帳號:guest(18.226.150.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王心佑
作者(外文):Wang, Xin-You
論文名稱(中文):快速顯影膜表面小分子之可控親和性變構半合成蛋白
論文名稱(外文):Affinity-Switchable Semisynthetic Allosteric Protein for the Rapid Detection of Small Molecules on Cell Surfaces
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):黃郁棻
許馨云
口試委員(外文):Huang, Yu-Fen
Hsu, Hsin-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:108023521
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:208
中文關鍵詞:小分子半合成蛋白變構蛋白可控親和性探針生物素鏈黴親和素
外文關鍵詞:Small moleculeSemisynthetic proteinAllosteric proteinAffinity-Switchable probeBiotinStreptavidin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:111
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
小分子感測對於基礎生物學的研究十分重要,因此許多研究致力於發展可於細胞内直接偵測小分子的方法。目前,利用螢光共振能量轉移 (Förster resonance energy transfer, FRET) 機制的感測蛋白為偵測活體細胞內小分子的主要方法,但其應用仍有許多限制如 : 螢光基團更換不易及需要使用基因工程等。本論文發展一種基於立體障礙調節的新型生物素化半合成蛋白,其原理為利用小分子與配體之間的競爭,開啟生物素衍生物與鏈黴親和素之間的專一性結合,進而測得螢光訊號。在沒有小分子分析物的情況下,此半合成蛋白會形成關閉狀態,使生物素辨識端因立體障礙無法與鏈黴親和素結合,而在加入小分子分析物後,呈現開啟形式,進一步使生物素辨識端暴露,並與鏈黴親和素結合,達到快速偵測小分子的目的。基於這個設計,我們相信這樣的變構半合成蛋白設計會成為基礎生物學研究和醫學診斷上重要的工具。
Small molecule sensing is very important to the understanding of biological processes. Currently, protein sensors based on Förster resonance energy transfer (FRET) have been employed as the main method for detecting small molecules in living cells. However, these FRET-based proteins cannot be applied on native cells and are restricted with limited choice of fluorophores. In this thesis, we introduce a new affinity-switchable biotinylated semisynthetic protein in which binding of the small metabolite target with the protein triggers interaction of streptavidin-biotin. In the absence of a small molecule analyte, the semisynthetic protein forms a closed state where the biotin is positioned in close proximity to the protein, imposing a large steric hindrance to preclude binding with streptavidin. In the presence of a small molecule target, the steric hindrance is removed as a result of open conformation, thereby exposing the biotin for streptavidin binding. We believe that this allosterically controlled semisynthetic protein design will become a powerful tool for fundamental biological research and medical diagnosis.
摘要.................................. I
Abstract ............................ II
謝誌................................. III
目錄.................................. V
第一章、緒論........................... 1
1-1 小分子的介紹 ...................... 1
1-1.1 生物體內的小分子 ................ 1
1-1.2 動物用藥 ........................ 2
1-1.3 磺胺類藥物 ...................... 3
1-2 小分子的檢測方法 .................. 5
1-2.1 質譜分析法 ...................... 5
1-2.2 酵素結合免疫吸附分析法 ........... 7
第二章、文獻回顧....................... 9
2-1 自然界中的小分子感測 ............... 9
2-1.1 G蛋白偶合受體 .................. 10
2-1.2 乳糖操縱子 ..................... 12
2-1.3 天然變構蛋白之應用 .............. 13
2-2 半合成蛋白 ....................... 15
第三章、探針設計...................... 18
3-1 探針設計構想 ..................... 18
3-2 探針合成設計與策略 ............... 21
3-2.1 蛋白及配體選擇 ................. 21
3-2.2 探針結構設計 .................. 22
第四章、實驗結果與討論................. 25
4-1 探針A、B、C合成與實驗結果 ......... 25
4-1.1 化合物13之測試 ................. 25
4-1.2 探針A之合成..................... 26
4-1.3 探針B之合成..................... 27
4-1.4 探針C之合成..................... 28
4-1.5 探針A、B、C之實驗結果 ........... 29
4-1.6 化合物36之測試 ................. 30
4-1.7 探針A、B、C之探討 .............. 31
4-2 探針D之合成與實驗結果 ............. 33
4-2.1 探針D之合成 .................... 33
4-2.2 探針D之實驗結果 ................ 34
第五章、實驗結論....................... 36
第六章、實驗部分....................... 37
6-1 實驗器材與藥品 .................... 37
6-2 細胞影像實驗 ...................... 39
6-2.1 細胞之準備 ...................... 39
6-2.2 探針之MCF-7細胞影像 ............. 39
6-3 有機合成與光譜資料 ................ 40
第七章、參考資料....................... 76
附錄.................................. 80
1. Klinkenberg, I.; Sambeth, A.; Blokland, A., Acetylcholine and attention. Behav. Brain Res. 2011, 221 (2), 430-442.
2. Ferreira-Vieira, T. H.; Guimaraes, I. M.; Silva, F. R.; Ribeiro, F. M., Alzheimer's disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14 (1), 101-115.
3. Berger, M.; Gray, J. A.; Roth, B. L., The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355-366.
4. Iversen, S. D.; Iversen, L. L., Dopamine: 50 years in perspective. Trends Neurosci. 2007, 30 (5), 188-193.
5. Basu, S.; Dasgupta, P. S., Dopamine, a neurotransmitter, influences the immune system. J. Neuroimmunol. 2000, 102 (2), 113-124.
6. Xu, F.; Jiang, W.; Zhou, J.; Wen, K.; Wang, Z.; Jiang, H., et al., Production of Monoclonal Antibody and Development of a New Immunoassay for Apramycin in Food. J. Agric. Food Chem. 2014, 62 (14), 3108-3113.
7. Zhai, F.; Huang, Y.; Li, C.; Wang, X.; Lai, K., Rapid Determination of Ractopamine in Swine Urine Using Surface-Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2011, 59 (18), 10023-10027.
8. Brambilla, G.; Cenci, T.; Franconi, F.; Galarini, R.; Macrı̀, A.; Rondoni, F., et al., Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol. Lett. 2000, 114 (1), 47-53.
9. Salathe, M., Effects of beta-agonists on airway epithelial cells. J. Allergy Clin. Immunol. 2002, 110 (6), S275-S281.
10. Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S. S., et al., Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37 (4), 513-532.
11. Welink, J.; Yang, E.; Hughes, N.; Rago, B.; Woolf, E.; Sydor, J., et al., 2017 White Paper on recent issues in bioanalysis: aren't BMV guidance/guidelines ‘Scientific’? (Part 1 – LCMS: small molecules, peptides and small molecule biomarkers). Bioanalysis 2017, 9 (22), 1807-1825.
12. Davis, D. E.; Sherrod, S. D.; Gant-Branum, R. L.; Colby, J. M.; McLean, J. A., Targeted Strategy to Analyze Antiepileptic Drugs in Human Serum by LC-MS/MS and LC-Ion Mobility-MS. Anal. Chem. 2020, 92 (21), 14648-14656.
13. Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S. O., Advantages, Disadvantages and Modifications of Conventional ELISA. In Enzyme-linked Immunosorbent Assay (ELISA): From A to Z, Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S. O., Eds. Springer Singapore: Singapore, 2018; pp 67-115.
14. Aydin, S., A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4-15.
15. Wang, X.; Cohen, L.; Wang, J.; Walt, D. R., Competitive Immunoassays for the Detection of Small Molecules Using Single Molecule Arrays. J. Am. Chem. Soc. 2018, 140 (51), 18132-18139.
16. Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H., et al., Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72 (1), 32-42.
17. Gellman, S. H., Introduction:  Molecular Recognition. Chem. Rev. 1997, 97 (5), 1231-1232.
18. Goodey, N. M.; Benkovic, S. J., Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 2008, 4 (8), 474-482.
19. Vavers, E.; Zvejniece, L.; Maurice, T.; Dambrova, M., Allosteric Modulators of Sigma-1 Receptor: A Review. Front. Pharmacol. 2019, 10, 223.
20. Duc, N. M.; Kim, H. R.; Chung, K. Y., Structural mechanism of G protein activation by G protein-coupled receptor. Eur. J. Pharmacol. 2015, 763, 214-222.
21. Maurice, P.; Guillaume, J.-L.; Benleulmi-Chaachoua, A.; Daulat, A. M.; Kamal, M.; Jockers, R., 11 - GPCR-Interacting Proteins, Major Players of GPCR Function. In Adv. Pharmacol., Neubig, R. R., Ed. Academic Press: 2011; Vol. 62, pp 349-380.
22. Duc, N. M.; Kim, H. R.; Chung, K. Y., Recent Progress in Understanding the Conformational Mechanism of Heterotrimeric G Protein Activation. Biomol. Ther. (Seoul) 2017, 25 (1), 4-11.
23. Weinstein, L. S.; Chen, M.; Xie, T.; Liu, J., Genetic diseases associated with heterotrimeric G proteins. Trends Pharmacol. Sci. 2006, 27 (5), 260-266.
24. Neves, S. R.; Ram, P. T.; Iyengar, R., G Protein Pathways. Science 2002, 296 (5573), 1636.
25. Brinks, H. L.; Eckhart, A. D., Regulation of GPCR signaling in hypertension. Biochim. Biophys. Acta 2010, 1802 (12), 1268-1275.
26. Sadoshima, J., Novel AT1 Receptor–Independent Functions of Losartan. Circul. Res. 2002, 90 (7), 754-756.
27. Seeman, P., Atypical antipsychotics: mechanism of action. Can. J. Psychiatry. 2002, 47 (1), 27-38.
28. Meltzer, H. Y., Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 1989, 99 (1), S18-S27.
29. Gurbel, P. A.; Kuliopulos, A.; Tantry, U. S., G-protein-coupled receptors signaling pathways in new antiplatelet drug development. Atertio. Thromb. Vasc. Biol. 2015, 35 (3), 500-512.
30. Savi, P.; Nurden, P.; Nurden, A. T.; Levy-Toledano, S.; Herbert, J. M., Clopidogrel: a review of its mechanism of action. Platelets 1998, 9 (3-4), 251-255.
31. Griffiths, A.; Gelbart, W.; Miller, J.; Lewontin, R., Modern genetic analysis. 1999.
32. Imamura, H.; Huynh Nhat, K. P.; Togawa, H.; Saito, K.; Iino, R.; Kato-Yamada, Y., et al., Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Nat. Acad. Sci. 2009, 106 (37), 15651.
33. Greenwald, E. C.; Mehta, S.; Zhang, J., Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem. Rev. 2018, 118 (24), 11707-11794.
34. Oldach, L.; Zhang, J., Genetically Encoded Fluorescent Biosensors for Live-Cell Visualization of Protein Phosphorylation. Chem. Biol. 2014, 21 (2), 186-197.
35. Piston, D. W.; Kremers, G.-J., Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci. 2007, 32 (9), 407-414.
36. Brun, M. A.; Tan, K.-T.; Nakata, E.; Hinner, M. J.; Johnsson, K., Semisynthetic Fluorescent Sensor Proteins Based on Self-Labeling Protein Tags. J. Am. Chem. Soc. 2009, 131 (16), 5873-5884.
37. Brun, M. A.; Griss, R.; Reymond, L.; Tan, K.-T.; Piguet, J.; Peters, R. J. R. W., et al., Semisynthesis of Fluorescent Metabolite Sensors on Cell Surfaces. J. Am. Chem. Soc. 2011, 133 (40), 16235-16242.
38. Green, N. M., Spectrophotometric determination of avidin and biotin. In Methods Enzymol., Academic Press: 1970; Vol. 18, pp 418-424.
39. Liu, F.; Zhang, J. Z. H.; Mei, Y., The origin of the cooperativity in the streptavidin-biotin system: A computational investigation through molecular dynamics simulations. Sci. Rep. 2016, 6 (1), 27190.
40. Dubacheva, G. V.; Araya-Callis, C.; Geert Volbeda, A.; Fairhead, M.; Codée, J.; Howarth, M., et al., Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin. J. Am. Chem. Soc. 2017, 139 (11), 4157-4167.
41. Cherkasov, V. R.; Mochalova, E. N.; Babenyshev, A. V.; Vasilyeva, A. V.; Nikitin, P. I.; Nikitin, M. P., Nanoparticle Beacons: Supersensitive Smart Materials with On/Off-Switchable Affinity to Biomedical Targets. ACS Nano 2020, 14 (2), 1792-1803.
42. Ding, Z.; Fong, R. B.; Long, C. J.; Stayton, P. S.; Hoffman, A. S., Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001, 411 (6833), 59-62.
43. Guo, Q.; Bai, Z.; Liu, Y.; Sun, Q., A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosens. Bioelectron. 2016, 77, 107-110.
44. Supuran, C. T., Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008, 7 (2), 168-181.
45. Innocenti, A.; Beyza Öztürk Sarıkaya, S.; Gülçin, İ.; Supuran, C. T., Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I–XIV with a series of natural product polyphenols and phenolic acids. Biorg. Med. Chem. 2010, 18 (6), 2159-2164.
46. MacLeod , C. M., The inhibition of the bacteriostatic action of sulfonamide drugs by substances of animal and bacterial origin. J. Exp. Med. 1940, 72 (3), 217-232.
47. Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B., et al., Carbonic Anhydrase as a Model for Biophysical and Physical-Organic Studies of Proteins and Protein−Ligand Binding. Chem. Rev. 2008, 108 (3), 946-1051.
48. Chan, H.-J.; Lin, X.-H.; Fan, S.-Y.; Ru Hwu, J.; Tan, K.-T., Rapid and Selective Labeling of Endogenous Transmembrane Proteins in Living Cells with a Difluorophenyl Ester Affinity-Based Probe. Chem. Asian J. 2020, 15 (21), 3416-3420.
49. Lin, K.-Y.; Hin Lam, C.; Lin, X.-H.; Hsu, J.-I.; Fan, S.-Y.; Gupta, N. K., et al., Improved Stabilities of Labeling Probes for the Selective Modification of Endogenous Proteins in Living Cells and In Vivo. Chem. Asian J. 2021, 16 (8), 937-948.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *