|
1. Klinkenberg, I.; Sambeth, A.; Blokland, A., Acetylcholine and attention. Behav. Brain Res. 2011, 221 (2), 430-442. 2. Ferreira-Vieira, T. H.; Guimaraes, I. M.; Silva, F. R.; Ribeiro, F. M., Alzheimer's disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14 (1), 101-115. 3. Berger, M.; Gray, J. A.; Roth, B. L., The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355-366. 4. Iversen, S. D.; Iversen, L. L., Dopamine: 50 years in perspective. Trends Neurosci. 2007, 30 (5), 188-193. 5. Basu, S.; Dasgupta, P. S., Dopamine, a neurotransmitter, influences the immune system. J. Neuroimmunol. 2000, 102 (2), 113-124. 6. Xu, F.; Jiang, W.; Zhou, J.; Wen, K.; Wang, Z.; Jiang, H., et al., Production of Monoclonal Antibody and Development of a New Immunoassay for Apramycin in Food. J. Agric. Food Chem. 2014, 62 (14), 3108-3113. 7. Zhai, F.; Huang, Y.; Li, C.; Wang, X.; Lai, K., Rapid Determination of Ractopamine in Swine Urine Using Surface-Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2011, 59 (18), 10023-10027. 8. Brambilla, G.; Cenci, T.; Franconi, F.; Galarini, R.; Macrı̀, A.; Rondoni, F., et al., Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol. Lett. 2000, 114 (1), 47-53. 9. Salathe, M., Effects of beta-agonists on airway epithelial cells. J. Allergy Clin. Immunol. 2002, 110 (6), S275-S281. 10. Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S. S., et al., Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37 (4), 513-532. 11. Welink, J.; Yang, E.; Hughes, N.; Rago, B.; Woolf, E.; Sydor, J., et al., 2017 White Paper on recent issues in bioanalysis: aren't BMV guidance/guidelines ‘Scientific’? (Part 1 – LCMS: small molecules, peptides and small molecule biomarkers). Bioanalysis 2017, 9 (22), 1807-1825. 12. Davis, D. E.; Sherrod, S. D.; Gant-Branum, R. L.; Colby, J. M.; McLean, J. A., Targeted Strategy to Analyze Antiepileptic Drugs in Human Serum by LC-MS/MS and LC-Ion Mobility-MS. Anal. Chem. 2020, 92 (21), 14648-14656. 13. Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S. O., Advantages, Disadvantages and Modifications of Conventional ELISA. In Enzyme-linked Immunosorbent Assay (ELISA): From A to Z, Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S. O., Eds. Springer Singapore: Singapore, 2018; pp 67-115. 14. Aydin, S., A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4-15. 15. Wang, X.; Cohen, L.; Wang, J.; Walt, D. R., Competitive Immunoassays for the Detection of Small Molecules Using Single Molecule Arrays. J. Am. Chem. Soc. 2018, 140 (51), 18132-18139. 16. Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H., et al., Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72 (1), 32-42. 17. Gellman, S. H., Introduction: Molecular Recognition. Chem. Rev. 1997, 97 (5), 1231-1232. 18. Goodey, N. M.; Benkovic, S. J., Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 2008, 4 (8), 474-482. 19. Vavers, E.; Zvejniece, L.; Maurice, T.; Dambrova, M., Allosteric Modulators of Sigma-1 Receptor: A Review. Front. Pharmacol. 2019, 10, 223. 20. Duc, N. M.; Kim, H. R.; Chung, K. Y., Structural mechanism of G protein activation by G protein-coupled receptor. Eur. J. Pharmacol. 2015, 763, 214-222. 21. Maurice, P.; Guillaume, J.-L.; Benleulmi-Chaachoua, A.; Daulat, A. M.; Kamal, M.; Jockers, R., 11 - GPCR-Interacting Proteins, Major Players of GPCR Function. In Adv. Pharmacol., Neubig, R. R., Ed. Academic Press: 2011; Vol. 62, pp 349-380. 22. Duc, N. M.; Kim, H. R.; Chung, K. Y., Recent Progress in Understanding the Conformational Mechanism of Heterotrimeric G Protein Activation. Biomol. Ther. (Seoul) 2017, 25 (1), 4-11. 23. Weinstein, L. S.; Chen, M.; Xie, T.; Liu, J., Genetic diseases associated with heterotrimeric G proteins. Trends Pharmacol. Sci. 2006, 27 (5), 260-266. 24. Neves, S. R.; Ram, P. T.; Iyengar, R., G Protein Pathways. Science 2002, 296 (5573), 1636. 25. Brinks, H. L.; Eckhart, A. D., Regulation of GPCR signaling in hypertension. Biochim. Biophys. Acta 2010, 1802 (12), 1268-1275. 26. Sadoshima, J., Novel AT1 Receptor–Independent Functions of Losartan. Circul. Res. 2002, 90 (7), 754-756. 27. Seeman, P., Atypical antipsychotics: mechanism of action. Can. J. Psychiatry. 2002, 47 (1), 27-38. 28. Meltzer, H. Y., Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 1989, 99 (1), S18-S27. 29. Gurbel, P. A.; Kuliopulos, A.; Tantry, U. S., G-protein-coupled receptors signaling pathways in new antiplatelet drug development. Atertio. Thromb. Vasc. Biol. 2015, 35 (3), 500-512. 30. Savi, P.; Nurden, P.; Nurden, A. T.; Levy-Toledano, S.; Herbert, J. M., Clopidogrel: a review of its mechanism of action. Platelets 1998, 9 (3-4), 251-255. 31. Griffiths, A.; Gelbart, W.; Miller, J.; Lewontin, R., Modern genetic analysis. 1999. 32. Imamura, H.; Huynh Nhat, K. P.; Togawa, H.; Saito, K.; Iino, R.; Kato-Yamada, Y., et al., Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Nat. Acad. Sci. 2009, 106 (37), 15651. 33. Greenwald, E. C.; Mehta, S.; Zhang, J., Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem. Rev. 2018, 118 (24), 11707-11794. 34. Oldach, L.; Zhang, J., Genetically Encoded Fluorescent Biosensors for Live-Cell Visualization of Protein Phosphorylation. Chem. Biol. 2014, 21 (2), 186-197. 35. Piston, D. W.; Kremers, G.-J., Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci. 2007, 32 (9), 407-414. 36. Brun, M. A.; Tan, K.-T.; Nakata, E.; Hinner, M. J.; Johnsson, K., Semisynthetic Fluorescent Sensor Proteins Based on Self-Labeling Protein Tags. J. Am. Chem. Soc. 2009, 131 (16), 5873-5884. 37. Brun, M. A.; Griss, R.; Reymond, L.; Tan, K.-T.; Piguet, J.; Peters, R. J. R. W., et al., Semisynthesis of Fluorescent Metabolite Sensors on Cell Surfaces. J. Am. Chem. Soc. 2011, 133 (40), 16235-16242. 38. Green, N. M., Spectrophotometric determination of avidin and biotin. In Methods Enzymol., Academic Press: 1970; Vol. 18, pp 418-424. 39. Liu, F.; Zhang, J. Z. H.; Mei, Y., The origin of the cooperativity in the streptavidin-biotin system: A computational investigation through molecular dynamics simulations. Sci. Rep. 2016, 6 (1), 27190. 40. Dubacheva, G. V.; Araya-Callis, C.; Geert Volbeda, A.; Fairhead, M.; Codée, J.; Howarth, M., et al., Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin. J. Am. Chem. Soc. 2017, 139 (11), 4157-4167. 41. Cherkasov, V. R.; Mochalova, E. N.; Babenyshev, A. V.; Vasilyeva, A. V.; Nikitin, P. I.; Nikitin, M. P., Nanoparticle Beacons: Supersensitive Smart Materials with On/Off-Switchable Affinity to Biomedical Targets. ACS Nano 2020, 14 (2), 1792-1803. 42. Ding, Z.; Fong, R. B.; Long, C. J.; Stayton, P. S.; Hoffman, A. S., Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001, 411 (6833), 59-62. 43. Guo, Q.; Bai, Z.; Liu, Y.; Sun, Q., A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosens. Bioelectron. 2016, 77, 107-110. 44. Supuran, C. T., Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008, 7 (2), 168-181. 45. Innocenti, A.; Beyza Öztürk Sarıkaya, S.; Gülçin, İ.; Supuran, C. T., Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I–XIV with a series of natural product polyphenols and phenolic acids. Biorg. Med. Chem. 2010, 18 (6), 2159-2164. 46. MacLeod , C. M., The inhibition of the bacteriostatic action of sulfonamide drugs by substances of animal and bacterial origin. J. Exp. Med. 1940, 72 (3), 217-232. 47. Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B., et al., Carbonic Anhydrase as a Model for Biophysical and Physical-Organic Studies of Proteins and Protein−Ligand Binding. Chem. Rev. 2008, 108 (3), 946-1051. 48. Chan, H.-J.; Lin, X.-H.; Fan, S.-Y.; Ru Hwu, J.; Tan, K.-T., Rapid and Selective Labeling of Endogenous Transmembrane Proteins in Living Cells with a Difluorophenyl Ester Affinity-Based Probe. Chem. Asian J. 2020, 15 (21), 3416-3420. 49. Lin, K.-Y.; Hin Lam, C.; Lin, X.-H.; Hsu, J.-I.; Fan, S.-Y.; Gupta, N. K., et al., Improved Stabilities of Labeling Probes for the Selective Modification of Endogenous Proteins in Living Cells and In Vivo. Chem. Asian J. 2021, 16 (8), 937-948.
|