帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳天霖
作者(外文):Chen, Tien-Lin
論文名稱(中文):以體積布拉格光柵穩定波長之高功率雷射二極體 (𝝀=976 nm) 的特性及其應用之研究
論文名稱(外文):Characteristics and Applications of High-Power Laser Diodes Wavelength-locked by a Volume Bragg Grating
指導教授(中文):潘犀靈
林登松
指導教授(外文):Pan, Ci-Ling
Lin, Deng-sung
口試委員(中文):楊承山
李晁逵
口試委員(外文):Yang, Chan-Shan
Lee, Chao-Kuei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108022529
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:61
中文關鍵詞:高功率雷射二極體體積布拉格光柵光纖雷射
外文關鍵詞:high-power laser diodevolume Bragg gratingfiber laser
相關次數:
  • 推薦推薦:0
  • 點閱點閱:103
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
高功率波長穩定的半導體雷射(𝝀=976 nm)應用甚廣,如用以泵浦摻鐿光纖雷射。本論文中,我們量測了以VBG穩定波長的半導體雷射的特性: 其輸出功率可超過10W,其雷射閾值為0.49 A,中心波長為976.2 nm。在固定溫度的情況下,每改變泵浦電流一安培,其輸出波長偏移 0.07 nm,而在幫浦電流固定的情況下,每改變溫度1°C,其輸出波長僅紅移 0.014 nm。我們也架設了一座麥克森干涉儀,量得其線寬約為0.108 nm,與光譜分析儀量測結果相符。此方法亦可以決定雷射輸出是否為多縱向模。利用此雷射二極體,我們成功的泵浦雙包層摻鐿光纖雷射系統,利用非線性極化旋轉機制及色散控制產生重複率為14.9 MHz 的鎖模雷射脈衝;並與同一系統利用915 nm 波長雷射泵浦時之行為相比較。本論文中也展示用915 nm 及976 nm 同時泵浦此雷射系統之可能性及脈衝壓縮的結果。最後我們提出系統改進之可能性。
There are many applications of wavelength-stable high-power laser diodes. For example, such lasers have been used to pump ytterbium-doped fiber laser systems. In this thesis, we have characterized highly-stable diode laser of which the wavelength were locked by a volume Bragg grating (VBG). This laser diode can generate power exceeding 10 Watts. The lasing threshold is 0.49 A and the center wavelength is 976.2 nm at room temperature. In the case of a fixed temperature, the output wavelength shifts with bias current by 0.07 nm/A. Keeping the bias current a constant, the output wavelength shifts by 0.014 nm for temperature change of 1°C. Furthermore, we set up a Michelson interferometer and determine that the laser linewidth is about 0.108 nm, which is consistent with the results obtained by using an optical spectrum analyzer. This method can also be used to determine whether the laser output consists of multiple longitudinal modes. We have also successfully pumped a double-clad dispersion-mapped Yb-doped fiber laser system with this laser diode to generate mode-locked pulses. Results are compared with performances of the same laser pumped by laser diodes operating at 915 nm. We also study the feasibility of simultaneous pumping with 915 nm and 976 nm and pulse compression. Finally, we propose schemes for further improvements of the laser system.
中文摘要 I
Abstract II
致謝 III
Table of Contents IV
List of Figures VI
List of Abbreviations X
Chapter 1 Introduction 1
Chapter 2 Theoretical backgrounds 4
2.1 Wavelength stabilized high power laser diode 4
2.2 Volume Bragg grating (VBG) 6
2.2.1 Photo-thermo-refractive (PTR) glass 7
2.2.2 Plane wave theory 8
2.3 Coherence measurement 11
2.4 Ultrafast Mode-Locked Laser 13
2.4.1 Mode-locking theory 13
2.4.2 Active mode-locking 15
2.4.3 Passive mode-locking 16
2.4.4 Mode-locking by nonlinear polarization evolution (NPE) 17
2.5 Optical fiber 19
2.5.1 Ytterbium (Yb) doped active fiber 19
2.5.2 Pumping wavelength of laser diode 21
2.6 Dispersion management 21
2.6.1 Pulse propagation in a dispersive medium 21
2.6.2 Grating pair compressor 23
Chapter 3 Characteristics of 976 nm VBG LD 28
Chapter 4 Experiment results 34
4.1 Experiment setup 34
4.2 915 nm LD pump laser system 37
4.3 976 nm VBG-locked LD pump laser system 43
4.4 976 nm and 915 nm dual-wavelength pump laser system 48
4.5 Different pumping source comparison 53
Chapter 5 Conclusion and future work 58
References 60
[1] B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett., vol. 29, no. 16, pp. 1891-1893, 2004/08/13 2004, doi: 10.1364/OL.29.001891.
[2] G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," in High-Power Diode Laser Technology and Applications III, 2005, vol. 5711: International Society for Optics and Photonics, pp. 166-176.
[3] K. Petermann, Laser diode modulation and noise. Springer Science & Business Media, 1991.
[4] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012.
[5] M. Kanskar et al., "High power conversion efficiency and wavelength-stabilized narrow bandwidth 975nm diode laser pumps," in Laser Source and System Technology for Defense and Security II, 2006, vol. 6216: International Society for Optics and Photonics, p. 621609.
[6] P. Crump et al., "975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications," in High-Power Diode Laser Technology and Applications VIII, 2010, vol. 7583: International Society for Optics and Photonics, p. 75830N.
[7] T.Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt. Lett., vol. 31, no. 2, pp. 229-231, 2006.
[8] W.P. Chan, "以錐形半導體放大器為增益介質, 外腔 VBG 回饋半導體雷射研究," National Central University, 2010.
[9] O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Applied optics, vol. 38, no. 4, pp. 619-627, 1999.
[10] L. B. Glebov, "Kinetics modeling in photosensitive glass," Optical Materials, vol. 25, no. 4, pp. 413-418, 2004.
[11] J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, "Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass," Optical materials, vol. 32, no. 1, pp. 139-146, 2009.
[12] L. Glebov, "Volume Bragg Gratings in PTR glass-New optical elements for laser design," in Frontiers in Optics, 2008: Optical Society of America, p. SThA4.
[13] J. Cheng et al., "A review of ultrafast laser materials micromachining," Optics & Laser Technology, vol. 46, pp. 88-102, 2013.
[14] T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, "Corneal refractive surgery with femtosecond lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 4, pp. 902-910, 1999.
[15] N.N. Dong et al., "NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging," ACS nano, vol. 5, no. 11, pp. 8665-8671, 2011.
[16] V. Matsas, T. Newson, D. Richardson, and D. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electron. Lett, vol. 28, no. 15, pp. 1391-1393, 1992.
[17] M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, "Mode locking with cross-phase and self-phase modulation," Optics Letters, vol. 16, no. 7, pp. 502-504, 1991/04/01 1991, doi: 10.1364/OL.16.000502.
[18] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, no. 2, p. 576, 2002, doi: 10.1063/1.1425445.
[19] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," (in English), IEEE Journal of Quantum Electronics, vol. 33, no. 7, pp. 1049-1056, Jul 1997, doi: Doi 10.1109/3.594865.
[20] E. Treacy, "Optical pulse compression with diffraction gratings," Quantum Electronics, IEEE Journal of, vol. 5, no. 9, pp. 454-458, 1969, doi: 10.1109/JQE.1969.1076303.
[21] A. Johnson, R. Stolen, and W. Simpson, "80× single‐stage compression of frequency doubled Nd: yttrium aluminum garnet laser pulses," Applied Physics Letters, vol. 44, no. 8, pp. 729-731, 1984.
[22] T. Gfroerer and M. Bergthold, "Laser diode coherence," American Journal of Physics, vol. 88, no. 9, pp. 740-745, 2020.
[23] S.Y. Baek, O. Kwon, and Y.H. Kim, "High-resolution mode-spacing measurement of the blue-violet diode laser using interference of felds created with time delays greater than the coherence time," Japanese Journal of Applied Physics, vol. 46, no. 12R, p. 7720, 2007.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *