帳號:guest(3.135.213.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭力珊
作者(外文):Cheng, Li-Shan
論文名稱(中文):果蠅記憶腦區混合神經網路架構
論文名稱(外文):Hybrid network architecture of memory center in the drosophila brain
指導教授(中文):李定國
指導教授(外文):Lee, Ting-Kuo
口試委員(中文):江安世
羅中泉
林書葦
周雅惠
口試委員(外文):Chiang, Ann-Shih
Lo, Chung-Chuan
Lin, Sue-wei
Chou, Ya-Hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108022533
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:58
中文關鍵詞:計算神經科學神經網絡記憶嗅覺果蠅
外文關鍵詞:Computational neuroscienceneuronal netwrokmemoryolfactionDrosophila
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
感官訊號的編譯密切仰賴特化的神經網路結構。蕈狀體(mushroom body) 為果蠅的嗅覺記憶中樞,被廣泛作為探討生物如何將外界刺激編譯為高階行為認知的模式系統。然而過去中尺度層級的研究對於蕈狀體的網路架構支持截然不同的假說,分別為受先天遺傳決定的類型化結構,以及受後天學習決定的隨機化連結。透過分析果蠅半腦電顯資料庫 (FlyEM hemibrain dataset),我們的研究指出嗅盞(calyx)中的三類凱恩神經(kenyon cell)藉由維持橫跨嗅覺系統的空間映射達成不同程度的輸入擴張,並形成混合式網路結構。我們藉由整合低階嗅覺中樞嗅覺刺激反應與腦神經組(connectome)以建構出蕈狀體氣味調變模型,成功預測給定氣味下的活體內蕈狀體腦區反應強度。混合網路架構分化三類凱恩細胞對分子化學特徵的偵測敏感性,並可能進一步決定蕈狀體輸出神經的先天調變機制。本篇研究提出新的生物神經網路結構以及提供混合架構對於編譯外界刺激為高階認知的潛在計算優勢。
Bio-signal encoding mechanisms are heavily determined by the architecture of underlying neural circuits. Mushroom body (MB) is the olfaction memory center of Drosophila. Previous studies support opposite perspectives to the upstream organization of MB, that is, completely random or stereotypic, based on experimental evidence of the connectivity at the mesoscopic level. Here we identify the hybrid network structure of Drosophila calyx that three Kenyon cell (KC) classes leverage different levels of input expansion by maintaining the spatial map across the olfactory system. We construct a simulation model of the MB tuning profile by integrating the response pattern of the receptor neurons with the connectome of olfactory system The model successfully predicts the odor-evoked activity of MB in the lobe region. The hybrid structure differentiates the chemical sensitivity of KCs and likely determines the innate tuning features of MB output neurons. Our results provide insights into the computational benefit of a calyceal hybrid network for translating molecular signals into higher-order perception.
ACKNOWLEDGMENT.................................................. i ACKNOWLEDGMENT(CHINESE).................................. ii ABSTRACT OF THE DISSERTATION............................... iv ABSTRACT OF THE DISSERTATION (CHINESE)................ v TABLE OF CONTENTS.................................................. vi CHAPTER 1 INTRODUCTION...................................... 1 CHAPTER 2 RESULT................................................. 5
1. Connectivity preference in the calyx.................................... 5
1.1 Quantification of the calyceal stereotype.................... 5
1.2 Sampling requirement for detecting global structure...... 10
1.3 Spatial constraint of PN-to-KC innervation................. 13
2. Odor representation of MB lobes......................................... 15
2.1 2.2 2.3
3. Innate 3.1 3.2
CHAPTER 3
Tuning profile of early olfactory processing................ 15 Chemically sensitive specificity of KC classes............. 17 Model validation with calcium imaging..................... 21
tuning profile of MBONs.......................................... 25 Simulation of odor evoked MBON response............... 25 Functional implication of the stereotypy mapping......... 27
DISCUSSION.......................................... 30
CHAPTER 4 METHODS............................................. 36 CHAPTER 5 REFERENCE........................................... 41 APPENDIX..................................................................44
1. Supplementary figures............................................44 2. Supplementary tables.............................................50
[1] ZARS, Troy. Behavioral functions of the insect mushroom bodies. Current opinion in neurobiology, 2000, 10.6: 790-795.
[2] HEISENBERG, Martin. Mushroom body memoir: from maps to models. Nature Reviews Neuroscience, 2003, 4.4: 266-275.
[3] KRASHES, Michael J., et al. Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron, 2007, 53.1: 103-115.
[4] FARRIS, Sarah M. Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain, behavior and evolution, 2013, 82.1: 9-18.
[5] GROSCHNER, Lukas N.; MIESENBÖCK, Gero. Mechanisms of sensory discrimination: insights from Drosophila olfaction. Annual review of biophysics, 2019, 48: 209-229.
[6] CAMPBELL, Robert AA, et al. Imaging a population code for odor identity in the Drosophila mushroom body. Journal of Neuroscience, 2013, 33.25: 10568-10581.
[7] BARAK, Omri; RIGOTTI, Mattia; FUSI, Stefano. The sparseness of mixed selectivity neurons controls the generalization–discrimination trade-off. Journal of Neuroscience, 2013, 33.9: 3844-3856.
[8] DASGUPTA, Sanjoy; STEVENS, Charles F.; NAVLAKHA, Saket. A neural algorithm for a fundamental computing problem. Science, 2017, 358.6364: 793-796.
[9] LI, Feng, et al. The connectome of the adult Drosophila mushroom body provides insights into function. Elife, 2020, 9: e62576.
[10] ASO, Yoshinori, et al. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife, 2014, 3: e04580.
[11] ASO, Yoshinori, et al. The neuronal architecture of the mushroom body provides a logic for associative learning. elife, 2014, 3: e04577.
[12] JEFFERIS, Gregory SXE, et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell, 2007, 128.6: 1187- 1203.
[13] CARON, Sophie JC, et al. Random convergence of olfactory inputs in the Drosophila mushroom body. Nature, 2013, 497.7447: 113-117.
[14] MURTHY, Mala; FIETE, Ila; LAURENT, Gilles. Testing odor response stereotypy in the Drosophila mushroom body. Neuron, 2008, 59.6: 1009-1023.
[15] BALTRUSCHAT, Lothar, et al. Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation. Cell reports, 2021, 34.11: 108871.
[16] SCHEFFER, Louis K., et al. A connectome and analysis of the adult Drosophila central brain. Elife, 2020, 9: e57443.
[17] CLEMENTS, Jody, et al. neuPrint: analysis tools for EM connectomics. bioRxiv, 2020. [18] MITTAL, Aarush Mohit, et al. Multiple network properties overcome random connectivity to enable stereotypic sensory responses. Nature communications, 2020, 11.1:
1-15.
[19] COUTO, Africa; ALENIUS, Mattias; DICKSON, Barry J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Current Biology, 2005, 15.17: 1535-1547.
[20] ZHENG, Zhihao, et al. Structured sampling of olfactory input by the fly mushroom body. BioRxiv, 2020.
[21] HILDEBRAND, John G.; SHEPHERD, Gordon M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annual review of neuroscience, 1997, 20.1: 595-631.
[22]
[23] SI, Guangwei, et al. Structured odorant response patterns across a complete olfactory receptor neuron population. Neuron, 2019, 101.5: 950-962. e7.
[24] OWALD, David, et al. Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron, 2015, 86.2: 417-427.
[25] COHN, Raphael; MORANTTE, Ianessa; RUTA, Vanessa. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell, 2015, 163.7: 1742-1755.
[26] HIGE, Toshihide, et al. Plasticity-driven individualization of olfactory coding in mushroom body output neurons. Nature, 2015, 526.7572: 258-262.
[27] HIGE, Toshihide, et al. Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila. Neuron, 2015, 88.5: 985-998.
[28] SÉJOURNÉ, Julien, et al. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nature neuroscience, 2011, 14.7: 903-910.
[29] GRUNTMAN, Eyal; TURNER, Glenn C. Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nature neuroscience, 2013, 16.12: 1821-1829.
[30] MODI, Mehrab N.; SHUAI, Yichun; TURNER, Glenn C. The Drosophila mushroom body: from architecture to algorithm in a learning circuit. Annual review of neuroscience, 2020, 43: 465-484.
[31] HERMUNDSTAD, Ann M., et al. Learning, memory, and the role of neural network architecture. PLoS computational biology, 2011, 7.6: e1002063.
[32] LIN, Andrew C., et al. Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nature neuroscience, 2014, 17.4: 559-568.
[33] MARR, David; THACH, W. Thomas. A theory of cerebellar cortex. In: From the Retina to the Neocortex. Birkhäuser Boston, 1991. p. 11-50.
[34] ALBUS, James S. A theory of cerebellar function. Mathematical biosciences, 1971, 10.1-2: 25-61.
[35] YU, Chung Wen, et al. Drawing the borders of olfactory space. In: Chemical Senses. GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND: OXFORD UNIV PRESS, 2015. p. 565-565.
[36] KANERVA, Pentti. Sparse distributed memory. MIT press, 1988.
[37] TREVES, Alessandro; ROLLS, Edmund T. What determines the capacity of autoassociative memories in the brain?. Network: Computation in Neural Systems, 1991,
2.4: 371.
[38] KRISHNAMURTHY, Kamesh, et al. Disorder and the neural representation of
complex odors: smelling in the real world. arXiv preprint arXiv:1707.01962, 2017.
[39] BABADI, Baktash; SOMPOLINSKY, Haim. Sparseness and expansion in sensory
representations. Neuron, 2014, 83.5: 1213-1226.
[40] HERMUNDSTAD, Ann M., et al. Learning, memory, and the role of neural network
architecture. PLoS computational biology, 2011, 7.6: e1002063.
MÜNCH, Daniel; GALIZIA, C. Giovanni. DoOR 2.0-comprehensive mapping of Drosophila
melanogaster odorant responses. Scientific reports, 2016, 6.1: 1-14.
[41] DASGUPTA, Sanjoy; STEVENS, Charles F.; NAVLAKHA, Saket. A neural algorithm for a fundamental computing problem. Science, 2017, 358.6364: 793-796.
[42] BARAK, Omri; RIGOTTI, Mattia; FUSI, Stefano. The sparseness of mixed selectivity neurons controls the generalization–discrimination trade-off. Journal of Neuroscience, 2013, 33.9: 3844-3856.
[43] NEVO, Omer, et al. Signal and reward in wild fleshy fruits: Does fruit scent predict nutrient content?. Ecology and evolution, 2019, 9.18: 10534-10543.
[44] BRAULT, Guillaume, et al. Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase. PLoS One, 2014, 9.3: e91872.
[45] ROWE, David (ed.). Chemistry and technology of flavours and fragrances. John Wiley & Sons, 2009.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *