帳號:guest(3.145.174.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱秀
作者(外文):Chen,Yu-Hsiu
論文名稱(中文):光捕捉異核雷德堡原子的二重磁光陷阱
論文名稱(外文):Heteronuclear Dual MOT for Optical Trapped Rydberg Atoms
指導教授(中文):劉怡維
指導教授(外文):LIU, YI­-WEI
口試委員(中文):陳應誠
王立邦
口試委員(外文):Chen, Ying-Cheng
WANG, LI-BANG
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108022518
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:38
中文關鍵詞:磁光陷阱銣原子鉀原子
外文關鍵詞:magneto optical trapRubidium atomPotassium atom
相關次數:
  • 推薦推薦:0
  • 點閱點閱:184
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗主要是在架設一套磁光陷阱系統來冷卻及捕捉^{87}Rb以及^{39}K,這套新裝置的目標是要研究在異核種之間的雷德堡態的單原子;整個系統由五個主要部分組成。這套系統包括真空系統、磁場以及雷射光源:我們使用離子幫浦(ion pump)來使玻璃真空管中的真空度達到10^{-8} Torr;提供一對反式荷姆赫茲線圈2A的電流可以產生12 Gauss/cm的磁場梯度;雷射源的部分建立於光學注入所頻的架構上,包含cooling光以及repump光,其中外腔室半導體雷射(ECDL)為主要雷射,將很少功率的光注入兩台二極體雷射,這兩台雷射為從屬雷射,可以得到輸出超過100 mW的雷射功率以及頻率跟主要雷射相同。鎖頻部分將主要雷射鎖在^{87}Rb躍遷的飽和吸收光譜上,我們只需一套鎖頻系統,搭配光纖電光調製器(fiber EOM)的調製,調製頻率為6.568 GHz即可得到所需的兩種頻率,在產生磁光陷阱時的cooling光的光強度為8.8 mW/cm2。
為了觀察冷原子,我們使用成像系統來觀察螢光搭配時序控制來控制相機的快門,目前成像系統由一個焦距50.2mm的透鏡來成像,可以得到4倍的放大倍率,而使用EMCCD可以使我們的成像系統達到幾個光子的靈敏度,而時序控制的部分使用FPGA搭配LabVeiw的程式來控制。
我們使用螢光法來計算原子的數量,在我們的系統中,磁光陷阱中銣原子的數量約10^{6}個,平均密度為10^{10}個/cm3;系統中也包含了鉀原子,連同雷射源766 nm,鉀的冷原子也和銣原子一同形成於此系統中,鉀原子的數量約10^{9}個。
In this experiment, we set up a new system of magneto-optical trap to cool and trap ^{87}Rb and ^{39}K. The goal of this new apparatus is the study of the single Rydberg atoms between heteronuclear species. The entire system is composed of 5 major parts. This system includes the vacuum chamber, the magnetic field and the laser light sources. We use an ion pump to reach vapor pressure of 10^{-8} Torr in the glass cell. The magnetic field gradient of 12 Gauss/cm is generated by a pair of anti-Helmholtz coil with 2A current. The light sources, including the cooling laser and the repump laser, are built upon the architecture of injection locking, which the ECDL, the maser laser injecting a few power into two diode lasers, the slave lasers, to reach over 100 mW with the laser frequencies as the master laser. The master laser is locked to an atomic transition of ^{87}Rb using saturation absorption spectroscopy. We stabilize only one master laser to provide two frequencies using a fiber EOM modulator with modulation frequency of 6.568 GHz. The total intensity of the six cooling beam is 8.8 mW/cm2.
To observe the cold atoms, we use an imaging system to detect the fluorescence with a timing sequence to control the camera shutter. The magnification of optical imaging is 4X using a lens with a focal length of 50.2 mm. The EMCCD is used in our imaging system to reach a sensitivity of few photons. We control the timing sequence by FPGA using LabView.
We determine the number of atoms in the MOT by the fluorescence method. In our system, atoms of 10^{6} and the number density of 10^{10} cm-3 are achieved in the rubidium MOT. This system is also equipped with potassium source. Together with the built laser source of 766 nm, a cold potassium atomic cloud is also formed in the same apparatus, simultaneously with rubidium. The number of atoms of 10^{9} atoms in the potassium MOT.
第一章 介紹 1
1.1 動機 1
1.2 論文概述 1
第二章 理論背景 3
2.1 原子結構 3
2.2 磁光陷阱(Magneto-Optical Trap) 4
2.2.1 都卜勒效應 4
2.2.2 塞曼效應 4
2.2.3 反式荷姆赫茲線圈(Anti-Helmholtz Coil) 5
2.3 注入鎖頻( Injection Locking ) 6
2.4 光偶極阱位能 7
第三章 實驗架設 9
3.1 真空系統 9
3.1.1 Chamber Design 9
3.1.2 Rb and K source 10
3.1.3 Chamber Bake Out 11
3.2 磁場設計 13
3.2.1 MOT coil 13
3.2.2 地磁線圈(Compensation Coil) 14
3.2.3 電流控制裝置 15
3.3 雷射系統 17
3.3.1 外腔室半導體雷射(ECDL) 18
3.3.2 鎖頻光譜 19
3.3.3 Trapping Laser 21
3.3.4 Repump Laser 22
3.3.5 Rb and K mixed 24
3.3.6 MOT optical configuration 25
3.4 成像系統 26
3.5 時序控制(Timing Sequence) 29
3.6 光偶極阱系統 30
第四章 The MOT Characterization 31
4.1 Loading of MOT 31
4.2 原子數量的量測-螢光法 32
4.3 Dual MOT ( Rb and K ) 33
4.4 Molasses 34
第五章 結論及Future Work 35
5.1 結論 35
5.2 Future Work 35
參考資料 36
附件 38

[1] J. S. Otto, N. Kjærgaard, and A. B. Deb, “Strong zero-field förster resonances in K-Rb rydberg systems,” Phys. Rev. Res. 2, 033474 (2020).
[2] Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. Papoular, G. Shlyapnikov, and M. Zhan, “Entangling two individual atoms of different isotopes via Rydberg blockade,” Phys. review letters 119, 160502 (2017).
[3] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, 152 H. Bernien, M. Greiner, V. Vuletic, H. Pichler ´ et al., “Parallel implemen153 tation of high-fidelity multiqubit gates with neutral atoms,” Phys. review 154 letters 123, 170503 (2019).
[4] R. Brooks, S. Spence, A. Guttridge, A. Alampounti, A. Rakonjac, 149 L. McArd, J. M. Hutson, and S. L. Cornish, “Preparation of one 87rb and one 133cs atom in a single optical tweezer,” New J. Phys. 23 , 151 065002 (2021).
[5] Y. Song, “Ultrafast quantum gates for trapped neutral atom qubits,” (2020).
[6] D. A. Steck, “Rubidium 87 d line data,” (2001)
[7] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1 (1999).
[8] J. G. Schray, “High speed control of atom transfer sequence from magneto-optical to dipole trap for quantum computing,” (2014).
[9] S. Song, H. Yu, and H. Ren, “Study on mathematic magnetic field model of rectangular coils for magnetic actuation,” in 2015 IEEE 28th Cana158 dian Conference on Electrical and Computer Engineering (CCECE), 159 (IEEE, 2015), pp. 19–24.
[10] X. Zhang, M. Huang, F. Zi, K. Huang, and X. Lu, “Generation of phase locked beams by injection locking of extended-cavity diode lasers for atom interferometers,” Appl. Phys. B 126, 1–5 (2020).
[11] R. Kowalski, S. Root, S. Gensemer, and P. Gould, “A frequency modulated injection-locked diode laser for two-frequency generation,” 165 Rev. Sci. Instruments 72, 2532–2534 (2001).
[12] 陳弘斌。「銣85原子在光偶極阱的超冷碰撞」。碩士論文,國立清華大學物理系,2012
[13] D. McCarron, S. King, and S. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. science technology 19, 105601 154 (2008).
[14] H. J. Lewandowski, D. Harber, D. L. Whitaker, and E. A. Cornell, “Simplified system for creating a bose–einstein condensate,” J. low temper157 ature physics 132, 309–367 (2003).
[15] A. F. Restrepo, E. Franco, H. Cadavid, and C. R. Pinedo, “A comparative study of the magnetic field homogeneity for circular, square and equilateral triangular helmholtz coils,” in 2017 International Conference 161 on Electrical, Electronics, Communication, Computer, and Optimization 162 Techniques (ICEECCOT), (IEEE, 2017), pp. 13–20.
[16] 吳國豪。「超冷銣原子的磁轉移」。碩士論文,國立清華大學物理系,2013。
[17] H. Sun, Y. Song, A. Byun, H. Jeong, and J. Ahn, “Imaging three dimensional single-atom arrays all at once,” Opt. Express 29, 4082– 165 4090 (2021).
[18] D. Stuart, “Manipulating single atoms with optical tweezers,” Ph.D. 167 thesis, University of Oxford (2014).
[19] K. E. Gibble, S. Kasapi, and S. Chu, “Improved magneto-optic trapping in a vapor cell,” Opt. Lett. 17, 526–528 (1992).
[20] 高政揚。「光與極冷85銣原子的交互作用」。碩士論文,國立清華大學物理學系,2010。
[21] 邱文彥。「在磁陷阱中的超冷鉀-銣混合物」。碩士論文,國立清華大學物理學系,2017。
[22] 黃耀欽。「鋰原子低能階的雷射光譜」。博士論文,國立清華大學物理學系,2017。
[23] 關子顒。「低溫銣原子與雷德堡鉀原子的交互作用」。碩士論文,國立清華大學物理學系,2020。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *