帳號:guest(3.133.130.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝民原
作者(外文):Hsieh, Min-Yuan
論文名稱(中文):雙層石墨烯(類石墨烯)、磁性材料與過渡金屬二硫化合物之異質結構能帶探討
論文名稱(外文):Band Discussion of Bilayer Graphene(Graphene-like)、Magnetic Material and TMDC Combined Heterostructures
指導教授(中文):鄭弘泰
指導教授(外文):Jeng, Horng-Tay
口試委員(中文):鄭澄懋
徐斌睿
口試委員(外文):Cheng, Cheng-Maw
Hsu, Pin-Jui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108022537
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:66
中文關鍵詞:雙層石墨烯磁性材料過渡金屬二硫化合物異質結構雙層矽烯雙層鍺烯自旋分裂自旋軌道耦合交換耦合維也納全始計算模擬包
外文關鍵詞:Bilayer GrapheneMagnetic MaterialTMDCHeterostructuresBilayer SiliceneBilayer Germanenespin splittingSpin-Orbit Couplingexchange couplingVienna Ab initio Simulation Package (VASP)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
第一原理計算在研究固態系統有著不可或缺的貢獻,隨著科技進步,計算的速度也有顯著的提升,使得我們能使用更精確的計算方式,又或是能計算更複雜的系統,本文將以此方法計算二維異質結構的能帶變化,結構的組成為兩片磁性或過渡金屬二硫化物中夾了雙層的石墨烯或類石墨烯材料,研究主要著重在費米能量附近的狄拉克椎能帶結構,此能帶來自於中間的雙層石墨烯或類石墨烯材料,而上下兩層材料則可視為是影響能帶分裂的工具。
影響的方式分為電子的交換耦合和自旋軌道耦合,自旋軌道耦合的影響可分為Rashba和Ising兩種,而自旋軌道耦合和交換耦合會產生不同的能量分裂現象,在過去大都認為Rashba和Ising的能量分裂來自於自旋軌道耦合,然而近幾年的研究顯示,以磁性材料(交換耦合)也能形成類似的能帶分裂現象。
此研究將由石墨烯與類石墨烯材料的電子能帶結構出發,一步步嘗試由不同的材料組成異質結構,來對比石墨烯與某些類石墨烯材料的能帶表現,然後以此做為基礎,在排除電子自旋軌道耦合影響的情況下,調整磁性材料中,各原子的磁矩結構,使得二維材料的能帶呈現出類似Rashba或Ising自旋軌道耦合的特徵。
Ab initio calculations have made indispensable contributions to the study of solid-state systems. With advancements in technology, computational speed has significantly improved, allowing us to employ more accurate calculation methods and tackle more complex systems. In this study, we utilize this approach to calculate the band structure variations of two-dimensional heterostructures. The structures consist of bilayer graphene or graphene-like materials sandwiched between two magnetic or transition metal dichalcogenide layers. Our focus is primarily on the Dirac cone band structure near the Fermi energy, which arises from the intermediate bilayer graphene or graphene-like material, while the upper and lower layers act as tools affecting the band splitting.
The influences can be categorized into electronic exchange coupling and spin-orbit coupling. The effects of spin-orbit coupling can be further classified into Rashba and Ising types. It has been commonly believed that the energy splitting associated with Rashba and Ising arises from spin-orbit coupling. However, recent research has shown that similar band splitting phenomena can also be induced by magnetic materials (exchange coupling).
This study starts from the electronic band structures of graphene and graphene-like materials, systematically explores heterostructures composed of different materials, and compares the band behaviors with those of graphene and certain graphene-like materials. Based on these findings, we adjust the magnetic moment structures of the magnetic materials, excluding the influence of electron spin-orbit coupling, in order to achieve Rashba or Ising-like spin-orbit coupling characteristics in the two-dimensional materials.
摘要 i
Abstract ii
第一章 簡介 1
第二章 計算方法與理論 7
2.1 第一原理計算方法 7
2.2 密度泛函理論的細節 9
2.2 密度泛函理論的一些修正方法 10
2.4 反轉對稱破壞 12
第三章 雙層石墨烯與類雙層石墨烯結構材料 14
3.1 雙層石墨烯能帶 14
3.2 類雙層石墨烯結構之材料 15
第四章 四層異質結構計算 20
4.1 結構說明 20
4.2 磁性材料 21
4.2.1 BLG+VI2 21
4.2.2 雙層矽烯+VI2 25
4.2.3 雙層鍺烯+VI2 30
4.3 過渡金屬二硫化合物 32
4.3.1 BLG+MoTe2 32
4.3.2 雙層矽烯+MoSe2 34
4.3.3 雙層鍺烯+MoTe2 49
4.4 總結 54
第五章 反鐵磁計算 56
5.1 石墨烯 56
第六章 結論 60
參考資料 62
[1]P. R. Wallace, The Band Theory of Graphite, Phys. Rev. 71, 622 (1947)
[2]J. W. McClure, Diamagnetism of Graphite, Phys. Rev. 104, 666 (1956)
[3]J. C. Slonczewski and P. R. Weiss, Band Structure of Graphite, Phys. Rev. 109, 272 (1958)
[4]A. K.Geim, K. S. Novoselov, The rise of graphene. Nature Mater 6, 183–191 (2007).
[5]Gerstner, E. Nobel Prize 2010: Andre Geim & Konstantin Novoselov. Nature Phys 6, 836 (2010).
[6]Chih-Jen Shih, Shangchao Lin, Richa Sharma, Michael S. Strano, and Daniel Blankschtein, Understanding the pH-Dependent Behavior of Graphene Oxide Aqueous Solutions: A Comparative Experimental and Molecular Dynamics Simulation Study, Langmuir 2012 28 (1), 235-241.
[7]Obraztsov AN, Zolotukhin AA, Ustinov AO, Volkov AP, Svirko Y, Jefimovs K. DC discharge plasma studies for nanostructured carbon CVD. Diamond and Related Materials. 2003;12:917
[8]R. Mmaduka Obodo, I. Ahmad, and F. Ifeanyichukwu Ezema, ‘Introductory Chapter: Graphene and Its Applications’, Graphene and Its Applications . IntechOpen, 2019.
[9]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 – Published 14 January 2009
[10]C. L. Kane, E.J.Mele, Quantum Spin Hall Effect in Graphene. Phys.Rev.Lett., 95,226801 (2005)
[11]Lu, X., Stepanov, P., Yang, W. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
[12]B.R.K. Nanda, S.Satpathy, Strain and electric field modulation of the electronic structure of bilayer graphene. Phys. Rev. B. 80, 165430, 2009.
[13]Hamid Oughaddou, Hanna Enriquez, Mohammed Rachid Tchalala, Handan Yildirim, Andrew J. Mayne, Azzedine Bendounan, Gérald Dujardin, Mustapha Ait Ali, Abdelkader Kara, Silicene, a promising new 2D material, Progress in Surface Science, Volume 90, Issue 1, Pages 46-83 (2015)
[14]Mubashir A. Kharadi et al, Review—Silicene: From Material to Device Applications, ECS J. Solid State Sci. Technol. 9 115031 (2020)
[15]Alessandro Molle, Carlo Grazianetti, Li Tao, ORCID, Deepyanti Taneja, Md. Hasibul Alam and Deji Akinwande, Silicene, silicene derivatives, and their device applications, Chem. Soc. Rev., 47, 6370-6387(2018)
[16]Tao, L., Cinquanta, E., Chiappe, D. et al. Silicene field-effect transistors operating at room temperature. Nature Nanotech 10, 227–231 (2015)
[17]Deepthi Jose and Ayan Datta, Structures and Chemical Properties of Silicene: Unlike Graphene, Acc. Chem. Res., 47, 2, 593–602 (2014)
[18]Kesper, L., Hochhaus, J.A., Schmitz, M. et al. Tracing the structural evolution of quasi-freestanding germanene on Ag(111). Sci Rep 12, 7559 (2022).
[19]A Acun et al, Germanene: the germanium analogue of graphene, J. Phys.: Condens. Matter 27 443002(2015)
[20]M. Ge, M. Zong, D. Xu, Z. Chen, J. Yang, H. Yao, C. Wei, Y. Chen, H. Lin, J. Shi, Freestanding germanene nanosheets for rapid degradation and photothermal conversion, Materials Today Nano, Volume 15,(2021)
[21]K. Zhang, D. Sciacca, M.-C. Hanf, R. Bernard, Y. Borensztein, A. Resta, Y. Garreau, A. Vlad, A. Coati, I. Lefebvre, M. Derivaz, C. Pirri, P. Sonnet, R. Stephan, and G. Prévot, Structure of Germanene/Al(111): A Two-Layer Surface Alloy, The Journal of Physical Chemistry C 125 (44), 24702-24709(2021)
[22]M. Ge, H. Guo, M. Zong, Z. Chen, Z. Liu, H. Lin, J. Shi, Bandgap-Engineered Germanene Nanosheets as an Efficient Photodynamic Agent for Cancer Therapy, Angew. Chem. Int. Ed. 62, e202215795(2023).
[23]Vo Khuong Dien, Wei-Bang Li, Kuang-I. Lin, Nguyen Thi Han and Ming-Fa Lin, Electronic and optical properties of graphene, silicene, germanene, and their semi-hydrogenated systems, RSC Adv.,12, 34851-34865 (2022)
[24]Yong Xu, Binghai Yan, Hai-Jun Zhang, Jing Wang, Gang Xu, Peizhe Tang, Wenhui Duan, and Shou-Cheng Zhang, Large-Gap Quantum Spin Hall Insulators in Tin Films, Phys. Rev. Lett. 111, 136804 (2013)
[25]Rani, S., Suganthi, K. & Roy, S.C. Stanene: State of the Art and Future Prospects. J. Electron. Mater. 52, 3563–3575 (2023).
[26]Liyuan Wu, Pengfei Lu, Ruge Quhe, Qian Wang, Chuanghua Yang, Pengfei Guan and Kesong Yang, Stanene nanomeshes as anode materials for Na-ion batteries, J. Mater. Chem. A, 6, 7933-7941(2018)
[27]C.-Z. Xu, Y.-H. Chan, P. Chen, X. Wang, D. Flötotto, J. A. Hlevyack, G. Bian, S.-K. Mo, M.-Y. Chou, and T.-C. Chiang, Gapped electronic structure of epitaxial stanene on InSb(111), Phys. Rev. B 97, 035122 (2018)
[28]M. Ezawa, Monolayer Topological Insulators: Silicene, Germanene, and Stanene, J. Phys. Soc. Jpn. 84, 121003 (2015).
[29]Salime Mahdavifar, Saber Farjami shayesteh, Meysam Bagheri Tagani, Electronic and mechanical properties of Plumbene monolayer: A first-principle study, Physica E: Low-dimensional Systems and Nanostructures, Volume 134, 2021.
[30]Sumaiya Jahan Tabassum, Tanshia Tahreen Tanisha, Nishat Tasnim Hiramony and Samia Subrina, Large band gap quantum spin Hall insulators in plumbene monolayer decorated with amidogen, hydroxyl and thiol functional groups, Nanoscale Adv., 5, 3357-3367(2023)
[31]J. Yuhara, B. He, N. Matsunami, M. Nakatake, G. Le Lay, Graphene's Latest Cousin: Plumbene Epitaxial Growth on a“Nano WaterCube”, Adv. Mater., 31 , Article 1901017(2019)
[32]Das, D.K., Singh, S.K., Plumbene: A New 2D-Material Resembling Graphene. In: Shanker, K., Shankar, R., Sindhwani, R. (eds) Advances in Industrial and Production Engineering . Lecture Notes in Mechanical Engineering. Springer, Singapore. (2019)
[33]Xiang-Long Yu, Li Huang, and Jiansheng Wu, From a normal insulator to a topological insulator in plumbene, Phys. Rev. B 95, 125113 (2017)
[34]Chhowalla, M., Shin, H., Eda, G. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem 5, 263–275 (2013).
[35]Ruitao Lv, Humberto Terrones, Ana Laura Elías, Néstor Perea-López, Humberto R. Gutiérrez, Eduardo Cruz-Silva, Lakshmy Pulickal Rajukumar, Mildred S. Dresselhaus, Mauricio Terrones, Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more, Nano Today, Volume 10, Issue 5, (2015).
[36]Munkhbat, B., Yankovich, A.B., Baranov, D.G. et al. Transition metal dichalcogenide metamaterials with atomic precision. Nat Commun 11, 4604 (2020).
[37]B.T.Zhou, K.Taguchi, Y.Kawaguchi, et al. Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides. Commun Phys 2, 26 (2019).
[38]Mera Acosta, C., Fazzio, A. & Dalpian, G.M. Zeeman-type spin splitting in nonmagnetic three-dimensional compounds. npj Quantum Mater. 4, 41 (2019).
[39]A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov and R. A. Duine. New perspectives for Rashba spin–orbit coupling. arXiv:1507.02408 (2015).
[40]J. M. Friedt, J. P. Sanchez, G. K. Shenoy, Electronic and magnetic properties of metal diiodides MI2 (M=V, Cr, Mn, Fe, Co, Ni, and Cd) from 129I Mössbauer spectroscopy, J. Chem. Phys. 65, 5093–5102 (1976).
[41]X. Zhou, Z. Wang, H. Zhu, Z. Liu, Y. Hou, D. Guo, and D. Zhong, Epitaxial growth and electronic properties of an antiferromagnetic semiconducting VI2 monolayer, Nanoscale 14, 10559 (2022).
[42]S. Kurth, M.A.L. Marques, E.K.U. Gross, Density-Functional Theory, Editor(s): Franco Bassani, Gerald L. Liedl, Peter Wyder, Encyclopedia of Condensed Matter Physics, Elsevier, Pages 395-402, (2005)
[43]C. Fiolhais, F. Nogueira, M.A.L. Marques (Eds.), A Primer in Density Functional Theory, Springer, Berlin (2003)
[44]W. Kohn, Nobel lecture: electronic structure of matter – wave functions and density functionals, Reviews of Modern Physics, 71, p. 1253 (1999)
[45]P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys.Rev.136, B864(1964).
[46]W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
[47]G. D. Mahan, Many-particle physics -3rd ed. DOI 10.1007/978-1-4757-5714-9 (2000).
[48]P.G. Jambrina, J. Aldegunde, Chapter 20 - Computational Tools for the Study of Biomolecules,Computer Aided Chemical Engineering, Volume 39, Pages 583-648, 2016.
[49]G. L. Oliver and J. P. Perdew, Spin-density gradient expansion for the kinetic energy, Phys. Rev. A 20, 397 (1979).
[50]M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras,Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment, J. Chem. Phys. 114, 5149 (2001).
[51]S. Grimme,Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 25, 1463 (2004).
[52]P. Jurečka, J. Černý, P. Hobza, and D. R. Salahub,Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations, J. Comput. Chem. 28, 555 (2007).
[53]S.Grimme, J.Antony, S.Ehrlich, H.Krieg,A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J.Chem.Phys, 132(15):154104, 2010.
[54]E.R.Johnson, A.D.Becke, A post-Hartree-Fock model of intermolecular interactions:Inclusion of higher-order corrections, J.Chem.Phys, 124(17):174104, 2006.
[55]Yu A Bychkov and E I Rashba J. Phys. C: Solid State Phys. 17 6039 (1984)
[56]A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov and R. A. Duine. New perspectives for Rashba spin–orbit coupling. Nature Mater 14, 871–882 (2015).
[57]D.Xiao, G.-B.Liu, W. Feng, X. Xu, and W.Yao, Phys. Rev. Lett. 108, 196802 , 2012
[58]L.-D. Yuan, Z. Wang, J.-W. Luo, and A. Zunger, Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling, Phys. Rev. Mater. 5, 014409 (2021).
[59]K. Zollner and J. Fabian, Bilayer graphene encapsulated within monolayers of WS2 or Cr2Ge2Te6: Tunable proximity spin-orbit or exchange coupling, Phys. Rev. B 104, 075126 (2021).
[60]K. Zollner, M. Gmitra, and J. Fabian, Swapping Exchange and Spin-Orbit Coupling in 2D van der Waals Heterostructures, Phys. Rev. Lett. 125, 196402 (2020).
[61]L.-D. Yuan, Z. Wang, J.-W. Luo, E. I. Rashba, and A. Zunger, Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets, Phys. Rev. B 102, 014422 (2020).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *