帳號:guest(3.137.171.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):傅琮祐
作者(外文):Fu, Tsung-Yu
論文名稱(中文):小分子控制之生物素-鍊黴親和素親和力結合
論文名稱(外文):Affinity-Switchable Streptavidin-Biotin Binding Controlled by Small Molecules
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):吳淑褓
王聖凱
口試委員(外文):Wu, Shu-Pao
Wang, Sheng-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:108023510
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:113
中文關鍵詞:小分子蛋白質感測器生物素半合成蛋白鍊黴親合素
外文關鍵詞:Small moleculesProtein sensorBiotinSemisynthetic proteinStreptavidin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:657
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有機小分子(例如代謝物、神經遞質和藥物)之感測是最基本的生物過程之一。其中,細胞表面為一個不斷變化的小分子微環境,因為許多細胞代謝過程是通過改變小分子的濃度來調節的。迄今為止,由螢光團標記之變構及半合成蛋白是僅有的兩種能夠在細胞表面對小分子進行細胞顯影之方法。然而,這些方法受到螢光基團無法隨意更換的限制,僅適用於基因工程細胞。在本論文中,我們開發出一種新型小分子半合成生物素蛋白,其可以反應小分子結合目標,與鍊黴親和素藉由可控之親和力結合。這種方法可用於快速且準確地檢測細胞表面的各種磺胺類藥物和甲氨蝶呤。我們相信用於變構控制鍊黴親和素-生物素結合親和力的半合成蛋白質設計可以成為快速、專一性和高靈敏地檢測許多有機小分子的泛用工具。
Small organic molecule (e.g. metabolites, neurotransmitters and drugs) sensing is one of the most fundamental biological processes. Notably, the extracellular cell surface represents an extremely dynamic microenvironment for small molecules sensing as many cellular processes are regulated by changing the concentration of small molecules. To date, allosteric and semisynthetic proteins based on Förster resonance energy transfer (FRET) were the only two methods enabling rapid imaging of small molecules on the cell surface. However, these approaches are restricted by their limited selection of fluorophores and are applicable only in genetic engineered cells. In this thesis, we report a new type of biotinylated semisynthetic protein which can undergo affinity-switchable binding with streptavidin in response to a small molecule binding target. This general approach can be applied to rapidly and accurately detect various sulfonamide drugs and methotrexate on the cell surface. We believe that our biotinylated protein design to allosterically control streptavidin-biotin binding affinity can be a versatile tool for rapid, specific and sensitive detection of many small organic molecules.
p.I 摘要
p.II Abstract
p.III 謝誌
p.VI 目錄
p.1 第一章、 緒論
p.1 1-1 小分子之介紹
p.2 1-1-1 菸鹼醯胺腺嘌呤二核苷酸 ( Nicotinamide adenine dinucleotide, NAD )
p.3 1-1-2 三磷酸腺苷 (Adenosine triphosphate, ATP)
p.4 1-2 小分子偵測方法
p.5 1-2-1 液相層析質譜分析法 (Liquid Chromatography-Mass Spectrometry LC-MS)
p.8 1-2-2 酵素免疫分析法 (Enzyme-Linked Immunosorbent Assay, ELISA)
p.11 第二章、 文獻回顧
p.12 2-1 變構蛋白
p.13 2-1-1 G蛋白偶聯受體(G Protein-Coupled Receptors, GPCRs)
p.15 2-1-2 變構蛋白於小分子偵測之應用
p.17 2-2 半合成蛋白
p.20 第三章、 探針之設計與探討
p.20 3-1 設計構想
p.22 3-2 配體選擇
p.24 3-3 探針之設計
p.26 第四章、實驗結果及討論
p.26 4-1 探針1
p.26 4-1-1 探針1之合成
p.28 4-1-2 探針1之MCF7細胞顯影實驗
p.31 4-2 探針2
p.31 4-2-1 探針2之合成
p.33 4-2-2 探針2之MCF7細胞顯影實驗
p.36 4-2-3 探針2之A549細胞顯影實驗
p.37 4-2-4 探針2之磺胺類藥物滴定實驗
p.41 4-2-5 探針2之穩定性
p.42 4-3探針3
p.42 4-3-1 探針3之合成
p.44 4-3-2 探針3之HeLa細胞顯影實驗
p.45 4-3-3 探針3之穩定性
p.46 4-4 探針4之探討
p.46 4-4-1 探針4之結構
p.47 4-4-2 探針4之MCF7細胞影像實驗
p.48 第五章、實驗結論
p.49 第六章、實驗部分
p.49 6-1 實驗器材與藥品
p.51 6-2 有機合成及光譜資料
p.65 第七章、參考資料
p.73 附錄
1. Dougherty, T. J.; Pucci, M. J., Antibiotic discovery and development. Springer Science & Business Media: 2011.
2. Wang, Y.-P.; Lei, Q.-Y., Metabolite sensing and signaling in cell metabolism. Signal Transduct. Target. Ther. 2018, 3 (1), 1-9.
3. Efeyan, A.; Comb, W. C.; Sabatini, D. M., Nutrient-sensing mechanisms and pathways. Nature 2015, 517 (7534), 302-310.
4. López-Otín, C.; Galluzzi, L.; Freije, J. M.; Madeo, F.; Kroemer, G., Metabolic control of longevity. Cell 2016, 166 (4), 802-821.
5. Xiong, Y.; McCormack, M.; Li, L.; Hall, Q.; Xiang, C.; Sheen, J., Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 2013, 496 (7444), 181-186.
6. Madison, L. L.; Lochner, A.; Wulff, J., Ethanol-induced hypoglycemia: II. Mechanism of suppression of hepatic gluconeogenesis. Diabetes 1967, 16 (4), 252-258.
7. Tilton, W.; Seaman, C.; Carriero, D.; Piomelli, S., Regulation of glycolysis in the erythrocyte: role of the lactate/pyruvate and NAD/NADH ratios. J. Lab. Clin. Med. 1991, 118 (2), 146-152.
8. Fukuda, J.; Tsujimura, S.; Kano, K., Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle. Electrochim. Acta 2008, 54 (2), 328-333.
9. Nakahata, Y.; Sahar, S.; Astarita, G.; Kaluzova, M.; Sassone-Corsi, P., Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009, 324 (5927), 654-657.
10. VALERO, E.; VARÓN, R.; GARCÍA-CARMONA, F., Kinetics of a self-amplifying substrate cycle: ADP–ATP cycling assay. Biochem. J. 2000, 350 (1), 237-243.
11. Ainscow, E. K.; Brand, M. D., Top‐down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Eur. J. Biochem. 1999, 263 (3), 671-685.
12. Des Rosiers, C.; Di Donato, L.; Comte, B.; Laplante, A.; Marcoux, C.; David, F.; Fernandez, C. A.; Brunengraber, H., Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver: reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis. J. Biol. Chem. 1995, 270 (17), 10027-10036.
13. Raymond, P.; Al-Ani, A.; Pradet, A., ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starchy germinating seeds. Plant Physiol. 1985, 79 (3), 879-884.
14. Cairns, R. A.; Harris, I. S.; Mak, T. W., Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11 (2), 85-95.
15. Welink, J.; Yang, E.; Hughes, N.; Rago, B.; Woolf, E.; Sydor, J.; Coppola, L.; Ackermann, B.; Li, W.; Alley, S. C., 2017 White Paper on recent issues in bioanalysis: aren't BMV guidance/guidelines ‘Scientific’?(Part 1–LCMS: small molecules, peptides and small molecule biomarkers). Bioanalysis 2017, 9 (22), 1807-1825.
16. Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S. S.; Wohlgemuth, G.; Barupal, D. K.; Showalter, M. R.; Arita, M., Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37 (4), 513-532.
17. Jeong, J.-W.; Oh, J.-H.; Ji, Y.-G.; Shin, Y.-M.; Lee, M. H.; Kang, N. S.; Lee, W.; Kim, S.-S.; Kim, T.-Y.; Koo, T.-S., Liquid chromatography–tandem mass spectrometry of recombinant human extracellular superoxide dismutase (rhSOD3) in mouse plasma and its application to pharmacokinetic study. J. Pharm. Biomed. Anal. 2019, 164, 590-597.
18. Papadopoulou, A.; Frazier, R. A., Characterization of protein–polyphenol interactions. Trends Food Sci. Technol. 2004, 15 (3-4), 186-190.
19. Evensen, N. A.; Braun, P. C., The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can. J. Microbiol. 2009, 55 (9), 1033-1039.
20. Santilli, G.; Piotrowska, I.; Cantilena, S.; Chayka, O.; D'Alicarnasso, M.; Morgenstern, D. A.; Himoudi, N.; Pearson, K.; Anderson, J.; Thrasher, A. J., Polyphenol E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin. Cancer Res. 2013, 19 (5), 1116-1125.
21. Lucci, P.; Saurina, J.; Núñez, O., Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC-Trends Anal. Chem. 2017, 88, 1-24.
22. Puigventós, L.; Navarro, M.; Alechaga, É.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L., Determination of polyphenolic profiles by liquid chromatography-electrospray-tandem mass spectrometry for the authentication of fruit extracts. Anal. Bioanal. Chem. 2015, 407 (2), 597-608.
23. Natić, M. M.; Dabić, D. Č.; Papetti, A.; Akšić, M. M. F.; Ognjanov, V.; Ljubojević, M.; Tešić, Ž. L., Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128-136.
24. Melliou, E.; Zweigenbaum, J. A.; Mitchell, A. E., Ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry quantitation of polyphenols and secoiridoids in California-style black ripe olives and dry salt-cured olives. J. Agric. Food Chem. 2015, 63 (9), 2400-2405.
25. Jerman Klen, T.; Golc Wondra, A.; Vrhovšek, U. k.; Mozetič Vodopivec, B., Phenolic profiling of olives and olive oil process-derived matrices using UPLC-DAD-ESI-QTOF-HRMS analysis. J. Agric. Food Chem. 2015, 63 (15), 3859-3872.
26. Gan, S. D.; Patel, K. R., Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Investig. Dermatol. 2013, 133 (9), e12.
27. Sesay, A. M.; Micheli, L.; Tervo, P.; Palleschi, G.; Virtanen, V., Development of a competitive immunoassay for the determination of cortisol in human saliva. Anal. Biochem. 2013, 434 (2), 308-314.
28. Aydin, S., A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4-15.
29. Watanabe, E.; Miyake, S.; Yogo, Y., Review of enzyme-linked immunosorbent assays (ELISAs) for analyses of neonicotinoid insecticides in agro-environments. J. Agric. Food Chem. 2013, 61 (51), 12459-12472.
30. Li, K.; Li, Q. X., Development of an enzyme-linked immunosorbent assay for the insecticide imidacloprid. J. Agric. Food Chem. 2000, 48 (8), 3378-3382.
31. Kim, H.-J.; Shelver, W. L.; Li, Q. X., Monoclonal antibody-based enzyme-linked immunosorbent assay for the insecticide imidacloprid. Anal. Chim. Acta 2004, 509 (1), 111-118.
32. Wang, R.; Wang, Z.; Yang, H.; Wang, Y.; Deng, A., Highly sensitive and specific detection of neonicotinoid insecticide imidacloprid in environmental and food samples by a polyclonal antibody‐based enzyme‐linked immunosorbent assay. J. Sci. Food Agric. 2012, 92 (6), 1253-1260.
33. Wanatabe, S.; Ito, S.; Kamata, Y.; Omoda, N.; Yamazaki, T.; Munakata, H.; Kaneko, T.; Yuasa, Y., Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. Anal. Chim. Acta 2001, 427 (2), 211-219.
34. Liu, Z.; Li, M.; Shi, H.; Wang, M., Development and evaluation of an enzyme-linked immunosorbent assay for the determination of thiacloprid in agricultural samples. Food Anal. Methods 2013, 6 (2), 691-697.
35. Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S., Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72 (1), 32-42.
36. Vavers, E.; Zvejniece, L.; Maurice, T.; Dambrova, M., Allosteric modulators of sigma-1 receptor: a review. Front. Pharmacol. 2019, 10, 223.
37. Conn, P. J.; Christopoulos, A.; Lindsley, C. W., Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 2009, 8 (1), 41-54.
38. Lindsley, C. W.; Emmitte, K. A.; Hopkins, C. R.; Bridges, T. M.; Gregory, K. J.; Niswender, C. M.; Conn, P. J., Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem. Rev. 2016, 116 (11), 6707-6741.
39. Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L., How many drug targets are there? Nat. Rev. Drug Discov. 2006, 5 (12), 993-996.
40. Rasmussen, S. G.; DeVree, B. T.; Zou, Y.; Kruse, A. C.; Chung, K. Y.; Kobilka, T. S.; Thian, F. S.; Chae, P. S.; Pardon, E.; Calinski, D., Crystal structure of the β 2 adrenergic receptor–Gs protein complex. Nature 2011, 477 (7366), 549-555.
41. Deuschle, K.; Okumoto, S.; Fehr, M.; Looger, L. L.; Kozhukh, L.; Frommer, W. B., Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci. 2005, 14 (9), 2304-2314.
42. Lindenburg, L.; Merkx, M., Engineering genetically encoded FRET sensors. Sensors 2014, 14 (7), 11691-11713.
43. Liang, R.; Broussard, G. J.; Tian, L., Imaging chemical neurotransmission with genetically encoded fluorescent sensors. ACS Chem. Neurosci. 2015, 6 (1), 84-93.
44. Broussard, J. A.; Rappaz, B.; Webb, D. J.; Brown, C. M., Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protoc. 2013, 8 (2), 265.
45. Brun, M. A.; Tan, K.-T.; Nakata, E.; Hinner, M. J.; Johnsson, K., Semisynthetic fluorescent sensor proteins based on self-labeling protein tags. J. Am. Chem. Soc. 2009, 131 (16), 5873-5884.
46. Brun, M. A.; Griss, R.; Reymond, L.; Tan, K.-T.; Piguet, J.; Peters, R. J.; Vogel, H.; Johnsson, K., Semisynthesis of fluorescent metabolite sensors on cell surfaces. J. Am. Chem. Soc. 2011, 133 (40), 16235-16242.
47. Xue, L.; Prifti, E.; Johnsson, K., A general strategy for the semisynthesis of ratiometric fluorescent sensor proteins with increased dynamic range. J. Am. Chem. Soc. 2016, 138 (16), 5258-5261.
48. Chen, Y.-H.; Chien, W.-C.; Lee, D.-C.; Tan, K.-T., Signal Amplification and Detection of Small Molecules via the Activation of Streptavidin and Biotin Recognition. Anal. Chem. 2019, 91 (19), 12461-12467.
49. Ding, Z.; Fong, R. B.; Long, C. J.; Stayton, P. S.; Hoffman, A. S., Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001, 411 (6833), 59-62.
50. Laborde, H.; Lima, A.; Loureiro, F.; Thirstrup, C.; Neff, H., Adsorption, kinetics and biochemical interaction of biotin at the gold–water interface. Thin Solid Films 2013, 540, 221-226.
51. Cherkasov, V. R.; Mochalova, E. N.; Babenyshev, A. V.; Vasilyeva, A. V.; Nikitin, P. I.; Nikitin, M. P., Nanoparticle beacons: Supersensitive smart materials with on/off-switchable affinity to biomedical targets. ACS Nano 2020, 14 (2), 1792-1803.
52. Wistrand, P.; Schenholm, M.; Lönnerholm, G., Carbonic anhydrase isoenzymes CA I and CA II in the human eye. Investig. Ophthalmol. Vis. Sci. 1986, 27 (3), 419-428.
53. Feldberg, W.; Keilin, D.; Mann, T., Activity of carbonic anhydrase in relation to gastric secretion. Nature 1940, 146 (3707), 651-652.
54. Innocenti, A.; Sarıkaya, S. B. Ö.; Gülçin, I.; Supuran, C. T., Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I–XIV with a series of natural product polyphenols and phenolic acids. Bioorg. Med. Chem. 2010, 18 (6), 2159-2164.
55. Chan, H. J.; Lin, X. H.; Fan, S. Y.; Ru Hwu, J.; Tan, K. T., Rapid and Selective Labeling of Endogenous Transmembrane Proteins in Living Cells with a Difluorophenyl Ester Affinity‐Based Probe. Chem. Asian. J. 2020, 15 (21), 3416-3420.
56. Takaoka, Y.; Nishikawa, Y.; Hashimoto, Y.; Sasaki, K.; Hamachi, I., Ligand-directed dibromophenyl benzoate chemistry for rapid and selective acylation of intracellular natural proteins. Chem. Sci. 2015, 6 (5), 3217-3224.
57. Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M., Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein− ligand binding. Chem. Rev. 2008, 108 (3), 946-1051.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *