|
1. Dougherty, T. J.; Pucci, M. J., Antibiotic discovery and development. Springer Science & Business Media: 2011. 2. Wang, Y.-P.; Lei, Q.-Y., Metabolite sensing and signaling in cell metabolism. Signal Transduct. Target. Ther. 2018, 3 (1), 1-9. 3. Efeyan, A.; Comb, W. C.; Sabatini, D. M., Nutrient-sensing mechanisms and pathways. Nature 2015, 517 (7534), 302-310. 4. López-Otín, C.; Galluzzi, L.; Freije, J. M.; Madeo, F.; Kroemer, G., Metabolic control of longevity. Cell 2016, 166 (4), 802-821. 5. Xiong, Y.; McCormack, M.; Li, L.; Hall, Q.; Xiang, C.; Sheen, J., Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 2013, 496 (7444), 181-186. 6. Madison, L. L.; Lochner, A.; Wulff, J., Ethanol-induced hypoglycemia: II. Mechanism of suppression of hepatic gluconeogenesis. Diabetes 1967, 16 (4), 252-258. 7. Tilton, W.; Seaman, C.; Carriero, D.; Piomelli, S., Regulation of glycolysis in the erythrocyte: role of the lactate/pyruvate and NAD/NADH ratios. J. Lab. Clin. Med. 1991, 118 (2), 146-152. 8. Fukuda, J.; Tsujimura, S.; Kano, K., Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle. Electrochim. Acta 2008, 54 (2), 328-333. 9. Nakahata, Y.; Sahar, S.; Astarita, G.; Kaluzova, M.; Sassone-Corsi, P., Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009, 324 (5927), 654-657. 10. VALERO, E.; VARÓN, R.; GARCÍA-CARMONA, F., Kinetics of a self-amplifying substrate cycle: ADP–ATP cycling assay. Biochem. J. 2000, 350 (1), 237-243. 11. Ainscow, E. K.; Brand, M. D., Top‐down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Eur. J. Biochem. 1999, 263 (3), 671-685. 12. Des Rosiers, C.; Di Donato, L.; Comte, B.; Laplante, A.; Marcoux, C.; David, F.; Fernandez, C. A.; Brunengraber, H., Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver: reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis. J. Biol. Chem. 1995, 270 (17), 10027-10036. 13. Raymond, P.; Al-Ani, A.; Pradet, A., ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starchy germinating seeds. Plant Physiol. 1985, 79 (3), 879-884. 14. Cairns, R. A.; Harris, I. S.; Mak, T. W., Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11 (2), 85-95. 15. Welink, J.; Yang, E.; Hughes, N.; Rago, B.; Woolf, E.; Sydor, J.; Coppola, L.; Ackermann, B.; Li, W.; Alley, S. C., 2017 White Paper on recent issues in bioanalysis: aren't BMV guidance/guidelines ‘Scientific’?(Part 1–LCMS: small molecules, peptides and small molecule biomarkers). Bioanalysis 2017, 9 (22), 1807-1825. 16. Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S. S.; Wohlgemuth, G.; Barupal, D. K.; Showalter, M. R.; Arita, M., Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37 (4), 513-532. 17. Jeong, J.-W.; Oh, J.-H.; Ji, Y.-G.; Shin, Y.-M.; Lee, M. H.; Kang, N. S.; Lee, W.; Kim, S.-S.; Kim, T.-Y.; Koo, T.-S., Liquid chromatography–tandem mass spectrometry of recombinant human extracellular superoxide dismutase (rhSOD3) in mouse plasma and its application to pharmacokinetic study. J. Pharm. Biomed. Anal. 2019, 164, 590-597. 18. Papadopoulou, A.; Frazier, R. A., Characterization of protein–polyphenol interactions. Trends Food Sci. Technol. 2004, 15 (3-4), 186-190. 19. Evensen, N. A.; Braun, P. C., The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can. J. Microbiol. 2009, 55 (9), 1033-1039. 20. Santilli, G.; Piotrowska, I.; Cantilena, S.; Chayka, O.; D'Alicarnasso, M.; Morgenstern, D. A.; Himoudi, N.; Pearson, K.; Anderson, J.; Thrasher, A. J., Polyphenol E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin. Cancer Res. 2013, 19 (5), 1116-1125. 21. Lucci, P.; Saurina, J.; Núñez, O., Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC-Trends Anal. Chem. 2017, 88, 1-24. 22. Puigventós, L.; Navarro, M.; Alechaga, É.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L., Determination of polyphenolic profiles by liquid chromatography-electrospray-tandem mass spectrometry for the authentication of fruit extracts. Anal. Bioanal. Chem. 2015, 407 (2), 597-608. 23. Natić, M. M.; Dabić, D. Č.; Papetti, A.; Akšić, M. M. F.; Ognjanov, V.; Ljubojević, M.; Tešić, Ž. L., Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128-136. 24. Melliou, E.; Zweigenbaum, J. A.; Mitchell, A. E., Ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry quantitation of polyphenols and secoiridoids in California-style black ripe olives and dry salt-cured olives. J. Agric. Food Chem. 2015, 63 (9), 2400-2405. 25. Jerman Klen, T.; Golc Wondra, A.; Vrhovšek, U. k.; Mozetič Vodopivec, B., Phenolic profiling of olives and olive oil process-derived matrices using UPLC-DAD-ESI-QTOF-HRMS analysis. J. Agric. Food Chem. 2015, 63 (15), 3859-3872. 26. Gan, S. D.; Patel, K. R., Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Investig. Dermatol. 2013, 133 (9), e12. 27. Sesay, A. M.; Micheli, L.; Tervo, P.; Palleschi, G.; Virtanen, V., Development of a competitive immunoassay for the determination of cortisol in human saliva. Anal. Biochem. 2013, 434 (2), 308-314. 28. Aydin, S., A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4-15. 29. Watanabe, E.; Miyake, S.; Yogo, Y., Review of enzyme-linked immunosorbent assays (ELISAs) for analyses of neonicotinoid insecticides in agro-environments. J. Agric. Food Chem. 2013, 61 (51), 12459-12472. 30. Li, K.; Li, Q. X., Development of an enzyme-linked immunosorbent assay for the insecticide imidacloprid. J. Agric. Food Chem. 2000, 48 (8), 3378-3382. 31. Kim, H.-J.; Shelver, W. L.; Li, Q. X., Monoclonal antibody-based enzyme-linked immunosorbent assay for the insecticide imidacloprid. Anal. Chim. Acta 2004, 509 (1), 111-118. 32. Wang, R.; Wang, Z.; Yang, H.; Wang, Y.; Deng, A., Highly sensitive and specific detection of neonicotinoid insecticide imidacloprid in environmental and food samples by a polyclonal antibody‐based enzyme‐linked immunosorbent assay. J. Sci. Food Agric. 2012, 92 (6), 1253-1260. 33. Wanatabe, S.; Ito, S.; Kamata, Y.; Omoda, N.; Yamazaki, T.; Munakata, H.; Kaneko, T.; Yuasa, Y., Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. Anal. Chim. Acta 2001, 427 (2), 211-219. 34. Liu, Z.; Li, M.; Shi, H.; Wang, M., Development and evaluation of an enzyme-linked immunosorbent assay for the determination of thiacloprid in agricultural samples. Food Anal. Methods 2013, 6 (2), 691-697. 35. Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S., Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72 (1), 32-42. 36. Vavers, E.; Zvejniece, L.; Maurice, T.; Dambrova, M., Allosteric modulators of sigma-1 receptor: a review. Front. Pharmacol. 2019, 10, 223. 37. Conn, P. J.; Christopoulos, A.; Lindsley, C. W., Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 2009, 8 (1), 41-54. 38. Lindsley, C. W.; Emmitte, K. A.; Hopkins, C. R.; Bridges, T. M.; Gregory, K. J.; Niswender, C. M.; Conn, P. J., Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem. Rev. 2016, 116 (11), 6707-6741. 39. Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L., How many drug targets are there? Nat. Rev. Drug Discov. 2006, 5 (12), 993-996. 40. Rasmussen, S. G.; DeVree, B. T.; Zou, Y.; Kruse, A. C.; Chung, K. Y.; Kobilka, T. S.; Thian, F. S.; Chae, P. S.; Pardon, E.; Calinski, D., Crystal structure of the β 2 adrenergic receptor–Gs protein complex. Nature 2011, 477 (7366), 549-555. 41. Deuschle, K.; Okumoto, S.; Fehr, M.; Looger, L. L.; Kozhukh, L.; Frommer, W. B., Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci. 2005, 14 (9), 2304-2314. 42. Lindenburg, L.; Merkx, M., Engineering genetically encoded FRET sensors. Sensors 2014, 14 (7), 11691-11713. 43. Liang, R.; Broussard, G. J.; Tian, L., Imaging chemical neurotransmission with genetically encoded fluorescent sensors. ACS Chem. Neurosci. 2015, 6 (1), 84-93. 44. Broussard, J. A.; Rappaz, B.; Webb, D. J.; Brown, C. M., Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protoc. 2013, 8 (2), 265. 45. Brun, M. A.; Tan, K.-T.; Nakata, E.; Hinner, M. J.; Johnsson, K., Semisynthetic fluorescent sensor proteins based on self-labeling protein tags. J. Am. Chem. Soc. 2009, 131 (16), 5873-5884. 46. Brun, M. A.; Griss, R.; Reymond, L.; Tan, K.-T.; Piguet, J.; Peters, R. J.; Vogel, H.; Johnsson, K., Semisynthesis of fluorescent metabolite sensors on cell surfaces. J. Am. Chem. Soc. 2011, 133 (40), 16235-16242. 47. Xue, L.; Prifti, E.; Johnsson, K., A general strategy for the semisynthesis of ratiometric fluorescent sensor proteins with increased dynamic range. J. Am. Chem. Soc. 2016, 138 (16), 5258-5261. 48. Chen, Y.-H.; Chien, W.-C.; Lee, D.-C.; Tan, K.-T., Signal Amplification and Detection of Small Molecules via the Activation of Streptavidin and Biotin Recognition. Anal. Chem. 2019, 91 (19), 12461-12467. 49. Ding, Z.; Fong, R. B.; Long, C. J.; Stayton, P. S.; Hoffman, A. S., Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001, 411 (6833), 59-62. 50. Laborde, H.; Lima, A.; Loureiro, F.; Thirstrup, C.; Neff, H., Adsorption, kinetics and biochemical interaction of biotin at the gold–water interface. Thin Solid Films 2013, 540, 221-226. 51. Cherkasov, V. R.; Mochalova, E. N.; Babenyshev, A. V.; Vasilyeva, A. V.; Nikitin, P. I.; Nikitin, M. P., Nanoparticle beacons: Supersensitive smart materials with on/off-switchable affinity to biomedical targets. ACS Nano 2020, 14 (2), 1792-1803. 52. Wistrand, P.; Schenholm, M.; Lönnerholm, G., Carbonic anhydrase isoenzymes CA I and CA II in the human eye. Investig. Ophthalmol. Vis. Sci. 1986, 27 (3), 419-428. 53. Feldberg, W.; Keilin, D.; Mann, T., Activity of carbonic anhydrase in relation to gastric secretion. Nature 1940, 146 (3707), 651-652. 54. Innocenti, A.; Sarıkaya, S. B. Ö.; Gülçin, I.; Supuran, C. T., Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I–XIV with a series of natural product polyphenols and phenolic acids. Bioorg. Med. Chem. 2010, 18 (6), 2159-2164. 55. Chan, H. J.; Lin, X. H.; Fan, S. Y.; Ru Hwu, J.; Tan, K. T., Rapid and Selective Labeling of Endogenous Transmembrane Proteins in Living Cells with a Difluorophenyl Ester Affinity‐Based Probe. Chem. Asian. J. 2020, 15 (21), 3416-3420. 56. Takaoka, Y.; Nishikawa, Y.; Hashimoto, Y.; Sasaki, K.; Hamachi, I., Ligand-directed dibromophenyl benzoate chemistry for rapid and selective acylation of intracellular natural proteins. Chem. Sci. 2015, 6 (5), 3217-3224. 57. Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M., Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein− ligand binding. Chem. Rev. 2008, 108 (3), 946-1051.
|