|
1. Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M. S.; Bjørklund, G., How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019, 59 (1), 72-88. 2. Zhai, F.; Huang, Y.; Li, C.; Wang, X.; Lai, K., Rapid Determination of Ractopamine in Swine Urine Using Surface-Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2011, 59 (18), 10023-10027. 3. Brambilla, G.; Cenci, T.; Franconi, F.; Galarini, R.; Macrı̀, A.; Rondoni, F.; Strozzi, M.; Loizzo, A., Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol. Lett. 2000, 114 (1), 47-53. 4. Chen, H.; Wang, L., Chapter 6 - Sugar Strategies for Biomass Biochemical Conversion. In Technologies for Biochemical Conversion of Biomass, Chen, H.; Wang, L., Eds. Academic Press: Oxford, 2017; pp 137-164. 5. Li, Y.-F.; Sun, Y.-M.; Beier, R. C.; Lei, H.-T.; Gee, S.; Hammock, B. D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y.-D.; Yang, J.-Y.; Xu, Z.-L., Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Analyt. Chem. 2017, 88, 25-40. 6. Zhang, T.; Lin, X.; Feng, J.; Luo, F.; Gao, H.; Wu, Y.; Deng, R.; He, Q., Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Microchim. Acta 2020, 187. 7. Shankaran, D. R.; Gobi, K. V.; Miura, N., Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators B Chem. 2007, 121 (1), 158-177. 8. Islam, T.; Eldamrawy, S. Novel strategies for the purication of biomolecules by anity chromatography: Generation and use of ceramic uorapatite binding peptides for the development of self-assembled systems and ligand-less adsorbents. 2013. 9. Haaft, R. t. MASS SPECTROMETRY AND MASS FLOW CONTROL; A CLOSER ION THEM. https://www.bronkhorst.com/int/blog-1/mass-spectrometry-and-mass-flow-control-a-closer-ion-them/. 10. Clark, M. F.; Adams, A. N., Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977, 34 (3), 475-83. 11. Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S., Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72 (1), 32-42. 12. Li, D.; Ying, Y.; Wu, J.; Niessner, R.; Knopp, D., Comparison of monomeric and polymeric horseradish peroxidase as labels in competitive ELISA for small molecule detection. Microchim. Acta 2013, 180 (7), 711-717. 13. Clark, L. C., Jr.; Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29-45. 14. Harper, A.; Anderson, M. R., Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction. Sensors 2010, 10 (9). 15. Zhang, W.; Wang, R.; Luo, F.; Wang, P.; Lin, Z., Miniaturized electrochemical sensors and their point-of-care applications. Chin. Chem. Lett. 2020, 31 (3), 589-600. 16. da Silva, E. T. S. G.; Souto, D. E. P.; Barragan, J. T. C.; de F. Giarola, J.; de Moraes, A. C. M.; Kubota, L. T., Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 2017, 4 (4), 778-794. 17. MENAFN How to Check Accuracy of a Glucose Meter. https://menafn.com/1101255745/How-to-Check-Accuracy-of-a-Glucose-Meter. 18. Wu, H.; Li, Y.; He, X.; Chen, L.; Zhang, Y., Colorimetric sensor based on 4-mercaptophenylboronic modified gold nanoparticles for rapid and selective detection of fluoride anion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 214, 393-398. 19. Parolo, C.; Merkoçi, A., Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev. 2013, 42 (2), 450-457. 20. Ge, X.; Asiri, A. M.; Du, D.; Wen, W.; Wang, S.; Lin, Y., Nanomaterial-enhanced paper-based biosensors. Trends Analyt. Chem. 2014, 58, 31-39. 21. Yamada, K.; Citterio, D.; Henry, C. S., “Dip-and-read” paper-based analytical devices using distance-based detection with color screening. Lab Chip 2018, 18 (10), 1485-1493. 22. Cate, D. M.; Adkins, J. A.; Mettakoonpitak, J.; Henry, C. S., Recent Developments in Paper-Based Microfluidic Devices. Anal. Chem. 2015, 87 (1), 19-41. 23. Mosley, G.; Pereira, D.; Han, Y.; Lee, S.; Wu, C.; Wu, B.; Kamei, D., Improved lateral-flow immunoassays for chlamydia and immunoglobulin M by sequential rehydration of two-phase system components within a paper-based diagnostic. Microchim. Acta 2017, 184. 24. Bahadır, E. B.; Sezgintürk, M. K., Lateral flow assays: Principles, designs and labels. Trends Analyt. Chem. 2016, 82, 286-306. 25. Sajid, M.; Kawde, A.-N.; Daud, M., Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19 (6), 689-705. 26. Lee, W.; Straube, S.; Sincic, R.; Noble, J. A.; Montoy, J. C.; Kornblith, A. E.; Prakash, A.; Wang, R.; Bainton, R.; Kurien, P., Clinical Evaluation of a COVID-19 Antibody Lateral Flow Assay using Point of Care Samples. medrxiv 2020, 2020.12.02.20242750. 27. Houston, H.; Gupta-Wright, A.; Toke-Bjolgerud, E.; Biggin-Lamming, J.; John, L., Diagnostic accuracy and utility of SARS-CoV-2 antigen lateral flow assays in medical admissions with possible COVID-19. J. Hosp. Infect. 2021, 110, 203-205. 28. Ragnesola, B.; Jin, D.; Lamb, C. C.; Shaz, B. H.; Hillyer, C. D.; Luchsinger, L. L., COVID19 antibody detection using lateral flow assay tests in a cohort of convalescent plasma donors. BMC Res. Notes 2020, 13 (1), 372. 29. Bhuniya, S.; Maiti, S.; Kim, E.-J.; Lee, H.; Sessler, J. L.; Hong, K. S.; Kim, J. S., An Activatable Theranostic for Targeted Cancer Therapy and Imaging. Angew. Chem. Int. Ed. 2014, 53 (17), 4469-4474. 30. Hama, Y.; Urano, Y.; Koyama, Y.; Kamiya, M.; Bernardo, M.; Paik, R.; Shin, I.; Paik, C.; Choyke, P.; Kobayashi, H., A Target Cell-Specific Activatable Fluorescence Probe for In vivo Molecular Imaging of Cancer Based on a Self-Quenched Avidin-Rhodamine Conjugate. Cancer Res. 2007, 67, 2791-9. 31. Abdollahi, M.; Momen-Heravi, F., Fluoride. In Encyclopedia of Toxicology (Third Edition), Wexler, P., Ed. Academic Press: Oxford, 2014; pp 606-610. 32. Singh, P. P.; Barjatiya, M. k.; Dhing, S.; Bhatnagar, R.; Kothari, S.; Dhar, V., Evidence suggesting that high intake of fluoride provokes nephrolithiasis in tribal populations. Urol. Res. 2001, 29 (4), 238-244. 33. Gazzano, E.; Bergandi, L.; Riganti, C.; Aldieri, E.; Doublier, S.; Costamagna, C.; Bosia, A.; Ghigo, D., Fluoride Effects: The Two Faces of Janus. Curr. Med. Chem. 2010, 17, 2431-41. 34. Zhou, K.; Ren, M.; Wang, L.; Li, Z.; Lin, W., A targetable fluorescent probe for real-time monitoring of fluoride ions in mitochondria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 777-782. 35. Kalita, A. C.; Murugavel, R., Fluoride Ion Sensing and Caging by a Preformed Molecular D4R Zinc Phosphate Heterocubane. Inorg. Chem. 2014, 53 (7), 3345-3353. 36. Zhou, Y.; Zhang, J. F.; Yoon, J., Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection. Chem. Rev. 2014, 114 (10), 5511-5571. 37. Udhayakumari, D., Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015–2019. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117817. 38. Vidal, E.; Lorenzetti, A. S.; Lista, A. G.; Domini, C. E., Micropaper-based analytical device (μPAD) for the simultaneous determination of nitrite and fluoride using a smartphone. Microchem. J. 2018, 143, 467-473. 39. Martin, A. J.; Synge, R. L., A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem. J. 1941, 35 (12), 1358-1368. 40. Strianese, M.; Staiano, M.; Ruggiero, G.; Labella, T.; Pellecchia, C.; D'Auria, S., Fluorescence-based biosensors. Methods Mol. Biol. 2012, 875, 193-216. 41. Staiano, M.; Bazzicalupo, P.; Rossi, M.; D'Auria, S., Glucose biosensors as models for the development of advanced protein-based biosensors. Mol. Biosyst. 2005, 1 (5-6), 354-362. 42. Ashton, T. D.; Jolliffe, K. A.; Pfeffer, F. M., Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem. Soc. Rev. 2015, 44 (14), 4547-4595. 43. Ke, B.; Chen, W.; Ni, N.; Cheng, Y.; Dai, C.; Dinh, H.; Wang, B., A fluorescent probe for rapid aqueous fluoride detection and cell imaging. Chem. Commun. 2013, 49 (25), 2494-2496. 44. Kumar, G. G. V.; Kesavan, M. P.; Sivaraman, G.; Rajesh, J., Colorimetric and NIR fluorescence receptors for F− ion detection in aqueous condition and its Live cell imaging. Sens. Actuators B Chem. 2018, 255, 3194-3206. 45. Ma, L.; Leng, T.; Wang, K.; Wang, C.; Shen, Y.; Zhu, W., A coumarin-based fluorescent and colorimetric chemosensor for rapid detection of fluoride ion. Tetrahedron 2017, 73 (10), 1306-1310. 46. Abedalwafa, M. A.; Li, Y.; Ni, C.; Yang, G.; Wang, L., Non-enzymatic colorimetric sensor strip based on melamine-functionalized gold nanoparticles assembled on polyamide nanofiber membranes for the detection of metronidazole. Anal. Methods 2019, 11 (29), 3706-3713. 47. Gonçalves, A. C.; Sato, N. C.; Santos, H. M.; Capelo, J. L.; Lodeiro, C.; dos Santos, A. A., The confidence of blue: A new highly selective bio-inspired coumarin emissive probe for fluoride recognition. Dyes Pigm. 2016, 135, 177-183. 48. Yong, X.; Su, M.; Wang, W.; Yan, Y.; Qu, J.; Liu, R., A naked-eye chemosensor for fluoride ions: a selective easy-to-prepare test paper. Org. Biomol. Chem. 2013, 11 (14), 2254-2257. 49. Jayasudha, P.; Manivannan, R.; Elango, K. P., Highly selective colorimetric receptors for detection of fluoride ion in aqueous solution based on quinone-imidazole ensemble—Influence of hydroxyl group. Sens. Actuators B Chem. 2016, 237, 230-238. 50. Tao, T.; Zhao, J.; Chen, H.; Mao, S.; Yu, J.; Huang, W., Precisely controlling fluorescence enhancement and high-contrast colorimetric assay in OFF-ON fluoride sensing based on a diketopyrrolopyrrole boronate ester. Dyes Pigm. 2019, 170, 107638. 51. Cantó, C.; Menzies, Keir J.; Auwerx, J., NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015, 22 (1), 31-53. 52. Eto, K.; Tsubamoto, Y.; Terauchi, Y.; Sugiyama, T.; Kishimoto, T.; Takahashi, N.; Yamauchi, N.; Kubota, N.; Murayama, S.; Aizawa, T.; Akanuma, Y.; Aizawa, S.; Kasai, H.; Yazaki, Y.; Kadowaki, T., Role of NADH Shuttle System in Glucose-Induced Activation of Mitochondrial Metabolism and Insulin Secretion. Science 1999, 283 (5404), 981. 53. Swenson, E., Does Aerobic Respiration Produce Carbon Dioxide or Hydrogen Ion and Bicarbonate? Anesthesiology 2018, 128, 1. 54. Tao, R.; Zhao, Y.; Chu, H.; Wang, A.; Zhu, J.; Chen, X.; Zou, Y.; Shi, M.; Liu, R.; Su, N.; Du, J.; Zhou, H.-M.; Zhu, L.; Qian, X.; Liu, H.; Loscalzo, J.; Yang, Y., Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat. Methods 2017, 14 (7), 720-728. 55. Schöndorf, D. C.; Ivanyuk, D.; Baden, P.; Sanchez-Martinez, A.; De Cicco, S.; Yu, C.; Giunta, I.; Schwarz, L. K.; Di Napoli, G.; Panagiotakopoulou, V.; Nestel, S.; Keatinge, M.; Pruszak, J.; Bandmann, O.; Heimrich, B.; Gasser, T.; Whitworth, A. J.; Deleidi, M., The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease. Cell Rep. 2018, 23 (10), 2976-2988. 56. Holper, L.; Ben-Shachar, D.; Mann, J., Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacol. 2018, 44. 57. Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P., Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757-772. 58. Liu, S.; Du, Z.; Li, P.; Li, F., Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid–diol binding. Biosens. Bioelectron. 2012, 35 (1), 443-446. 59. Liang, P.; Yu, H.; Guntupalli, B.; Xiao, Y., Paper-Based Device for Rapid Visualization of NADH Based on Dissolution of Gold Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7 (27), 15023-15030. 60. Roldán, M. D.; Pérez-Reinado, E.; Castillo, F.; Moreno-Vivián, C., Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev. 2008, 32 (3), 474-500. 61. Wilson, W. R.; Hay, M. P., Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11 (6), 393-410. 62. Kiyose, K.; Hanaoka, K.; Oushiki, D.; Nakamura, T.; Kajimura, M.; Suematsu, M.; Nishimatsu, H.; Yamane, T.; Terai, T.; Hirata, Y.; Nagano, T., Hypoxia-Sensitive Fluorescent Probes for in Vivo Real-Time Fluorescence Imaging of Acute Ischemia. J. Am. Chem. Soc. 2010, 132 (45), 15846-15848. 63. Shi, Y.; Zhang, S.; Zhang, X., A novel near-infrared fluorescent probe for selectively sensing nitroreductase (NTR) in an aqueous medium. Analyst 2013, 138 (7), 1952-1955. 64. Liu, B.-W.; Huang, P.-C.; Wu, F.-Y., A novel light-controlled colorimetric detection assay for nitroreductase based on p-aminophenol-catalyzed and NADH-mediated synthesis of silver nanoparticles. Anal. Methods 2021, 13 (19), 2223-2228. 65. Maji, S. K.; Sreejith, S.; Mandal, A. K.; Ma, X.; Zhao, Y., Immobilizing Gold Nanoparticles in Mesoporous Silica Covered Reduced Graphene Oxide: A Hybrid Material for Cancer Cell Detection through Hydrogen Peroxide Sensing. ACS Appl. Mater. Interfaces 2014, 6 (16), 13648-13656. 66. Yu, L.; He, C.; Zheng, Q.; Feng, L.; Xiong, L.; Xiao, Y., Dual Eu-MOFs based logic device and ratiometric fluorescence paper microchip for visual H2O2 assay. J. Mater. Chem. C 2020, 8 (10), 3562-3570. 67. Li, Y.; Bai, H.; Liu, Q.; Bao, J.; Han, M.; Dai, Z., A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles. Biosens. Bioelectron. 2010, 25 (10), 2356-2360. 68. Tyagi, M.; Tomar, M.; Gupta, V., NiO nanoparticle-based urea biosensor. Biosens Bioelectron 2013, 41, 110-5. 69. Rhee, S. G., H2O2, a Necessary Evil for Cell Signaling. Science 2006, 312 (5782), 1882-1883. 70. Finkel, T., Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194 (1), 7-15. 71. Galaris, D.; Skiada, V.; Barbouti, A., Redox signaling and cancer: The role of “labile” iron. Cancer Lett. 2008, 266 (1), 21-29. 72. Barnham, K. J.; Masters, C. L.; Bush, A. I., Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3 (3), 205-214. 73. Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F., Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox. Biol. 2018, 14, 450-464. 74. FDA, Code of Federal Regulations. 2018, 21, 178. 75. Wu, W.; Li, J.; Chen, L.; Ma, Z.; Zhang, W.; Liu, Z.; Cheng, Y.; Du, L.; Li, M., Bioluminescent Probe for Hydrogen Peroxide Imaging in Vitro and in Vivo. Anal. Chem. 2014, 86 (19), 9800-9806. 76. Ye, S.; Hananya, N.; Green, O.; Chen, H.; Zhao, A. Q.; Shen, J.; Shabat, D.; Yang, D., A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals. Angew. Chem. Int. Ed. 2020, 59 (34), 14326-14330. 77. Zhang, Y.; Bai, X.; Wang, X.; Shiu, K.-K.; Zhu, Y.; Jiang, H., Highly Sensitive Graphene–Pt Nanocomposites Amperometric Biosensor and Its Application in Living Cell H2O2 Detection. Anal. Chem. 2014, 86 (19), 9459-9465. 78. Wang, C.; Wang, Y.; Wang, G.; Huang, C.; Jia, N., A new mitochondria-targeting fluorescent probe for ratiometric detection of H2O2 in live cells. Anal. Chem. 2020, 1097, 230-237. 79. Gao, C.; Hossain, M. K.; Li, L.; Wahab, M. A.; Xiong, J.; Li, W., A colorimetric and fluorescence turn-on probe for the highly selective detection of hydrogen peroxide in aqueous solution. J. Photochem. Photobiol. A 2019, 368, 97-103. 80. Choudhury, R.; Ricketts, A. T.; Molina, D. G.; Paudel, P., A boronic acid based intramolecular charge transfer probe for colorimetric detection of hydrogen peroxide. Tetrahedron Lett. 2019, 60 (46), 151258. 81. Dai, H.; Lü, W.; Zuo, X.; Zhu, Q.; Pan, C.; Niu, X.; Liu, J.; Chen, H.; Chen, X., A novel biosensor based on boronic acid functionalized metal-organic frameworks for the determination of hydrogen peroxide released from living cells. Biosens. Bioelectron. 2017, 95, 131-137. 82. Zhang, W.; Niu, X.; Li, X.; He, Y.; Song, H.; Peng, Y.; Pan, J.; Qiu, F.; Zhao, H.; Lan, M., A smartphone-integrated ready-to-use paper-based sensor with mesoporous carbon-dispersed Pd nanoparticles as a highly active peroxidase mimic for H2O2 detection. Sens. Actuators B Chem. 2018, 265, 412-420. 83. Rismetov, B.; Ivandini, T. A.; Saepudin, E.; Einaga, Y., Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diam. Relat. Mater. 2014, 48, 88-95. 84. Liu, M.-M.; Li, S.-H.; Huang, D.-D.; Xu, Z.-W.; Wu, Y.-W.; Lei, Y.; Liu, A.-L., MoOx quantum dots with peroxidase-like activity on microfluidic paper-based analytical device for rapid colorimetric detection of H2O2 released from PC12 cells. Sens. Actuators B Chem. 2020, 305, 127512. 85. Lee, A. K.; Warren, B.; Lee, C. J.; McEvoy, J. W.; Matsushita, K.; Huang, E. S.; Sharrett, A. R.; Coresh, J.; Selvin, E., The Association of Severe Hypoglycemia With Incident Cardiovascular Events and Mortality in Adults With Type 2 Diabetes. Diabetes Care 2018, 41 (1), 104. 86. World Health, O. Global report on diabetes: executive summary; World Health Organization: Geneva, 2016, 2016. 87. Galant, A. L.; Kaufman, R. C.; Wilson, J. D., Glucose: Detection and analysis. Food Chem. 2015, 188, 149-160. 88. Belluzo, M. S.; Ribone, M. E.; Lagier, C. M., Assembling Amperometric Biosensors for Clinical Diagnostics. Sensors (Basel) 2008, 8 (3), 1366-1399. 89. Ornatska, M.; Sharpe, E.; Andreescu, D.; Andreescu, S., Paper Bioassay Based on Ceria Nanoparticles as Colorimetric Probes. Anal. Chem. 2011, 83 (11), 4273-4280. 90. Park, S.; Chung, T. D.; Kim, H. C., Nonenzymatic Glucose Detection Using Mesoporous Platinum. Anal. Chem. 2003, 75 (13), 3046-3049. 91. Hwang, D.-W.; Lee, S.; Seo, M.; Chung, T. D., Recent advances in electrochemical non-enzymatic glucose sensors – A review. Anal. Chem. 2018, 1033, 1-34. 92. Lee, S.; Lee, J.; Park, S.; Boo, H.; Kim, H. C.; Chung, T. D., Disposable non-enzymatic blood glucose sensing strip based on nanoporous platinum particles. Appl. Mater. Today 2018, 10, 24-29. 93. Tran, V.-K.; Ko, E.; Geng, Y.; Kim, M. K.; Jin, G. H.; Son, S. E.; Hur, W.; Seong, G. H., Micro-patterning of single-walled carbon nanotubes and its surface modification with gold nanoparticles for electrochemical paper-based non-enzymatic glucose sensor. J. Electroanal. Chem. 2018, 826, 29-37. 94. Park, S.; Boo, H.; Chung, T. D., Electrochemical non-enzymatic glucose sensors. Anal. Chem. 2006, 556 (1), 46-57. 95. Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T., Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chem. Biol. 2011, 18 (10), 1261-1272. 96. Wu, Y.-P.; Chew, C. Y.; Li, T.-N.; Chung, T.-H.; Chang, E.-H.; Lam, C. H.; Tan, K.-T., Target-activated streptavidin–biotin controlled binding probe. Chem. Sci. 2018, 9 (3), 770-776. 97. Chen, Y.-H.; Chien, W.-C.; Lee, D.-C.; Tan, K.-T., Signal Amplification and Detection of Small Molecules via the Activation of Streptavidin and Biotin Recognition. Anal. Chem. 2019, 91 (19), 12461-12467. 98. Chen, Y.-H.; Gupta, N. K.; Huang, H.-J.; Lam, C. H.; Huang, C.-L.; Tan, K.-T., Affinity-Switchable Lateral Flow Assay. Anal. Chem. 2021, 93 (13), 5556-5561. 99. Gstraunthaler, G., Alternatives to the use of fetal bovine serum: Serum-free cell culture. ALTEX 2003, 20, 275-81. 100. van Enter, B. J.; von Hauff, E., Challenges and perspectives in continuous glucose monitoring. Chem. Commun. 2018, 54 (40), 5032-5045. 101. Teymourian, H.; Barfidokht, A.; Wang, J., Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 2020, 49 (21), 7671-7709. 102. Urakami, T.; Suzuki, J.; Yoshida, A.; Saito, H.; Mugishima, H., Incidence of children with slowly progressive form of type 1 diabetes detected by the urine glucose screening at schools in the Tokyo Metropolitan Area. Diabetes Res. Clin. Pract. 2008, 80 (3), 473-476. 103. China, L. R. D. o. T. R. o. 道路交通安全規則. https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=K0040013&flno=114. |