帳號:guest(18.188.212.54)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃翊銘
作者(外文):Huang, Yi-Ming
論文名稱(中文):電荷密度波與超導態在銅氧化物超導體內的相圖與競爭關係
論文名稱(外文):Phase Diagram and Competition of Charge Density Wave and Superconducting States in Cuprates
指導教授(中文):牟中瑜
指導教授(外文):Mou, Chung-Yu
口試委員(中文):張明哲
仲崇厚
口試委員(外文):Chang, Ming-Che
Chung, Chung-Hou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108022524
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:44
中文關鍵詞:超導體電子對密度波電荷密度波Ginzburg-Landau 理論t-t'-J 模型
外文關鍵詞:SuperconductorPair density waveCharge desity waveGinzburg-Landau theoryt-t'-J model
相關次數:
  • 推薦推薦:0
  • 點閱點閱:167
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這篇論文中,我們探討了在銅酸鹽中電荷密度波與超導態的競爭關係。這裡的超導態包含了d-波的超導態與電子對密度波。我們用t−t′−J模型與Ginzburg-Landau的理論建構Ginzburg-Landau自由能並用這個方法去分析這些態之間競爭關係的相圖。我們首先用電子的格林函數去表示展開成冪次函數自由能內部的係數。這些格林函數接著用重整化平均場理論下的t−t′−J模型來計算。有了這些係數,我們就可以計算在有均勻磁場下的Ginzburg-Landau自由能並且去找相圖。我們發現在低磁場的環境下由d-波超導態主導而電子對密度波態會在中強度磁場且低溫的環境取代d-波超導態成為主要的相。最後,我們發現電子對密度波態會因電荷密度波而穩定且最後與電荷密度波同時出現。
In this thesis, we investigate the competition between the charge density wave and the superconducting states in cuprates. The superconducting states include the uniform d-wave superconducting state and the pair density wave states. To analyze the phase diagram resulting from the competition between these states, we resort to the Ginzburg-Landau theory by constructing the Ginzburg-Landau free energy functional from the renormalized mean-field t − t′ − J model. Specifically, we first express all relevant coefficients in the polynomial expansion of the Ginzburg-Landau free energy in terms of Green’s functions of electrons. The Green’s functions are then computed based on the renormalized mean-field results of the t − t′ − J model. With the computed coefficients, we compute the minimum of the Ginzburg-Landau free energy in the presence of a uniform magnetic field to find the phase diagram. We find that while the uniform d-wave superconducting state dominates in the low magnetic field regime, the pairing density wave state wins over for intermediate magnetic fields and lower temperatures. Furthermore, we find that the pair density wave state is stabilized by the charge density wave and emerges together with the charge density wave state.
Content IV

List of Figures VI

1 Introduction 1

2 Model 4
2.1 t-t'-J Model----------------------------------------------4
2.2 Slave Boson Method----------------------------------------5
2.3 t-t'-J Model in the Momentum space------------------------6
2.4 Numerical analysis of a simpler case----------------------7
2.5 Renormalized Mean-Field Theory----------------------------11
2.5.1 Simplified t−J Model------------------------------------11
2.5.2 t−t′−J Model--------------------------------------------13

3 Ginzburg-Landau Theory 16
3.1 Landau Theory---------------------------------------------16
3.2 Ginzburg-Landau Theory------------------------------------19
3.3 Free energy with Coexisting SC and PDW--------------------20
3.4 Self-consistent gap equations-----------------------------23

4 Coefficient Calculation 25
4.1 Feynman Diagram-------------------------------------------25
4.2 Green's Function from Feynman Diagram---------------------27
4.3 Summation over Matsubara Frequency------------------------29
4.3.1 Contour Integration in Many-Body Theory-----------------29
4.3.2 Matsubara Frequency Summation---------------------------29
4.4 Calculation of others αn----------------------------------30
4.4.1 α2------------------------------------------------------31
4.4.2 α3 and α4-----------------------------------------------32
4.5 Cubic term of γ1 and γ2-----------------------------------32
4.6 Biquadratic Term βn---------------------------------------33

5 Results 35
5.1 Coefficients----------------------------------------------35
5.2 Applying Magnetic Field-----------------------------------37

6 Conclusion and Discussion 40

Reference 42
[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic Theory of Superconductivity, Phys. Rev.106,162, 1957
[2] J. G. Bednorz, K. A. M ̈uller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B Condensed Matter64,189-193, 1986
[3] D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch, d-wave pairing near a spin-density-wave instability, Phys. Rev. B34,8190(R), 1986
[4] Eugene Demler and Shou-Cheng Zhang, Theory of the Resonant NeutronScattering of High-T, Superconductors, Phys. Rev. Lett.75,4126, 1995
[5] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Band-Structure Trend in Hole-Doped Cuprates and Correlation with Tc max, Phys. Rev. Lett.87,047003, 2001
[6] L. D. Landau, Theory of phase transformations, Phys. Z. Sowjetunion, vol.11, no. 26, p. 545, 1937
[7] V. L. Ginzburg and L. D. Landau, On the theory of superconductivity. Zh.Eksp. Teor. Fiz, vol. 20, p. 1064, 1950.
[8] Piers Coleman, Introduction to many-body physics. Cambridge UniversityPress, United Kingdom, 2015
[9] https://tu-dresden.de/mn/physik/itp/cmt/ressourcen/dateien/skripte/Skriptra.pdf?lang=enCarsten Timm, Theory of Superconductivity, version: February 3, 202142
[10] Daniel F. Agterberg and Julien Garaud, Checkerboard order in vortex cores from pair-density-wave superconductivity, Physical Review B91,104512,2015
[11] Erez Berg, Eduardo Fradkin, Steven A Kivelson and John M Tranquada, Striped superconductors: how spin, charge and superconducting orders inter-wine in the cuprates, New Journal of Physics11115004, 2009
[12] Rodrigo Soto-Garrido, Yuxuan Wang, Eduardo Fradkin, and S. LanceCooper, Higgs modes in the Pair Density Wave Superconducting State, Phys. Rev. B95,214502, 2017
[13] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdfNoah A. Hughes, Infinite Series and Residue Theorem, 2017
[14] H.Bruus, K.Flensberg, Many-Body Quantum Theory in Condensed matter physics, Oxford University Press, USA, 2004
[15] J.E.Marsden, M.J.Hoffman,Basic Complex Analysis, W.H.Freeman, 1998
[16] Menke U. Ubbens and Patrick A. Lee, Flux phases in the t-J model, Phys. Rev. B46,8434, 1992
[17] C. T. Shih, T. K. Lee, R. Eder, C. Y. Mou, and Y. C. Chen, Enhancement of pairing Correlation byt′in the Two-Dimensional ExtendedtJModel, Phys. Rev. Lett92,227002, 2004
[18] Jian-Xin Li, Chung-Yu Mou, T. K. Lee, Consistent picture for resonance-neutron-peak and angle-resolved photoemission spectra in high-Tcsupercon-ductors, Phys. Rev. B62,640, 2001
[19] T. Dahm, D. Manske, and L. Tewordt, Collective modes in high-temperature superconductors, Phys. Rev. B58,12454, 1998
[20] B.Eddeger, V. N. Muthukumar, and C. Gros, Gutzwiller-RVB Theory of high-Temperature Superconductivity: Results from Renormalized Mean Field Theory and Variational Monte Carlo Calculation, arXiv:0707.1020v1 [cond-mat. str-el] 6 Jul 200743
[21] F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, A renormalized Hamiltonianapproach to a resonant valence bond wavefunction, arXiv:cond-mat/0311604[cond-mat. str-el] 26 Nov 2003
[22] Kazuhiro Kuboki, Ginzburg-Landau Theory for Flux Phase and Superconductivity int−JModel, arXiv:1708.03542 [cond-mat. supr-con] 27 Dec 2017
[23] S. Stintzing and W. Zwerger, Ginzburg-Landau theory of superconductors with short coherence length, Phys. Rev. B56,9004, 1997
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *