|
[1] H. K. Chiou and T. Y. Yang, “Low-loss and broadband asymmetric broadside coupled balun for mixer design in 0.18- m CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 835–848, Apr. 2008. [2] T. C. Yu et al., “A novel planar balun structure for continuous wave 1kW, 500 MHz solid state amplifier design,” in Proc. Int. Part. Accel. Conf., 2012, pp. 2699–2701. [3] T. C. Yu et al., “Heat distribution analysis of planar baluns for 1kw solid-state amplifiers and power combining for 1.8kw,” in Proc. Int. Part. Accel. Conf., 2014, pp. 2294–2296. [4] Y. Chen, L. Zhang, and Y. Wang, “A 150 GHz High Gain Amplifier Based on Over Neutralization Technique and Marchand Balun Matching Networks in 65 nm CMOS”, IEEE WMED, 2017. [5] Jinna Yan et al., “Ka-Band Marchand Balun with Edge- and Broadside-Coupled Hybrid Configuration”, Electronics, vol. 9, no. 1116, July 2020. [6] E. Jafari, F. Hojatkashani, and R. Rezaiesarlak, “A wideband compact planar balun for UHF DTV applications,” J. Electromagn. Waves Appl., Vol. 23, pp. 2047–2053, 2009. [7] A. Jain, D. K. Sharma, A. K. Gupta, and P. R. Hannurkar, “High power solid state rf amplifier for proton,” Rev. Sci. Instrum., vol. 79, Jan. 2008. [8] M. Gaspar, M. Pedrozzi, L. F. R. Ferreira, and T. Garvey, “A compact 500 MHz 4 kW solid-state power amplifier for accelerator applications,” Nucl. Instrum. Methods Phys. Res. A, vol. 637, pp. 18-24, Jan. 2011. [9] A. Jain et al., “Design and characterization of 50 kW solid-state RF amplifier,” INT. J. MICROW. WIREL. T., vol. 4, pp. 595-603, Nov. 2012. [10] B. V. Ramarao et al., “Development of 3kW at 325 MHz solid-state RF power amplifier using four power amplifier modules,” Nucl. Instrum. Methods Phys. Res. A, vol. 735, pp. 283-290, Jan. 2014. [11] M. Gaspar and T. Garvey, “A Compact 500 MHz 65 kW Solid-State Power Amplifier for Accelerator Applications,” IEEE Trans. Nucl. Sci., vol. 63, no. 2, pp. 699–706, Apr. 2016. [12] L. Haapala, A. Eriksson, L. Hoang Duc, and D. Dancila, “Kilowatt-level power amplifier in a single-ended architecture at 352 MHz,” Electron. Lett., vol. 52, no. 18, pp. 1552–1554, Sep. 2016. [13] H. S. Song, M. Ghergherehchi, S. Oh, and J. S. Chai, “Development of an 83.2 MHz, 3.2 kW solid-state RF amplifier using Wilkinson power divider and combiner for a 10 MeV cyclotron,” Rev. Sci. Instrum., vol. 88, 2017. [14] L. H. Duc, M. Jobs, T. Lofnes, R. Ruber, J. Olsson, and D. Dancila, “Feedback compensated 10 kW solid-state pulsed power amplifier at 352 MHz for particle accelerators,” Rev. Sci. Instrum., vol. 90, 2019 [15] H. S. Song et al., “Modular 20 kW, 83.2-MHz Solid-State RF Amplifier for a 10-MeV Cyclotron,” IEEE Trans. Nucl. Sci., vol. 66, no. 8, pp. 1924–1930, Aug. 2019 [16] R. Tong, O. Bengtsson, A. Backlund, and D. Dancila, “Compact and Highly Efficient Kilowatt Lumped Push-Pull Power Amplifier for Cyclotron in Radioisotopes Production,” IEEE Trans. Microw. Theory Tech., vol. 69, no. 1, pp. 723-731, Jan. 2021. [17] Y.-H. Chun, J.-Y. Moon, S.-W. Yun, and J.-K. Rhee, “Microstrip line directional couplers with high directivity,” Electron. Lett., vol. 40, no. 5, pp. 317-318, Mar. 2004. [18] M.-J. Park and B. Lee, “Compact foldable coupled line cascade couplers,” Proc. Inst. Elect. Eng.—Microw., Antennas, Propag., vol. 153, no. 3, pp. 237–240, Jun. 2006. [19] K. Wincza and S. Gruszczynski, “Theoretical limits on miniaturization of directional couplers designed as a connection of tightly coupled and uncoupled lines,” Microw. Opt. Technol. Lett., vol. 55, no. 1, pp. 223–230, Jan. 2013. [20] G. Sanna, G. Montisci, Z. Jin, A. Fanti, and G. A. Casula, “Design of a Low-Cost Microstrip Directional Coupler with High Coupling for a Motion Detection Sensor,” Electronics, vol. 7, no. 25, Feb. 2018
|