帳號:guest(18.117.232.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃筱容
作者(外文):Huang, Hsiao-Jung
論文名稱(中文):可調控結合側向流量層析檢測分析
論文名稱(外文):Affinity-Switchable Lateral Flow Assay
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):林俊成
詹揚翔
口試委員(外文):Lin, Chun-Cheng
Chan, Yang-Hsiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:108023516
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:76
中文關鍵詞:側向流量層析檢測可調控式結合生物素探針小分子快篩
外文關鍵詞:affinity-switchable lateral flow assayaffinity-switchable biotin probelateral flow assay
相關次數:
  • 推薦推薦:0
  • 點閱點閱:477
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
側向流量層析檢測法 (Lateral flow assay, LFA) 為便攜式一次性使用診斷裝置,不僅操作簡單快速、成本低廉且容易判讀,亦可定性或半定量檢測目標分子,目前已被廣泛應用於許多領域之中,如居家檢測 (Home testing)、驗孕測試及感染疾病的預防等。現今側向流量層析檢測法的發展與應用性不斷提升,卻受限僅適用於大分子 (如蛋白質及核酸) 的檢測,而無法針對不具相對應的生物識別分子之酶活性和小分子進行監測。因此,我們發展出可調控式結合生物素探針 (Affinity-switchable biotin probe, ASB probe),並以奈米金為顯色載體,利用生物素與抗生物素蛋白的結合,對小分子及酶的活性進行偵測。於本研究中,我們透過在人類尿液及胎牛血清中監測多種小分子 (氟離子、NADH、過氧化氫、葡萄糖及乙醇) 以及酶活性 (Nitroreductase),以證明ASLFA的可行性。我們期許這個策略可被廣泛並且普及化應用於醫學及生物研究領域的即時診斷及快速篩檢。
Lateral flow assay (LFA) has been a portable diagnostic tool in many important fields where simple, rapid, low-cost and on-site detection is required, for applications such as home testing, pregnancy tests and infectious disease prevention. Nowadays, the development and applicability of LFA are generally used for the testing of proteins, nucleic acids and other macromolecules. However, the existing LFA approach is not applicable for the rapid testing of enzyme activities and small molecules without the corresponding binding partner. In this thesis, we introduce a generic affinity-switchable lateral flow assay (ASLFA) which is based on the switchable binding between the affinity-switchable biotin (ASB) probe and (strept)avidin protein. The ASLFA approach was demonstrated by testing small reactive molecules (F-, NADH, H2O2, Glucose and Ethanol) and activity of enzyme (Nitroreductase) in human urine and serum. We believe that this novel ASLFA approach will be widely used for rapid detection in basic biological research and medical diagnosis.
摘要 I
ABSTRACT II
謝誌 III
目錄 VI
著作列表 IX
第一章 緒論 1
1-1 小分子介紹 1
1-2 傳統小分子檢測方法 2
1-2.1 高效液相層析法 2
1-2.2 質譜分析法 3
1-2.3 酵素結合免疫吸附法 3
1-3 快速篩檢的發展 5
1-3.1 微型化電化學傳感器 5
1-3.2 比色法 6
1-3.3 試紙法的技術與發展 7
第二章 文獻回顧 9
2-1 氟化物之檢測 9
2-1.1 離子選擇電極 (Ion Selective Electrode, ISE) 10
2-1.2 螢光感測器 (Fluorescence Chemical Probes) 11
2-1.3 試紙分析技術 (Test Strip-based Colorimetric Sensor) 13
2-2 生物小分子NADH之檢測 15
2-3 硝基還原酶之檢測 18
2-4 過氧化氫 (H2O2) 之檢測 19
2-4.1 螢光感測器 (Fluorescence Chemical Probes) 20
2-4.2 比色感測器 (Colorimetry Sensor) 21
2-4.3 試紙分析技術 (Test Strip-based Colorimetric Sensor) 22
2-5 葡萄糖之檢測 23
2-5.1 酶檢測法 24
2-5.2 非酶檢測法 25
第三章 探針的構想與設計 27
3-1 生物素與抗生物素 27
3-1.1 籠閉生物素探針 28
3-2 探針設計 31
第四章 結果與討論 32
4-1 探針AUNP-ASB-F於LFA檢測氟離子之探討 32
4-1.1 探針AuNP-ASB-F偵測氟離子 34
4-1.2 探針AuNP-ASB-F偵測NADH及NTR 38
4-2 探針AUNP-ASB-H2O2於LFA檢測過氧化氫之探討 43
4-2.1 探針AuNP-ASB-H2O2偵測過氧化氫 44
4-2.2 探針AuNP-ASB-H2O2偵測葡萄糖 49
4-2.3 探針AuNP-ASB-H2O2偵測乙醇 56
第五章 結論 59
第六章 實驗部分 60
6-1 實驗藥品與器材 60
6-2側向流量層析實驗藥品配製方法及試紙製備 60
6-2.1 奈米金粒子 (AuNPs) 製備 60
6-2.2 探針ASB-F結合奈米金粒子製備 61
6-2.3 抗體 (Mouse IgG, Ab1) 結合奈米金粒子製備 61
6-2.4 探針AuNPs-ASB-F測試條件 61
6-2.5 探針ASB-H2O2結合奈米金粒子製備 62
6-2.6 探針AuNPs-ASB-H2O2測試條件 63
參考文獻 65
附錄 73
1. Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M. S.; Bjørklund, G., How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019, 59 (1), 72-88.
2. Zhai, F.; Huang, Y.; Li, C.; Wang, X.; Lai, K., Rapid Determination of Ractopamine in Swine Urine Using Surface-Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2011, 59 (18), 10023-10027.
3. Brambilla, G.; Cenci, T.; Franconi, F.; Galarini, R.; Macrı̀, A.; Rondoni, F.; Strozzi, M.; Loizzo, A., Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol. Lett. 2000, 114 (1), 47-53.
4. Chen, H.; Wang, L., Chapter 6 - Sugar Strategies for Biomass Biochemical Conversion. In Technologies for Biochemical Conversion of Biomass, Chen, H.; Wang, L., Eds. Academic Press: Oxford, 2017; pp 137-164.
5. Li, Y.-F.; Sun, Y.-M.; Beier, R. C.; Lei, H.-T.; Gee, S.; Hammock, B. D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y.-D.; Yang, J.-Y.; Xu, Z.-L., Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Analyt. Chem. 2017, 88, 25-40.
6. Zhang, T.; Lin, X.; Feng, J.; Luo, F.; Gao, H.; Wu, Y.; Deng, R.; He, Q., Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Microchim. Acta 2020, 187.
7. Shankaran, D. R.; Gobi, K. V.; Miura, N., Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators B Chem. 2007, 121 (1), 158-177.
8. Islam, T.; Eldamrawy, S. Novel strategies for the purication of biomolecules by anity chromatography: Generation and use of ceramic uorapatite binding peptides for the development of self-assembled systems and ligand-less adsorbents. 2013.
9. Haaft, R. t. MASS SPECTROMETRY AND MASS FLOW CONTROL; A CLOSER ION THEM. https://www.bronkhorst.com/int/blog-1/mass-spectrometry-and-mass-flow-control-a-closer-ion-them/.
10. Clark, M. F.; Adams, A. N., Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977, 34 (3), 475-83.
11. Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S., Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72 (1), 32-42.
12. Li, D.; Ying, Y.; Wu, J.; Niessner, R.; Knopp, D., Comparison of monomeric and polymeric horseradish peroxidase as labels in competitive ELISA for small molecule detection. Microchim. Acta 2013, 180 (7), 711-717.
13. Clark, L. C., Jr.; Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29-45.
14. Harper, A.; Anderson, M. R., Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction. Sensors 2010, 10 (9).
15. Zhang, W.; Wang, R.; Luo, F.; Wang, P.; Lin, Z., Miniaturized electrochemical sensors and their point-of-care applications. Chin. Chem. Lett. 2020, 31 (3), 589-600.
16. da Silva, E. T. S. G.; Souto, D. E. P.; Barragan, J. T. C.; de F. Giarola, J.; de Moraes, A. C. M.; Kubota, L. T., Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 2017, 4 (4), 778-794.
17. MENAFN How to Check Accuracy of a Glucose Meter. https://menafn.com/1101255745/How-to-Check-Accuracy-of-a-Glucose-Meter.
18. Wu, H.; Li, Y.; He, X.; Chen, L.; Zhang, Y., Colorimetric sensor based on 4-mercaptophenylboronic modified gold nanoparticles for rapid and selective detection of fluoride anion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 214, 393-398.
19. Parolo, C.; Merkoçi, A., Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev. 2013, 42 (2), 450-457.
20. Ge, X.; Asiri, A. M.; Du, D.; Wen, W.; Wang, S.; Lin, Y., Nanomaterial-enhanced paper-based biosensors. Trends Analyt. Chem. 2014, 58, 31-39.
21. Yamada, K.; Citterio, D.; Henry, C. S., “Dip-and-read” paper-based analytical devices using distance-based detection with color screening. Lab Chip 2018, 18 (10), 1485-1493.
22. Cate, D. M.; Adkins, J. A.; Mettakoonpitak, J.; Henry, C. S., Recent Developments in Paper-Based Microfluidic Devices. Anal. Chem. 2015, 87 (1), 19-41.
23. Mosley, G.; Pereira, D.; Han, Y.; Lee, S.; Wu, C.; Wu, B.; Kamei, D., Improved lateral-flow immunoassays for chlamydia and immunoglobulin M by sequential rehydration of two-phase system components within a paper-based diagnostic. Microchim. Acta 2017, 184.
24. Bahadır, E. B.; Sezgintürk, M. K., Lateral flow assays: Principles, designs and labels. Trends Analyt. Chem. 2016, 82, 286-306.
25. Sajid, M.; Kawde, A.-N.; Daud, M., Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19 (6), 689-705.
26. Lee, W.; Straube, S.; Sincic, R.; Noble, J. A.; Montoy, J. C.; Kornblith, A. E.; Prakash, A.; Wang, R.; Bainton, R.; Kurien, P., Clinical Evaluation of a COVID-19 Antibody Lateral Flow Assay using Point of Care Samples. medrxiv 2020, 2020.12.02.20242750.
27. Houston, H.; Gupta-Wright, A.; Toke-Bjolgerud, E.; Biggin-Lamming, J.; John, L., Diagnostic accuracy and utility of SARS-CoV-2 antigen lateral flow assays in medical admissions with possible COVID-19. J. Hosp. Infect. 2021, 110, 203-205.
28. Ragnesola, B.; Jin, D.; Lamb, C. C.; Shaz, B. H.; Hillyer, C. D.; Luchsinger, L. L., COVID19 antibody detection using lateral flow assay tests in a cohort of convalescent plasma donors. BMC Res. Notes 2020, 13 (1), 372.
29. Bhuniya, S.; Maiti, S.; Kim, E.-J.; Lee, H.; Sessler, J. L.; Hong, K. S.; Kim, J. S., An Activatable Theranostic for Targeted Cancer Therapy and Imaging. Angew. Chem. Int. Ed. 2014, 53 (17), 4469-4474.
30. Hama, Y.; Urano, Y.; Koyama, Y.; Kamiya, M.; Bernardo, M.; Paik, R.; Shin, I.; Paik, C.; Choyke, P.; Kobayashi, H., A Target Cell-Specific Activatable Fluorescence Probe for In vivo Molecular Imaging of Cancer Based on a Self-Quenched Avidin-Rhodamine Conjugate. Cancer Res. 2007, 67, 2791-9.
31. Abdollahi, M.; Momen-Heravi, F., Fluoride. In Encyclopedia of Toxicology (Third Edition), Wexler, P., Ed. Academic Press: Oxford, 2014; pp 606-610.
32. Singh, P. P.; Barjatiya, M. k.; Dhing, S.; Bhatnagar, R.; Kothari, S.; Dhar, V., Evidence suggesting that high intake of fluoride provokes nephrolithiasis in tribal populations. Urol. Res. 2001, 29 (4), 238-244.
33. Gazzano, E.; Bergandi, L.; Riganti, C.; Aldieri, E.; Doublier, S.; Costamagna, C.; Bosia, A.; Ghigo, D., Fluoride Effects: The Two Faces of Janus. Curr. Med. Chem. 2010, 17, 2431-41.
34. Zhou, K.; Ren, M.; Wang, L.; Li, Z.; Lin, W., A targetable fluorescent probe for real-time monitoring of fluoride ions in mitochondria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 777-782.
35. Kalita, A. C.; Murugavel, R., Fluoride Ion Sensing and Caging by a Preformed Molecular D4R Zinc Phosphate Heterocubane. Inorg. Chem. 2014, 53 (7), 3345-3353.
36. Zhou, Y.; Zhang, J. F.; Yoon, J., Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection. Chem. Rev. 2014, 114 (10), 5511-5571.
37. Udhayakumari, D., Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015–2019. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117817.
38. Vidal, E.; Lorenzetti, A. S.; Lista, A. G.; Domini, C. E., Micropaper-based analytical device (μPAD) for the simultaneous determination of nitrite and fluoride using a smartphone. Microchem. J. 2018, 143, 467-473.
39. Martin, A. J.; Synge, R. L., A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem. J. 1941, 35 (12), 1358-1368.
40. Strianese, M.; Staiano, M.; Ruggiero, G.; Labella, T.; Pellecchia, C.; D'Auria, S., Fluorescence-based biosensors. Methods Mol. Biol. 2012, 875, 193-216.
41. Staiano, M.; Bazzicalupo, P.; Rossi, M.; D'Auria, S., Glucose biosensors as models for the development of advanced protein-based biosensors. Mol. Biosyst. 2005, 1 (5-6), 354-362.
42. Ashton, T. D.; Jolliffe, K. A.; Pfeffer, F. M., Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem. Soc. Rev. 2015, 44 (14), 4547-4595.
43. Ke, B.; Chen, W.; Ni, N.; Cheng, Y.; Dai, C.; Dinh, H.; Wang, B., A fluorescent probe for rapid aqueous fluoride detection and cell imaging. Chem. Commun. 2013, 49 (25), 2494-2496.
44. Kumar, G. G. V.; Kesavan, M. P.; Sivaraman, G.; Rajesh, J., Colorimetric and NIR fluorescence receptors for F− ion detection in aqueous condition and its Live cell imaging. Sens. Actuators B Chem. 2018, 255, 3194-3206.
45. Ma, L.; Leng, T.; Wang, K.; Wang, C.; Shen, Y.; Zhu, W., A coumarin-based fluorescent and colorimetric chemosensor for rapid detection of fluoride ion. Tetrahedron 2017, 73 (10), 1306-1310.
46. Abedalwafa, M. A.; Li, Y.; Ni, C.; Yang, G.; Wang, L., Non-enzymatic colorimetric sensor strip based on melamine-functionalized gold nanoparticles assembled on polyamide nanofiber membranes for the detection of metronidazole. Anal. Methods 2019, 11 (29), 3706-3713.
47. Gonçalves, A. C.; Sato, N. C.; Santos, H. M.; Capelo, J. L.; Lodeiro, C.; dos Santos, A. A., The confidence of blue: A new highly selective bio-inspired coumarin emissive probe for fluoride recognition. Dyes Pigm. 2016, 135, 177-183.
48. Yong, X.; Su, M.; Wang, W.; Yan, Y.; Qu, J.; Liu, R., A naked-eye chemosensor for fluoride ions: a selective easy-to-prepare test paper. Org. Biomol. Chem. 2013, 11 (14), 2254-2257.
49. Jayasudha, P.; Manivannan, R.; Elango, K. P., Highly selective colorimetric receptors for detection of fluoride ion in aqueous solution based on quinone-imidazole ensemble—Influence of hydroxyl group. Sens. Actuators B Chem. 2016, 237, 230-238.
50. Tao, T.; Zhao, J.; Chen, H.; Mao, S.; Yu, J.; Huang, W., Precisely controlling fluorescence enhancement and high-contrast colorimetric assay in OFF-ON fluoride sensing based on a diketopyrrolopyrrole boronate ester. Dyes Pigm. 2019, 170, 107638.
51. Cantó, C.; Menzies, Keir J.; Auwerx, J., NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015, 22 (1), 31-53.
52. Eto, K.; Tsubamoto, Y.; Terauchi, Y.; Sugiyama, T.; Kishimoto, T.; Takahashi, N.; Yamauchi, N.; Kubota, N.; Murayama, S.; Aizawa, T.; Akanuma, Y.; Aizawa, S.; Kasai, H.; Yazaki, Y.; Kadowaki, T., Role of NADH Shuttle System in Glucose-Induced Activation of Mitochondrial Metabolism and Insulin Secretion. Science 1999, 283 (5404), 981.
53. Swenson, E., Does Aerobic Respiration Produce Carbon Dioxide or Hydrogen Ion and Bicarbonate? Anesthesiology 2018, 128, 1.
54. Tao, R.; Zhao, Y.; Chu, H.; Wang, A.; Zhu, J.; Chen, X.; Zou, Y.; Shi, M.; Liu, R.; Su, N.; Du, J.; Zhou, H.-M.; Zhu, L.; Qian, X.; Liu, H.; Loscalzo, J.; Yang, Y., Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat. Methods 2017, 14 (7), 720-728.
55. Schöndorf, D. C.; Ivanyuk, D.; Baden, P.; Sanchez-Martinez, A.; De Cicco, S.; Yu, C.; Giunta, I.; Schwarz, L. K.; Di Napoli, G.; Panagiotakopoulou, V.; Nestel, S.; Keatinge, M.; Pruszak, J.; Bandmann, O.; Heimrich, B.; Gasser, T.; Whitworth, A. J.; Deleidi, M., The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease. Cell Rep. 2018, 23 (10), 2976-2988.
56. Holper, L.; Ben-Shachar, D.; Mann, J., Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacol. 2018, 44.
57. Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P., Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757-772.
58. Liu, S.; Du, Z.; Li, P.; Li, F., Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid–diol binding. Biosens. Bioelectron. 2012, 35 (1), 443-446.
59. Liang, P.; Yu, H.; Guntupalli, B.; Xiao, Y., Paper-Based Device for Rapid Visualization of NADH Based on Dissolution of Gold Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7 (27), 15023-15030.
60. Roldán, M. D.; Pérez-Reinado, E.; Castillo, F.; Moreno-Vivián, C., Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev. 2008, 32 (3), 474-500.
61. Wilson, W. R.; Hay, M. P., Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11 (6), 393-410.
62. Kiyose, K.; Hanaoka, K.; Oushiki, D.; Nakamura, T.; Kajimura, M.; Suematsu, M.; Nishimatsu, H.; Yamane, T.; Terai, T.; Hirata, Y.; Nagano, T., Hypoxia-Sensitive Fluorescent Probes for in Vivo Real-Time Fluorescence Imaging of Acute Ischemia. J. Am. Chem. Soc. 2010, 132 (45), 15846-15848.
63. Shi, Y.; Zhang, S.; Zhang, X., A novel near-infrared fluorescent probe for selectively sensing nitroreductase (NTR) in an aqueous medium. Analyst 2013, 138 (7), 1952-1955.
64. Liu, B.-W.; Huang, P.-C.; Wu, F.-Y., A novel light-controlled colorimetric detection assay for nitroreductase based on p-aminophenol-catalyzed and NADH-mediated synthesis of silver nanoparticles. Anal. Methods 2021, 13 (19), 2223-2228.
65. Maji, S. K.; Sreejith, S.; Mandal, A. K.; Ma, X.; Zhao, Y., Immobilizing Gold Nanoparticles in Mesoporous Silica Covered Reduced Graphene Oxide: A Hybrid Material for Cancer Cell Detection through Hydrogen Peroxide Sensing. ACS Appl. Mater. Interfaces 2014, 6 (16), 13648-13656.
66. Yu, L.; He, C.; Zheng, Q.; Feng, L.; Xiong, L.; Xiao, Y., Dual Eu-MOFs based logic device and ratiometric fluorescence paper microchip for visual H2O2 assay. J. Mater. Chem. C 2020, 8 (10), 3562-3570.
67. Li, Y.; Bai, H.; Liu, Q.; Bao, J.; Han, M.; Dai, Z., A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles. Biosens. Bioelectron. 2010, 25 (10), 2356-2360.
68. Tyagi, M.; Tomar, M.; Gupta, V., NiO nanoparticle-based urea biosensor. Biosens Bioelectron 2013, 41, 110-5.
69. Rhee, S. G., H2O2, a Necessary Evil for Cell Signaling. Science 2006, 312 (5782), 1882-1883.
70. Finkel, T., Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194 (1), 7-15.
71. Galaris, D.; Skiada, V.; Barbouti, A., Redox signaling and cancer: The role of “labile” iron. Cancer Lett. 2008, 266 (1), 21-29.
72. Barnham, K. J.; Masters, C. L.; Bush, A. I., Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3 (3), 205-214.
73. Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F., Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox. Biol. 2018, 14, 450-464.
74. FDA, Code of Federal Regulations. 2018, 21, 178.
75. Wu, W.; Li, J.; Chen, L.; Ma, Z.; Zhang, W.; Liu, Z.; Cheng, Y.; Du, L.; Li, M., Bioluminescent Probe for Hydrogen Peroxide Imaging in Vitro and in Vivo. Anal. Chem. 2014, 86 (19), 9800-9806.
76. Ye, S.; Hananya, N.; Green, O.; Chen, H.; Zhao, A. Q.; Shen, J.; Shabat, D.; Yang, D., A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals. Angew. Chem. Int. Ed. 2020, 59 (34), 14326-14330.
77. Zhang, Y.; Bai, X.; Wang, X.; Shiu, K.-K.; Zhu, Y.; Jiang, H., Highly Sensitive Graphene–Pt Nanocomposites Amperometric Biosensor and Its Application in Living Cell H2O2 Detection. Anal. Chem. 2014, 86 (19), 9459-9465.
78. Wang, C.; Wang, Y.; Wang, G.; Huang, C.; Jia, N., A new mitochondria-targeting fluorescent probe for ratiometric detection of H2O2 in live cells. Anal. Chem. 2020, 1097, 230-237.
79. Gao, C.; Hossain, M. K.; Li, L.; Wahab, M. A.; Xiong, J.; Li, W., A colorimetric and fluorescence turn-on probe for the highly selective detection of hydrogen peroxide in aqueous solution. J. Photochem. Photobiol. A 2019, 368, 97-103.
80. Choudhury, R.; Ricketts, A. T.; Molina, D. G.; Paudel, P., A boronic acid based intramolecular charge transfer probe for colorimetric detection of hydrogen peroxide. Tetrahedron Lett. 2019, 60 (46), 151258.
81. Dai, H.; Lü, W.; Zuo, X.; Zhu, Q.; Pan, C.; Niu, X.; Liu, J.; Chen, H.; Chen, X., A novel biosensor based on boronic acid functionalized metal-organic frameworks for the determination of hydrogen peroxide released from living cells. Biosens. Bioelectron. 2017, 95, 131-137.
82. Zhang, W.; Niu, X.; Li, X.; He, Y.; Song, H.; Peng, Y.; Pan, J.; Qiu, F.; Zhao, H.; Lan, M., A smartphone-integrated ready-to-use paper-based sensor with mesoporous carbon-dispersed Pd nanoparticles as a highly active peroxidase mimic for H2O2 detection. Sens. Actuators B Chem. 2018, 265, 412-420.
83. Rismetov, B.; Ivandini, T. A.; Saepudin, E.; Einaga, Y., Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diam. Relat. Mater. 2014, 48, 88-95.
84. Liu, M.-M.; Li, S.-H.; Huang, D.-D.; Xu, Z.-W.; Wu, Y.-W.; Lei, Y.; Liu, A.-L., MoOx quantum dots with peroxidase-like activity on microfluidic paper-based analytical device for rapid colorimetric detection of H2O2 released from PC12 cells. Sens. Actuators B Chem. 2020, 305, 127512.
85. Lee, A. K.; Warren, B.; Lee, C. J.; McEvoy, J. W.; Matsushita, K.; Huang, E. S.; Sharrett, A. R.; Coresh, J.; Selvin, E., The Association of Severe Hypoglycemia With Incident Cardiovascular Events and Mortality in Adults With Type 2 Diabetes. Diabetes Care 2018, 41 (1), 104.
86. World Health, O. Global report on diabetes: executive summary; World Health Organization: Geneva, 2016, 2016.
87. Galant, A. L.; Kaufman, R. C.; Wilson, J. D., Glucose: Detection and analysis. Food Chem. 2015, 188, 149-160.
88. Belluzo, M. S.; Ribone, M. E.; Lagier, C. M., Assembling Amperometric Biosensors for Clinical Diagnostics. Sensors (Basel) 2008, 8 (3), 1366-1399.
89. Ornatska, M.; Sharpe, E.; Andreescu, D.; Andreescu, S., Paper Bioassay Based on Ceria Nanoparticles as Colorimetric Probes. Anal. Chem. 2011, 83 (11), 4273-4280.
90. Park, S.; Chung, T. D.; Kim, H. C., Nonenzymatic Glucose Detection Using Mesoporous Platinum. Anal. Chem. 2003, 75 (13), 3046-3049.
91. Hwang, D.-W.; Lee, S.; Seo, M.; Chung, T. D., Recent advances in electrochemical non-enzymatic glucose sensors – A review. Anal. Chem. 2018, 1033, 1-34.
92. Lee, S.; Lee, J.; Park, S.; Boo, H.; Kim, H. C.; Chung, T. D., Disposable non-enzymatic blood glucose sensing strip based on nanoporous platinum particles. Appl. Mater. Today 2018, 10, 24-29.
93. Tran, V.-K.; Ko, E.; Geng, Y.; Kim, M. K.; Jin, G. H.; Son, S. E.; Hur, W.; Seong, G. H., Micro-patterning of single-walled carbon nanotubes and its surface modification with gold nanoparticles for electrochemical paper-based non-enzymatic glucose sensor. J. Electroanal. Chem. 2018, 826, 29-37.
94. Park, S.; Boo, H.; Chung, T. D., Electrochemical non-enzymatic glucose sensors. Anal. Chem. 2006, 556 (1), 46-57.
95. Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T., Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chem. Biol. 2011, 18 (10), 1261-1272.
96. Wu, Y.-P.; Chew, C. Y.; Li, T.-N.; Chung, T.-H.; Chang, E.-H.; Lam, C. H.; Tan, K.-T., Target-activated streptavidin–biotin controlled binding probe. Chem. Sci. 2018, 9 (3), 770-776.
97. Chen, Y.-H.; Chien, W.-C.; Lee, D.-C.; Tan, K.-T., Signal Amplification and Detection of Small Molecules via the Activation of Streptavidin and Biotin Recognition. Anal. Chem. 2019, 91 (19), 12461-12467.
98. Chen, Y.-H.; Gupta, N. K.; Huang, H.-J.; Lam, C. H.; Huang, C.-L.; Tan, K.-T., Affinity-Switchable Lateral Flow Assay. Anal. Chem. 2021, 93 (13), 5556-5561.
99. Gstraunthaler, G., Alternatives to the use of fetal bovine serum: Serum-free cell culture. ALTEX 2003, 20, 275-81.
100. van Enter, B. J.; von Hauff, E., Challenges and perspectives in continuous glucose monitoring. Chem. Commun. 2018, 54 (40), 5032-5045.
101. Teymourian, H.; Barfidokht, A.; Wang, J., Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 2020, 49 (21), 7671-7709.
102. Urakami, T.; Suzuki, J.; Yoshida, A.; Saito, H.; Mugishima, H., Incidence of children with slowly progressive form of type 1 diabetes detected by the urine glucose screening at schools in the Tokyo Metropolitan Area. Diabetes Res. Clin. Pract. 2008, 80 (3), 473-476.
103. China, L. R. D. o. T. R. o. 道路交通安全規則. https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=K0040013&flno=114.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *