帳號:guest(3.15.137.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張宸瑜
作者(外文):Jhang, Chen-Yu
論文名稱(中文):鈣離子捕獲系統的架設與鈣離子的電磁波引發透明光譜
論文名稱(外文):Development of trapping system for 40Ca+ and electromagnetically induced transparency spectrum of 40Ca+
指導教授(中文):童世光
指導教授(外文):Tung, Shih-Kuang
口試委員(中文):王立邦
張銘顯
林俊達
口試委員(外文):Wang, Li-Bang
Chang, Ming-Shien
Lin, Guin-Dar
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108022901
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:76
中文關鍵詞:囚禁離子電磁波引發透明光譜
外文關鍵詞:trapped ionEIT spectrum
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
離子囚禁是量子計算最有前景的平台之一。它具有較長的相干時間和極高的量子邏輯門保真度。此外,離子囚禁系統還可用於多種應用,如量子感測、精密測量和量子模擬等。為了探索這些熱門的研究課題,我們在清華大學建立了一個離子阱系統。在這篇論文中,我將介紹離子阱系統和實驗進展。這篇論文主要在介紹離子阱系統以及電磁波引發的透明光譜光譜。在第二章中,論文會提及離子阱囚禁原理和離子與光的交互作用。第三章則會提到離子阱的硬體架構,包括金屬電極、射頻共振腔、真空系統和雷射系統,並討論設計參數和整個系統的架構。在第四章中,論文會討論如何收集囚禁單離子螢光、成像以及離子的微運動對光譜造成的影響,並提供方法補償微運動。第五章則會討論EIT光譜方面的內容,包括理論計算和實驗擬合。首先會帶入簡單的三能階系統進行計算,然後對八能階的EIT光譜進行理論計算,後會透過光譜擬合磁場的大小。最後討論溫度對光譜的影響,期望未來可以透過光譜量測系統溫度。在最後一章中,論文會作出總結並展望未來的工作方向。
Trapped ions are one of the most promising platforms for quantum comput-ing. They have long coherence times and extremely high-fidelity quantum logicgates. In addition, trapped ion systems can be used in various applications, such asquantum sensing, precision measurements, and quantum simulations. In order toexplore these exciting research topics, we have built an ion trap system at NTHU.This thesis focuses on introducing the ion trap system and electromagneti-cally induced transparency spectroscopy. Chapter 2 discusses the principles ofion trapping and the interaction between ions and light. Chapter 3 discusses thehardware configuration of the ion trap, including metal electrodes, RF resonator,vacuum systems, and laser systems. We also explain the design parameters and theoverall architecture of the system. In Chapter 4, we discuss how to collect singleion fluorescence, imaging, and the effects of ion micromotion on the spectrum,and provide methods for compensation of micromotion. Chapter 5 discusses theEIT spectrum, including EIT theoretical calculations and experimental fits. First,we will introduce a simple three-level system and calculate the EIT spectrum ofan eight-level system. We will fit the magnitude of the magnetic field throughspectrum. Finally, we will discuss the effect of temperature on the spectrum andhope to measure the temperature of the system through this model in the future. Inthe final chapter, we will make a summary and look forward to future work.
1引論......1
2離子陷阱理論和離子與光的交互作用......3
2.1離子陷阱囚禁原理. . . . . 3
2.1.1離子陷阱的簡諧位能近似 . . . . . 9
2.2鈣離子的能階與雷射冷卻......10
2.2.1鈣原子介紹及鈣原子光離子化......10
2.2.2鈣離子的能階......12
2.2.3鈣離子的都卜勒冷卻(Doppler cooling)......13
2.3離子和光的基礎交互作用......14
3離子阱的實驗架設......16
3.1真空系統......17
3.2離子陷阱設計與模擬......19
3.2.1離子阱模擬......20
3.3射頻共振腔(Helical resonator)設計及直流電極......22
3.3.1螺旋射頻共振腔......24
3.3.2直流電壓源......28
3.4囚禁離子螢光成像系統......29
3.4.1光電倍增管(Photomultiplier tube, PMT)探測......29
3.4.2 CCD成像系統......30
3.5雷射系統......32
3.5.1自製外腔雷射(external cavity diode laser, ECDL)......33
3.5.2光路架設......33
4單離子囚禁......35
4.1囚禁單離子製備......35
4.2單離子的囚禁頻率測定......38
4.2.1單離子的間距測定......39
4.3單離子微運動校正......41
4.4磁場校正......44
5單離子非線性光譜量測......46
5.1電磁感應透明光譜理論計算......46
5.1.1簡單三能階系統......46
5.1.2塞曼分裂(zeeman splitting)八能階系統......50
5.2 EIT實驗結果......58
5.2.1無磁場簡單EIT光譜......58
5.2.2塞曼分裂能階EIT光譜......58
5.3溫度修正的EIT譜線......62
6總結與展望......63
附錄......64
Simion模擬軟體操作......64
林德布拉德方程(Lindblad equation)計算......68
偶極躍遷矩陣強度修正與林德布拉德方程去相干項計算......70
文獻......75
[1]
Peter W Shor. “Algorithms for quantum computation: discrete logarithms and factoring”.
In:
Proceedings 35th annual symposium on foundations of computer science
. Ieee. 1994,
pp. 124–134.
[2]
Juan I Cirac and Peter Zoller. “Quantum computations with cold trapped ions”. In:Physical review letters
74.20 (1995), p. 4091.
[3]
Ferdinand Schmidt-Kaler et al. “Realization of the Cirac–Zoller controlled-NOT quantum
gate”. In:
Nature
422.6930 (2003), pp. 408–411.
[4]
Laird Egan et al. “Fault-tolerant control of an error-corrected qubit”. In:
Nature
598.7880
(2021), pp. 281–286.
[5]
David Deutsch. “Quantum theory, the Church–Turing principle and the universal quan-
tum computer”. In:
Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences
400.1818 (1985), pp. 97–117.
[6]
Till Rosenband et al. “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrol-
ogy at the 17th decimal place”. In:
Science
319.5871 (2008), pp. 1808–1812.
[7]
P Oetal Schmidt et al. “Spectroscopy using quantum logic”. In:
Science
309.5735 (2005),
pp. 749–752.
[8]
K Kim et al. “Quantum simulation of the transverse Ising model with trapped ions”. In:
New Journal of Physics
13.10 (2011), p. 105003.
[9]
R Islam et al. “Emergence and frustration of magnetism with variable-range interactions
in a quantum simulator”. In:
science
340.6132 (2013), pp. 583–587.
[10]
Philip Richerme et al. “Quantum catalysis of magnetic phase transitions in a quantum
simulator”. In:
Physical review letters
111.10 (2013), p. 100506.
[11]
Jiehang Zhang et al. “Observation of a discrete time crystal”. In:
Nature
543.7644 (2017),
pp. 217–220.
[12]
Daniel Nigg et al. “Quantum computations on a topologically encoded qubit”. In:
Science
345.6194 (2014), pp. 302–305.
[13]
Jacob Smith et al. “Many-body localization in a quantum simulator with programmable
random disorder”. In:
Nature Physics
12.10 (2016), pp. 907–911.
[14]
M Chwalla et al. “Absolute Frequency Measurement of the Ca+ 40 4 s S 1/2 2- 3 d D 5/2
2 Clock Transition”. In:
Physical review letters
102.2 (2009), p. 023002.
[15]
DJ Berkeland et al. “Minimization of ion micromotion in a Paul trap”. In:
Journal of
applied physics
83.10 (1998), pp. 5025–5033.
[16]
DM Lucas et al. “Isotope-selective photoionization for calcium ion trapping”. In:
Physical
Review A
69.1 (2004), p. 012711.
[17]
S Gulde et al. “Simple and efficient photo-ionization loading of ions for precision ion-
trapping experiments”. In:
Applied Physics B
73.8 (2001), pp. 861–863.
[18]
NM Linke et al. “Background-free detection of trapped ions”. In:
AppliedPhysicsB
107.4
(2012), pp. 1175–1180.
[19]
JD Siverns et al. “On the application of radio frequency voltages to ion traps via helical
resonators”. In:
Applied Physics B
107.4 (2012), pp. 921–934.
[20]
Timothy G Ballance et al. “A short response time atomic source for trapped ion experi-
ments”. In:
Review of Scientific Instruments
89.5 (2018), p. 053102.
[21]
CharlesDonald.“Developmentofaniontrapquantuminformationprocessor”.In:(2000).
[22]
Daniel FV James.
Quantum dynamics of cold trapped ions with application to quantum
computation
. Tech. rep. 1997.
[23]
Wesley W. Erickson. “Eelectomagnetically Induced Transparency”. In: (2012).
[24]
Johannes Roßnagel et al. “Fast thermometry for trapped ions using dark resonances”. In:
New Journal of Physics
17.4 (2015), p. 045004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *