|
[1] B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett., vol. 29, no. 16, pp. 1891-1893, 2004/08/13 2004, doi: 10.1364/OL.29.001891. [2] G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," in High-Power Diode Laser Technology and Applications III, 2005, vol. 5711: International Society for Optics and Photonics, pp. 166-176. [3] K. Petermann, Laser diode modulation and noise. Springer Science & Business Media, 1991. [4] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012. [5] M. Kanskar et al., "High power conversion efficiency and wavelength-stabilized narrow bandwidth 975nm diode laser pumps," in Laser Source and System Technology for Defense and Security II, 2006, vol. 6216: International Society for Optics and Photonics, p. 621609. [6] P. Crump et al., "975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications," in High-Power Diode Laser Technology and Applications VIII, 2010, vol. 7583: International Society for Optics and Photonics, p. 75830N. [7] T.Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt. Lett., vol. 31, no. 2, pp. 229-231, 2006. [8] W.P. Chan, "以錐形半導體放大器為增益介質, 外腔 VBG 回饋半導體雷射研究," National Central University, 2010. [9] O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Applied optics, vol. 38, no. 4, pp. 619-627, 1999. [10] L. B. Glebov, "Kinetics modeling in photosensitive glass," Optical Materials, vol. 25, no. 4, pp. 413-418, 2004. [11] J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, "Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass," Optical materials, vol. 32, no. 1, pp. 139-146, 2009. [12] L. Glebov, "Volume Bragg Gratings in PTR glass-New optical elements for laser design," in Frontiers in Optics, 2008: Optical Society of America, p. SThA4. [13] J. Cheng et al., "A review of ultrafast laser materials micromachining," Optics & Laser Technology, vol. 46, pp. 88-102, 2013. [14] T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, "Corneal refractive surgery with femtosecond lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 4, pp. 902-910, 1999. [15] N.N. Dong et al., "NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging," ACS nano, vol. 5, no. 11, pp. 8665-8671, 2011. [16] V. Matsas, T. Newson, D. Richardson, and D. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electron. Lett, vol. 28, no. 15, pp. 1391-1393, 1992. [17] M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, "Mode locking with cross-phase and self-phase modulation," Optics Letters, vol. 16, no. 7, pp. 502-504, 1991/04/01 1991, doi: 10.1364/OL.16.000502. [18] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, no. 2, p. 576, 2002, doi: 10.1063/1.1425445. [19] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," (in English), IEEE Journal of Quantum Electronics, vol. 33, no. 7, pp. 1049-1056, Jul 1997, doi: Doi 10.1109/3.594865. [20] E. Treacy, "Optical pulse compression with diffraction gratings," Quantum Electronics, IEEE Journal of, vol. 5, no. 9, pp. 454-458, 1969, doi: 10.1109/JQE.1969.1076303. [21] A. Johnson, R. Stolen, and W. Simpson, "80× single‐stage compression of frequency doubled Nd: yttrium aluminum garnet laser pulses," Applied Physics Letters, vol. 44, no. 8, pp. 729-731, 1984. [22] T. Gfroerer and M. Bergthold, "Laser diode coherence," American Journal of Physics, vol. 88, no. 9, pp. 740-745, 2020. [23] S.Y. Baek, O. Kwon, and Y.H. Kim, "High-resolution mode-spacing measurement of the blue-violet diode laser using interference of felds created with time delays greater than the coherence time," Japanese Journal of Applied Physics, vol. 46, no. 12R, p. 7720, 2007.
|