|
[1]P. R. Wallace, The Band Theory of Graphite, Phys. Rev. 71, 622 (1947) [2]J. W. McClure, Diamagnetism of Graphite, Phys. Rev. 104, 666 (1956) [3]J. C. Slonczewski and P. R. Weiss, Band Structure of Graphite, Phys. Rev. 109, 272 (1958) [4]A. K.Geim, K. S. Novoselov, The rise of graphene. Nature Mater 6, 183–191 (2007). [5]Gerstner, E. Nobel Prize 2010: Andre Geim & Konstantin Novoselov. Nature Phys 6, 836 (2010). [6]Chih-Jen Shih, Shangchao Lin, Richa Sharma, Michael S. Strano, and Daniel Blankschtein, Understanding the pH-Dependent Behavior of Graphene Oxide Aqueous Solutions: A Comparative Experimental and Molecular Dynamics Simulation Study, Langmuir 2012 28 (1), 235-241. [7]Obraztsov AN, Zolotukhin AA, Ustinov AO, Volkov AP, Svirko Y, Jefimovs K. DC discharge plasma studies for nanostructured carbon CVD. Diamond and Related Materials. 2003;12:917 [8]R. Mmaduka Obodo, I. Ahmad, and F. Ifeanyichukwu Ezema, ‘Introductory Chapter: Graphene and Its Applications’, Graphene and Its Applications . IntechOpen, 2019. [9]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 – Published 14 January 2009 [10]C. L. Kane, E.J.Mele, Quantum Spin Hall Effect in Graphene. Phys.Rev.Lett., 95,226801 (2005) [11]Lu, X., Stepanov, P., Yang, W. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019). [12]B.R.K. Nanda, S.Satpathy, Strain and electric field modulation of the electronic structure of bilayer graphene. Phys. Rev. B. 80, 165430, 2009. [13]Hamid Oughaddou, Hanna Enriquez, Mohammed Rachid Tchalala, Handan Yildirim, Andrew J. Mayne, Azzedine Bendounan, Gérald Dujardin, Mustapha Ait Ali, Abdelkader Kara, Silicene, a promising new 2D material, Progress in Surface Science, Volume 90, Issue 1, Pages 46-83 (2015) [14]Mubashir A. Kharadi et al, Review—Silicene: From Material to Device Applications, ECS J. Solid State Sci. Technol. 9 115031 (2020) [15]Alessandro Molle, Carlo Grazianetti, Li Tao, ORCID, Deepyanti Taneja, Md. Hasibul Alam and Deji Akinwande, Silicene, silicene derivatives, and their device applications, Chem. Soc. Rev., 47, 6370-6387(2018) [16]Tao, L., Cinquanta, E., Chiappe, D. et al. Silicene field-effect transistors operating at room temperature. Nature Nanotech 10, 227–231 (2015) [17]Deepthi Jose and Ayan Datta, Structures and Chemical Properties of Silicene: Unlike Graphene, Acc. Chem. Res., 47, 2, 593–602 (2014) [18]Kesper, L., Hochhaus, J.A., Schmitz, M. et al. Tracing the structural evolution of quasi-freestanding germanene on Ag(111). Sci Rep 12, 7559 (2022). [19]A Acun et al, Germanene: the germanium analogue of graphene, J. Phys.: Condens. Matter 27 443002(2015) [20]M. Ge, M. Zong, D. Xu, Z. Chen, J. Yang, H. Yao, C. Wei, Y. Chen, H. Lin, J. Shi, Freestanding germanene nanosheets for rapid degradation and photothermal conversion, Materials Today Nano, Volume 15,(2021) [21]K. Zhang, D. Sciacca, M.-C. Hanf, R. Bernard, Y. Borensztein, A. Resta, Y. Garreau, A. Vlad, A. Coati, I. Lefebvre, M. Derivaz, C. Pirri, P. Sonnet, R. Stephan, and G. Prévot, Structure of Germanene/Al(111): A Two-Layer Surface Alloy, The Journal of Physical Chemistry C 125 (44), 24702-24709(2021) [22]M. Ge, H. Guo, M. Zong, Z. Chen, Z. Liu, H. Lin, J. Shi, Bandgap-Engineered Germanene Nanosheets as an Efficient Photodynamic Agent for Cancer Therapy, Angew. Chem. Int. Ed. 62, e202215795(2023). [23]Vo Khuong Dien, Wei-Bang Li, Kuang-I. Lin, Nguyen Thi Han and Ming-Fa Lin, Electronic and optical properties of graphene, silicene, germanene, and their semi-hydrogenated systems, RSC Adv.,12, 34851-34865 (2022) [24]Yong Xu, Binghai Yan, Hai-Jun Zhang, Jing Wang, Gang Xu, Peizhe Tang, Wenhui Duan, and Shou-Cheng Zhang, Large-Gap Quantum Spin Hall Insulators in Tin Films, Phys. Rev. Lett. 111, 136804 (2013) [25]Rani, S., Suganthi, K. & Roy, S.C. Stanene: State of the Art and Future Prospects. J. Electron. Mater. 52, 3563–3575 (2023). [26]Liyuan Wu, Pengfei Lu, Ruge Quhe, Qian Wang, Chuanghua Yang, Pengfei Guan and Kesong Yang, Stanene nanomeshes as anode materials for Na-ion batteries, J. Mater. Chem. A, 6, 7933-7941(2018) [27]C.-Z. Xu, Y.-H. Chan, P. Chen, X. Wang, D. Flötotto, J. A. Hlevyack, G. Bian, S.-K. Mo, M.-Y. Chou, and T.-C. Chiang, Gapped electronic structure of epitaxial stanene on InSb(111), Phys. Rev. B 97, 035122 (2018) [28]M. Ezawa, Monolayer Topological Insulators: Silicene, Germanene, and Stanene, J. Phys. Soc. Jpn. 84, 121003 (2015). [29]Salime Mahdavifar, Saber Farjami shayesteh, Meysam Bagheri Tagani, Electronic and mechanical properties of Plumbene monolayer: A first-principle study, Physica E: Low-dimensional Systems and Nanostructures, Volume 134, 2021. [30]Sumaiya Jahan Tabassum, Tanshia Tahreen Tanisha, Nishat Tasnim Hiramony and Samia Subrina, Large band gap quantum spin Hall insulators in plumbene monolayer decorated with amidogen, hydroxyl and thiol functional groups, Nanoscale Adv., 5, 3357-3367(2023) [31]J. Yuhara, B. He, N. Matsunami, M. Nakatake, G. Le Lay, Graphene's Latest Cousin: Plumbene Epitaxial Growth on a“Nano WaterCube”, Adv. Mater., 31 , Article 1901017(2019) [32]Das, D.K., Singh, S.K., Plumbene: A New 2D-Material Resembling Graphene. In: Shanker, K., Shankar, R., Sindhwani, R. (eds) Advances in Industrial and Production Engineering . Lecture Notes in Mechanical Engineering. Springer, Singapore. (2019) [33]Xiang-Long Yu, Li Huang, and Jiansheng Wu, From a normal insulator to a topological insulator in plumbene, Phys. Rev. B 95, 125113 (2017) [34]Chhowalla, M., Shin, H., Eda, G. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem 5, 263–275 (2013). [35]Ruitao Lv, Humberto Terrones, Ana Laura Elías, Néstor Perea-López, Humberto R. Gutiérrez, Eduardo Cruz-Silva, Lakshmy Pulickal Rajukumar, Mildred S. Dresselhaus, Mauricio Terrones, Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more, Nano Today, Volume 10, Issue 5, (2015). [36]Munkhbat, B., Yankovich, A.B., Baranov, D.G. et al. Transition metal dichalcogenide metamaterials with atomic precision. Nat Commun 11, 4604 (2020). [37]B.T.Zhou, K.Taguchi, Y.Kawaguchi, et al. Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides. Commun Phys 2, 26 (2019). [38]Mera Acosta, C., Fazzio, A. & Dalpian, G.M. Zeeman-type spin splitting in nonmagnetic three-dimensional compounds. npj Quantum Mater. 4, 41 (2019). [39]A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov and R. A. Duine. New perspectives for Rashba spin–orbit coupling. arXiv:1507.02408 (2015). [40]J. M. Friedt, J. P. Sanchez, G. K. Shenoy, Electronic and magnetic properties of metal diiodides MI2 (M=V, Cr, Mn, Fe, Co, Ni, and Cd) from 129I Mössbauer spectroscopy, J. Chem. Phys. 65, 5093–5102 (1976). [41]X. Zhou, Z. Wang, H. Zhu, Z. Liu, Y. Hou, D. Guo, and D. Zhong, Epitaxial growth and electronic properties of an antiferromagnetic semiconducting VI2 monolayer, Nanoscale 14, 10559 (2022). [42]S. Kurth, M.A.L. Marques, E.K.U. Gross, Density-Functional Theory, Editor(s): Franco Bassani, Gerald L. Liedl, Peter Wyder, Encyclopedia of Condensed Matter Physics, Elsevier, Pages 395-402, (2005) [43]C. Fiolhais, F. Nogueira, M.A.L. Marques (Eds.), A Primer in Density Functional Theory, Springer, Berlin (2003) [44]W. Kohn, Nobel lecture: electronic structure of matter – wave functions and density functionals, Reviews of Modern Physics, 71, p. 1253 (1999) [45]P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys.Rev.136, B864(1964). [46]W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965). [47]G. D. Mahan, Many-particle physics -3rd ed. DOI 10.1007/978-1-4757-5714-9 (2000). [48]P.G. Jambrina, J. Aldegunde, Chapter 20 - Computational Tools for the Study of Biomolecules,Computer Aided Chemical Engineering, Volume 39, Pages 583-648, 2016. [49]G. L. Oliver and J. P. Perdew, Spin-density gradient expansion for the kinetic energy, Phys. Rev. A 20, 397 (1979). [50]M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras,Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment, J. Chem. Phys. 114, 5149 (2001). [51]S. Grimme,Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 25, 1463 (2004). [52]P. Jurečka, J. Černý, P. Hobza, and D. R. Salahub,Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations, J. Comput. Chem. 28, 555 (2007). [53]S.Grimme, J.Antony, S.Ehrlich, H.Krieg,A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J.Chem.Phys, 132(15):154104, 2010. [54]E.R.Johnson, A.D.Becke, A post-Hartree-Fock model of intermolecular interactions:Inclusion of higher-order corrections, J.Chem.Phys, 124(17):174104, 2006. [55]Yu A Bychkov and E I Rashba J. Phys. C: Solid State Phys. 17 6039 (1984) [56]A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov and R. A. Duine. New perspectives for Rashba spin–orbit coupling. Nature Mater 14, 871–882 (2015). [57]D.Xiao, G.-B.Liu, W. Feng, X. Xu, and W.Yao, Phys. Rev. Lett. 108, 196802 , 2012 [58]L.-D. Yuan, Z. Wang, J.-W. Luo, and A. Zunger, Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling, Phys. Rev. Mater. 5, 014409 (2021). [59]K. Zollner and J. Fabian, Bilayer graphene encapsulated within monolayers of WS2 or Cr2Ge2Te6: Tunable proximity spin-orbit or exchange coupling, Phys. Rev. B 104, 075126 (2021). [60]K. Zollner, M. Gmitra, and J. Fabian, Swapping Exchange and Spin-Orbit Coupling in 2D van der Waals Heterostructures, Phys. Rev. Lett. 125, 196402 (2020). [61]L.-D. Yuan, Z. Wang, J.-W. Luo, E. I. Rashba, and A. Zunger, Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets, Phys. Rev. B 102, 014422 (2020). |