide Residues in Pork and Fish Samples by Automated On-Line Solid Phase Extraction Coupled to Liquid Chromatography–Tandem Mass Spectrometry. Food Sci. Hum. Wellness 2020, 9, 363-369.
77. Agasøster, T.; Rasmussen, K. E. On-Line Dialysis, Liquid Chromatography and Post-Column Reaction Detection of Oxytetracycline in Salmon Muscle Extracts. J. Pharm. Biomed. Anal. 1992, 10, 349-354.
78. Şahan, S.; Saçmacı, Ş.; Ülgen, A.; Kartal, Ş.; Şahin, U. A New Automated System for the Determination of Al(III) Species in Dialysis Concentrates by Electrothermal Atomic Absorption Spectrometry Using a Combination of Chelating Resin. Microchem. J. 2015, 122, 57-62.
79. Griffiths, J. A Brief History of Mass Spectrometry. Anal. Chem. 2008, 80, 5678-5683.
80. Baldwin, M. A. Protein Identification by Mass Spectrometry: Issues to Be Considered. Mol. Cell. Proteomics 2004, 3, 1-9.
81. Kind, T.; Fiehn, O. Advances in Structure Elucidation of Small Molecules Using Mass Spectrometry. Bioanal. Rev. 2010, 2, 23-60.
82. Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B. Quantitative Mass Spectrometry in Proteomics: A Critical Review. Anal. Bioanal. Chem. 2007, 389, 1017-1031.
83. de Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, 3rd ed.; Wiley-Interscience: New York, 2007.
84. Urban, P.; Chen, Y.-C.; Wang, Y.-S. Time-Resolved Mass Spectrometry: From Concept to Applications; John Wiley & Sons: Nashville, TN, 2016.
85. Patel, K. N.; Patel, J. K.; Patel, M. P.; Rajput, G. C.; Patel, H. A. Introduction to Hyphenated Techniques and Their Applications in Pharmacy. Pharm. Methods 2010, 1, 2-13.
86. Kaiser, P.; Geyer, R.; Surmann, P.; Fuhrmann, H., LC-MS Method for Screening Unknown Microbial Carotenoids and Isoprenoid Quinones. J. Microbiol. Methods 2012, 88, 28-34.
87. Rauh, M. LC–MS/MS for Protein and Peptide Quantification in Clinical Chemistry. J. Chromatogr. B 2012, 883-884, 59-67.
88. Fischer, M.; Scholz-Böttcher, B. M. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2017, 51, 5052-5060.
89. Lapthorn, C.; Pullen, F.; Chowdhry, B. Z. Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) of Small Molecules: Separating and Assigning Structures to Ions. Mass Spectrom. Rev. 2013, 32, 43-71.
90. Korenaga, T.; Suzuki, Y.; Chikaraishi, Y. 7 — Biochemical Stable Isotope Analysis in Food Authenticity. In Engineering Tools in the Beverage Industry; Grumezescu, A. M.; Holban, A. M., Eds; Woodhead Publishing: Cambridge, 2019; pp 209-227.
91. Muccio, Z.; Jackson, G. P. Isotope Ratio Mass Spectrometry. Analyst 2009, 134, 213-222.
92. Benninghoven, A. Surface Investigation of Solids by the Statical Method of Secondary Ion Mass Spectroscopy (SIMS). Surf. Sci. 1973, 35, 427-457.
93. McPhail, D. S. Applications of Secondary Ion Mass Spectrometry (SIMS) in Materials Science. J. Mater. Sci. 2006, 41, 873-903.
94. Gross, J. H. Electron Ionization. In Mass Spectrometry: A Textbook, Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; pp 193-222.
95. Gross, J. H. Mass Spectrometry: A Textbook, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2017.
96. Somogyi, Á. Chapter 6 — Mass Spectrometry Instrumentation and Techniques. In Medical Applications of Mass Spectrometry, Vékey, K.; Telekes, A.; Vertes, A., Eds. Elsevier: Amsterdam, 2008; pp 93-140.
97. Olesik, J. W. Elemental Analysis Using ICP-OES and ICP/MS. Anal. Chem. 1991, 63, 12A-21A.
98. Wilschefski, S. C.; Baxter, M. R., Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev .2019, 40, 115-133.
99. Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information Beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 282574.
100. Chaurand, P.; Luetzenkirchen, F.; Spengler, B. Peptide and Protein Identification by Matrix-Assisted Laser Desorption Ionization (MALDI) and MALDI-Post-Source Decay Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1999, 10, 91-103.
101. Singhal, N.; Kumar, M.; Kanaujia, P. K.; Virdi, J. S. MALDI-ToF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 2015, 6, 791-791.
102. Yamashita, M.; Fenn, J. B. Electrospray Ion Source. Another Variation on the Free-Jet Theme. J. Phys. Chem. 1984, 88, 4451-4459.
103. Kebarle, P., A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 804-817.
104. Wilm, M. Principles of Electrospray Ionization. Mol. Cell. Proteomics. 2011, 10, M111.009407.
105. Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51-78.
106. Ozeki, Y.; Omae, M.; Kitagawa, S.; Ohtani, H. Electrospray Ionization-Ion Mobility Spectrometry–High Resolution Tandem Mass Spectrometry with Collision-Induced Charge Stripping for the Analysis of Highly Multiply Charged Intact Polymers. Analyst 2019, 144, 3428-3435.
107. Zhou, B.; Xiao, J. F.; Tuli, L.; Ressom, H. W. LC-MS-Based Metabolomics. Mol. Biosyst. 2012, 8, 470-481.
108. Farmer, T. B.; Caprioli, R. M. Electrospray Ionization Mass Spectrometry: Protein Structure. In Mass Spectrometry in Biomolecular Sciences, Caprioli, R. M.; Malorni, A.; Sindona, G., Eds. Springer Netherlands: Dordrecht, 1996; pp 61-88.
109. Kaltashov, I. A.; Bobst, C. E.; Abzalimov, R. R. Mass Spectrometry-Based Methods to Study Protein Architecture and Dynamics. Protein Sci. 2013, 22, 530-544.
110. Karas, M.; Bahr, U.; Dülcks, T. Nano-Electrospray Ionization Mass Spectrometry: Addressing Analytical Problems Beyond Routine. Fresenius J. Anal. Chem. 2000, 366, 669-676.
111. El-Faramawy, A.; Siu, K. W. M.; Thomson, B. A. Efficiency of Nano-Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2005, 16, 1702-1707.
112. Ifa, D. R.; Wu, C.; Ouyang, Z.; Cooks, R. G. Desorption Electrospray Ionization and Other Ambient Ionization Methods: Current Progress and Preview. Analyst 2010, 135, 669-681.
113. Takáts, Z.; Wiseman, J.; Gologan, B.; Cooks, R. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science. 2004, 306, 471-473.
114. Chen, H.; Venter, A.; Cooks, R. G. Extractive Electrospray Ionization for Direct Analysis of Undiluted Urine, Milk and Other Complex Mixtures without Sample Preparation. Chem. Commun. 2006, 2042-2044.
115. Law, W. S.; Wang, R.; Hu, B.; Berchtold, C.; Meier, L.; Chen, H.; Zenobi, R. On the Mechanism of Extractive Electrospray Ionization. Anal. Chem. 2010, 82, 4494-4500.
116. Orme, M. Experiments on Droplet Collisions, Bounce, Coalescence and Disruption. Prog. Energy Combust. Sci. 1997, 23, 65-79.
117. Wang, R.; Gröhn, A. J.; Zhu, L.; Dietiker, R.; Wegner, K.; Günther, D.; Zenobi, R. On the Mechanism of Extractive Electrospray Ionization (EESI) in the Dual-Spray Configuration. Anal. Bioanal. Chem. 2012, 402, 2633-2643.
118. Zhu, L.; Gamez, G.; Chen, H. W.; Huang, H. X.; Chingin, K.; Zenobi, R. Real-Time, On-Line Monitoring of Organic Chemical Reactions Using Extractive Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 2993-2998.
119. Zhang, H.; Gu, H.; Yan, F.; Wang, N.; Wei, Y.; Xu, J.; Chen, H. Direct Characterization of Bulk Samples by Internal Extractive Electrospray Ionization Mass Spectrometry. Sci. Rep. 2013, 3, 2495.
120. Zhu, L.; Gamez, G.; Chen, H.; Chingin, K.; Zenobi, R. Rapid Detection of Melamine in Untreated Milk and Wheat Gluten by Ultrasound-Assisted Extractive Electrospray Ionization Mass Spectrometry (EESI-MS). Chem.Commun. 2009, 559-561.
121. Haag, A. M. Mass Analyzers and Mass Spectrometers. In Modern Proteomics – Sample Preparation, Analysis and Practical Applications, Mirzaei, H.; Carrasco, M., Eds. Springer International Publishing: Cham, 2016; pp 157-169.
122. Introduction to mass analyzers https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/fundamental/mass_analyzers.html (accessed Apr 18, 2021).
123. Glish, G. L.; Burinsky, D. J. Hybrid Mass Spectrometers for Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 161-172.
124. Niessen, W. M. A.; Falck, D. Introduction to Mass Spectrometry, a Tutorial. In Analyzing Biomolecular Interactions by Mass Spectrometry, 2015; pp 1-54.
125. Harvey, D. J. Mass Spectrometry Overview. In Encyclopedia of Analytical Science 3rd ed. Worsfold, P.; Poole, C.; Townshend, A.; Miró, M., Eds. Academic Press: Oxford, 2019; pp 473-482.
126. Quadrupole Mass Spectrometry and Its Applications; Dawson, P. H., Ed.; American Institute of Physics: New York, NY, 1997.
127. Courant, E. D.; Livingston, M. S.; Snyder, H. S. The Strong-Focusing Synchroton—a New High Energy Accelerator. Phys. Rev. 1952, 88, 1190-1196.
128. Iivonen, A.; Saintola, R.; Valli, K. Ion-Guide Quadrupole Mass Spectrometer. Phys. Sc. 1990, 42, 133-137.
129. Kaklamanos, G.; Aprea, E.; Theodoridis, G. Mass Spectrometry: Principles and Instrumentation. In Encyclopedia of Food and Health; Academic Press: Oxford, 2016; pp 661-668.
130. Akash, M. S. H.; Rehman, K., Mass Spectrometry. In Essentials of Pharmaceutical Analysis; Springer, 2020; pp 121-136.
131. Guilhaus, M. Mass Spectrometry | Time-of-Flight. In Encyclopedia of Analytical Science (Second Edition); Elsevier: Oxford, 2005; pp 412-423.
132. Campana, J. E. Time-of-Flight Mass Spectrometry: A Historical Overview. Instrum. Sci. Technol. 1987, 16, 1-14.
133. Guilhaus, M.; Selby, D.; Mlynski, V. Orthogonal Acceleration Time-of-Flight Mass Spectrometry. Mass Spectrom. Rev. 2000, 19, 65-107.
134. De Ranieri, E. When a Velocitron Meets a Reflectron. Nat. Methods 2015, 12, 8.
135. Posthumus, M. A.; Kistemaker, P. G.; Meuzelaar, H. L. C.; Ten Noever de Brauw, M. C. Laser Desorption-Mass Spectrometry of Polar Nonvolatile Bio-Organic Molecules. Anal. Chem. 1978, 50, 985-991.
136. Porubl'ova, L. V.; Rebriiev, A. V.; Hromovyĭ, T.; Minia, II; Obolens'ka, M. [MALDI-ToF Mass Spectrometry in the Investigation of Large High-Molecular Biological Compounds]. Ukr. Biokhim. Zh. 2009, 81, 46-56.
137. Patel, R. MALDI-ToF MS for the Diagnosis of Infectious Diseases. Clin. Chem. 2015, 61, 100-111.
138. Crouch, S.; Skoog, D.; Holler, F. Principles of Instrumental Analysis, 7th ed.; CENGAGE Learning Custom Publishing: Mason, OH, 2017.
139. McLafferty, F. Tandem Mass Spectrometry. Science 1981, 214, 280-287.
140. Lermyte, F., Advanced Fragmentation Methods in Biomolecular Mass Spectrometry. Royal Society of Chemistry: London; 2020.
141. Yinon, J. Tandem Mass Spectrometry (MS/MS) and Collision Induced Dissociation (CID)—an Introduction. In Chemistry and Physics of Energetic Materials, Bulusu, S. N., Eds. Springer Netherlands: Dordrecht, 1990; pp 685-693.
142. Danell, R. M.; Glish, G. L. A New Approach for Effecting Surface-Induced Dissociation in an Ion Cyclotron Resonance Mass Spectrometer: A Modeling Study. J. Am. Soc. Mass Spectrom. 2000, 11, 1107-1117.
143. Syrstad, E. A.; Tureček, F. Toward a General Mechanism of Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2005, 16, 208-24.
144. Frenich, A. G.; Plaza-Bolaños, P.; Vidal, J. L. M. Comparison of Tandem-in-Space and Tandem-in-Time Mass Spectrometry in Gas Chromatography Determination of Pesticides: Application to Simple and Complex Food Samples. J. Chromatogr. A. 2008, 1203, 229-238.
145. Johnson, J. V.; Yost, R. A.; Kelley, P. E.; Bradford, D. C. Tandem-in-Space and Tandem-in-Time Mass Spectrometry: Triple Quadrupoles and Quadrupole Ion Traps. Anal. Chem. 1990, 62, 2162-2172.
146. Kitson, F. G.; Larsen, B. S.; McEwen, C. N. Gas Chromatography and Mass Spectrometry: A Practical Guide; Academic Press, 2014.
147. Harvey, D. J. Gas Chromatography | Mass Spectrometry. In Encyclopedia of Analytical Science (Second Edition), Worsfold, P.; Townshend, A.; Poole, C., Eds. Elsevier: Oxford, 2005; pp 106-116.
148. Lin, S.-Y.; Hsu, W.-H.; Lin, C.-C.; Chen, C.-J. Mass Spectrometry-Based Proteomics in Chest Medicine, Gerontology, and Nephrology: Subgroups Omics for Personalized Medicine. Biomedicine 2014, 4, 25.
149. Yang, M.; Zhang, X.; Liang, Q.; Yang, B. Application of (LC/)MS/MS Precursor Ion Scan for Evaluating the Occurrence, Formation and Control of Polar Halogenated DBPs in Disinfected Waters: A Review. Water Res. 2019, 158, 322-337.
150. de Hoffmann, E., Tandem Mass Spectrometry: A Primer. J. Mass Spectrom. 1996, 31, 129-137.
151. Anderson, L.; Hunter, C. L. Quantitative Mass Spectrometric Multiple Reaction Monitoring Assays for Major Plasma Proteins*. Mol. Cell. Proteomics 2006, 5, 573-588.
152. Hinterwirth, H.; Stegemann, C.; Mayr, M. Lipidomics. Circ. Cardiovasc. Genet. 2014, 7, 941-954.
153. Chernushevich, I. V.; Loboda, A. V.; Thomson, B. A. An Introduction to Quadrupole–Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 2001, 36, 849-865.
154. Allen, D. R.; McWhinney, B. C. Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. Clin. Biochem. Rev. 2019, 40, 135-146.
155. Kim, J. Y.; Park, J. Y.; Kim, O. Y.; Ham, B. M.; Kim, H.-J.; Kwon, D. Y.; Jang, Y.; Lee, J. H. Metabolic Profiling of Plasma in Overweight/Obese and Lean Men Using Ultra Performance Liquid Chromatography and Q-Tof Mass Spectrometry (UPLC-Q-ToF-MS). J. Proteome Res. 2010, 9, 4368-4375.
156. Thurman, E. M. Liquid Chromatography/Mass Spectrometry, MS/MS and Time of Flight MS: Analysis of Emerging Contaminants; Ferrer, I., Ed.; Oxford University Press: New York, NY, 2003, pp 14-31.
157. Dutkiewicz, E. P.; Hsieh, K.-T.; Wang, Y.-S.; Chiu, H.-Y.; Urban, P. L. Hydrogel Micropatch and Mass Spectrometry–Assisted Screening for Psoriasis-Related Skin Metabolites. Clin. Chem. 2016, 62, 1120-1128.
158. Dutkiewicz, E. P.; Hsieh, K.-T.; Urban, P. L.; Chiu, H.-Y. Temporal Correlations of Skin and Blood Metabolites with Clinical Outcomes of Biologic Therapy in Psoriasis. J. Appl. Lab Med. 2020, 5, 877-888.
159. Pohla, L.; Ottas, A.; Kaldvee, B.; Abram, K.; Soomets, U.; Zilmer, M.; Reemann, P.; Jaks, V.; Kingo, K. Hyperproliferation is the Main Driver of Metabolomic Changes in Psoriasis Lesional Skin. Sci. Rep. 2020, 10, 3081.
160. Fortner, N. A. The Detection of Drugs in Sweat. In Drug Testing in Alternate Biological Specimens, Jenkins, A. J. Eds. Humana Press: Totowa, 2008; pp 101-116.
161. De Giovanni, N.; Fucci, N. The Current Status of Sweat Testing for Drugs of Abuse: A Review. Curr. Med. Chem. 2013, 20, 545-561.
162. Webb, B. W.; Flute, P. T.; Smith, M. J. H. The Electrolyte Content of the Sweat in Fibrocystic Disease of the Pancreas. Arch. Dis. Child. 1957, 32, 82-84
163. Shirreffs, S. M.; Maughan, R. J. Whole Body Sweat Collection in Humans: An Improved Method with Preliminary Data on Electrolyte Content. J. Appl. Physiol. 1997, 82, 336-341
164. Dutkiewicz, E. P.; Urban, P. L. Quantitative Mass Spectrometry of Unconventional Human Biological Matrices. Phil. Trans. R. Soc. A. 2016, 374, 20150380.
165. Lee, J.-M.; Carson, R.; Arce, C.; Mahajan, M.; Lobst, S. Development of a Minimally Invasive Epidermal Abrasion Device for Clinical Skin Sampling and its Applications in Molecular Biology. Int. J. Cosmetic Sci. 2009, 31, 27-39.
166. Al Sulaiman, D.; Chang, J. Y. H.; Bennett, N. R.; Topouzi, H.; Higgins, C. A.; Irvine, D. J.; Ladame, S. Hydrogel-Coated Microneedle Arrays for Minimally Invasive Sampling and Sensing of Specific Circulating Nucleic Acids from Skin Interstitial Fluid. ACS Nano 2019, 13, 9620-9628.
167. ELITechGroup. Macroduct® Sweat Collection System. https://www.elitechgroup.com/product/macroduct-sweat-collection-system-2 (accessed Feb 23, 2021).
168. Hammond, K. B.; Turcios, N. L.; Gibson, L. E. Clinical Evaluation of the Macroduct Sweat Collection System and Conductivity Analyzer in the Diagnosis of Cystic Fibrosis. J. Pediatr. 1994, 124, 255-260.
169. Gallagher, M.; Wysocki, C. J.; Leyden, J. J.; Spielman, A. I.; Sun, X.; Preti, G. Analyses of Volatile Organic Compounds from Human Skin. Br. J. Dermatol. 2008, 159, 780-791.
170. Beesoon, S.; Birkholz, D.; Lobo, R. A. Human Excretion of Bisphenol A: Blood, Urine, and Sweat (BUS) Study. J. Environ. Public Health 2012, 2012, 185731.
171. Kutyshenko, V. P.; Molchanov, M.; Beskaravayny, P.; Uversky, V. N.; Timchenko, M. A. Analyzing and Mapping Sweat Metabolomics by High-Resolution NMR Spectroscopy. PLoS One 2011, 6, e28824.
172. Dutkiewicz, E. P.; Chiu, H.-Y.; Urban, P. L. Probing Skin for Metabolites and Topical Drugs with Hydrogel Micropatches. Anal. Chem. 2017, 89, 2664-2670.
173. Kandiah, M.; Urban, P. L. Advances in Ultrasensitive Mass Spectrometry of Organic Molecules. Chem. Soc. Rev. 2013, 42, 5299-5322.
174. Scalbert, A.; Brennan, L.; Fiehn, O.; Hankemeier, T.; Kristal, B. S.; van Ommen, B.; Pujos-Guillot, E.; Verheij, E.; Wishart, D.; Wopereis, S. Mass-Spectrometry-based Metabolomics: Limitations and Recommendations for Future Progress with Particular Focus on Nutrition Research. Metabolomics 2009, 5, 435.
175. Panuwet P., Hunter R.E Jr, D'Souza P.E, Chen X, Radford S.A, Cohen J.R, Marder ME., Kartavenka K, Ryan PB., Barr D.B. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring. Crit. Rev. Anal. Chem. 2016, 46, 93-105.
176. Gu, H.; Xu, N.; Chen, H. Direct Analysis of Biological Samples Using Extractive Electrospray Ionization Mass Spectrometry (EESI-MS). Anal. Bioanal. Chem. 2012, 403, 2145-2153.
177. Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627-1639.
178. Press, W. H.; Teukolsky, S. A. Savitzky — Golay Smoothing Filters. Comput. Phys. 1990, 4, 669.
179. Gallimore, P. J.; Kalberer, M. Characterizing an Extractive Electrospray Ionization (EESI) Source for the Online Mass Spectrometry Analysis of Organic Aerosols. Environ. Sci. Technol. 2013, 47, 7324-7331.
180. Prabhu, G. R. D.; Witek, H. A.; Urban, P. L. Programmable Flow Rate Scanner for Evaluating Detector Sensitivity Regime. Sens. Actuators B Chem. 2019, 282, 992-998.
181. Ni, Y.; Xie, G.; Jia, W. Metabonomics of Human Colorectal Cancer: New Approaches for Early Diagnosis and Biomarker Discovery. J. Proteome Res. 2014, 13, 3857-3870.
182. Socha, E.; Koba, M.; Kośliński, P. Amino Acid Profiling as a Method of Discovering Biomarkers for Diagnosis of Neurodegenerative Diseases. Amino Acids 2019, 51, 367-371.
183. Ženíšek, A.; Král, J. A.; Hais, I. M. “Sun-Screening” Effect of Urocanic Acid. Biochim. Biophys. Acta. 1955, 18, 589-591.
184. Baden, H. P.; Pathak, M. A. The Metabolism and Function of Urocanic Acid in Skin. J. Invest. Dermatol. 1967, 48, 11-17.
185. Hermann, K.; Abeck, D. Determination of Histidine and Urocanic Acid Isomers in the Human Skin by High-Performance Capillary Electrophoresis. J. Chromatogr. B Biomed. Appl. 2000, 749, 41-47.
186. Wolfe, S.; Cage, G.; Epstein, M.; Tice, L.; Miller, H.; Gordon, R. S., Jr. Metabolic Studies of Isolated Human Eccrine Sweat Glands. J. Clin. Investig. 1970, 49, 1880-1884.
187. Derbyshire, P. J.; Barr, H.; Davis, F.; Higson, S. P. J. Lactate in Human Sweat: A Critical Review of Research to the Present Day. J. Physiol. Sci. 2012, 62, 429-440.
188. Konieczka, P.; Namieśnik, J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach; CRC Press, 2018.
189. Hercules, D., Ed. Contemporary Topics in Analytical and Clinical Chemistry: Volume 2, 1978th ed.; Springer: New York, NY, 2012. https://doi.org/10.1007/978-1-4615-6731-8.
190. E.M.A. Method Validation. Guideline on Bioanalytical Method Validation; 2009, (EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2).
191. Willis, I.; Harris, D. R.; Moretz, W. Normal and Abnormal Variations in Eccrine Sweat Gland Distribution. J. Invest. Dermatol. 1973, 60, 98-103.
192. Wang, Y.; Gu, M. The Concept of Spectral Accuracy for MS. Anal. Chem. 2010, 82, 7055-7062.
193. Lei, B. U. W.; Prow, T. W. A Review of Microsampling Techniques and Their Social Impact. Biomed. Microdevices 2019, 21, 81.
194. Lowe, L. B.; van der Leun, J. C. Suction Blisters and Dermal-Epidermal Adherence from the Department of Dermatology, Cornell University Medical College, New York, N. Y. J. Invest. Dermatol. 1968, 50, 308-314.
195. Gibson, L. E.; Cooke, R. E. A Test for Concentration of Electrolytes in Sweat in Cystic Fibrosis of the Pancreas Utilizing Pilocarpine by Iontophoresis. Pediatrics 1959, 23, 545-549.
196. Emson, C. L.; Fitzmaurice, S.; Lindwall, G.; Li, K. W.; Hellerstein, M. K.; Maibach, H. I.; Liao, W.; Turner, S. M. A Pilot Study Demonstrating a Non-Invasive Method for the Measurement of Protein Turnover in Skin Disorders: Application to Psoriasis. Clin. Transl. Sci. 2013, 2, 12.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *